Problem 1 [10], Prove the following Implicit Function Theorem: Let $\Omega \subset \mathbb{R}^n \times \mathbb{R}^m$ be an open set, and let $F = (F_1, \dots, F_m) : \Omega \to \mathbb{R}^m$ be a C^k map. Suppose $(x_0, y_0) \in \Omega$ and $F(x_0, y_0) = 0$ and the partial Jacobi $m \times m$ matrix $\frac{\partial F}{\partial y} = (\frac{\partial F_i(x,y)}{\partial y_j})_{i,j=1}^m$ is non-singular at (x_0, y_0) . Then there are an open neighborhood $U \subset \mathbb{R}^n$ of x_0 , a neighborhood V of y_0 in \mathbb{R}^m , and a unique C^k map $f: U \to V$ such that $F(x, f(x)) = 0, \forall x \in U$.

Problem 2 [10], Using stereographic projection ϕ_N from north pole N of $\mathbb{S}^n \setminus N \subset \mathbb{R}^{n+1}$ to $\mathbb{R}^n \times \{0\}$ determine a coordinate chart (U_N, ϕ_N) . Perform the same for south pole S to get (U_S, ϕ_S) . Show the these two neighborhood determine a C^{∞} structure on \mathbb{S}^n .

Problem 3 [10], Let A be a closed subset and K be a compact subset of a C^{∞} manifold M with $A \cap K = \emptyset$. Prove that there is a C^{∞} function f defined on M with values in [0,1] such that f=1 on K and f=0 on A.

Problem 4 [10], Let $F: M \to N$ be a C^{∞} mapping of manifolds, let A be an immersed submanifold of M, show that F|A is a C^{∞} mapping into N.

Problem 5 [10], Let $F: N \to M$ be a one-to-one immersion which is proper (i.e., the inverse image of any comact set is compact). Show that F is an imbedding and that its image is a closed regular submanifold of M and conversely.

Problem 6 [10], Show by example that there may be functions that are C^{∞} on a submanifold N of M that cannot be obtained by restriction of C^{∞} function on M.

Problem 7 [10], Show that if G is a Lie group, $a \in G$, then the map $I_a : G \to G$, defined by $I_a(x) = axa^{-1}$, is an automorphism of G.

Problem 8 [10], Show that O(n+1) acts transitively on \mathbb{S}^n in a natural way and determine the isotropy subgroup of $(0, \dots, 0, 1)$.

Problem 9 [10], Prove that a discrete normal subgroup of a connected Lie group is in the center of G.

Problem 10. [10] Suppose that a C^{∞} manifold M is a metric space and that Γ is a discrete group of C^{∞} isometries acting discountinuously on M. Show that the action is necessarily properly discontinuous.