
Solutions of Assignment #3

P294, #2. In view of geodesic equations (4) in page 254, simply compute the Christoffel
symbols in geodesic coordinates (E = 1, F = 0) using (2) in page 232.

P307, #6a. Direct calculation shows that in the coordinate (ρ, θ), the first fundamental
form E = 1, F = 0, G = ρ2. Therefore, it’s a local isometry.

P307, #7a Under the assumption that α
′
is not an asymptotic direction, the statements in

(a) is prove in example 4 in page 195 (together with page 194). To check that assumption, we
note that α” = kn. As k 6= 0, n is defined. As α is a geodesic of arc-length parameterized,
n is parallel to N along α (we may take n = N along α) and kn = k 6= 0. Therefore,
N

′
= n

′
= −kα

′ − τb 6= 0.

P335, #1. Set S1 = S −F . Since F is closed, S1 is an open subset of S. Therefore S1 is
a connected regular surface. Clearly S is a non-trivial extension of S1, by Proposition 1 in
page 326, S1 can not be a complete surface.

P335, #4 Pick a nbhd of p0 such that S is locally a graph over a plane, say locally
S = {(x, y, h(x, y)} with h(0, 0) = 0, |∇h(x, y)| ≤ C for some constant C > 0 ∀(x, y) close
to 0. It’s easy to see d and d̄ are equivalent in a small nbhd of 0.

P335, #6. Since S is non-compact and complete, by Corollary 2 in page 335, there
is a sequence of pn such that the distance d(p, pn) = ln tends to ∞. By Hopf-Rinow
Theorem, there is a geodesic γn such that γn(0) = p, γn(ln) = pn. Note that for any two
point in γn[0, ln], γn realizes the intrinsic distance. Let wn = γ

′
n(0), then |wn| = 1. Since

S1 ⊂ R2 = TpS is compact, there is subsequence wnk
→ w0. Claim: the geodesic γ starting

from p with direction w0 is a ray issuing from p. This can be checked as follow: ∀q1, q2 ∈ γ,
approximate it by γn. There exist q1,n, q2,n ∈ γn, q1,n → q1, q2,n → q2. Take the limit, we
have the conclusion.

P354, #1. No, e.g., a torus. It’s compact, but there are even some points with K < 0.

P354, #5 (a), it’s pretty obvious from the explicit solution given (using problem #4 in
page355).

(b), again, it follows directly the equation

c =
u

′
f2√

f2(u′)2 + (f ′)2 + (g′)2
,

solving for u
′
and integrate it.

P368, #1. (a), As we have proved that < J
′
(s), γ

′
(s) >≡ const. Since it is 0 at s = 0,

so d
ds < J(s), γ(s) >=< J

′
(s), γ

′
(s) >≡ 0. < J(s), γ(s) >≡ const. But again, it’s vanishing

at s = 0, so it vanishing identically.
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(b), by (a), J(s) = u(s)e2(s). Now, (γ
′ ∧ J) ∧ γ

′
= u(e1 ∧ e2) ∧ e1 = e2, by the equation

for J , as D
dse2 = 0, we get

(1) u”(s) + K(s)u(s) = 0.

The initial conditions are clear.

P368, #2. Since any meridian is a geodesic for surface of revolution, since geodesic is
uniquely determined by the initial point and its direction, any geodesic starting from the
origin must be a meridian for the paraboloid z = x2 +y2. Using the polar coordinates (ρ, θ)
for T0S, then the exponential map exp0 can be expressed as (for V = (ρ cos θ, ρ sin θ)):

exp0(V ) = Φ(ρ, θ) = (t(ρ) cos θ, t(ρ) sin θ, t2(ρ)),

where t(ρ) satisfies dt(ρ)
dρ = 1√

1+4t2(ρ)
with t(0) = 0 (or the other way around: ρ =∫ t

0

√
1 + 4µ2dµ). We need to show exp0 is a local diffeomorphism when ρ > 0. Note

that
Φθ = (−t(ρ) sin θ, t(ρ) cos θ, 0),Φρ =

1√
1 + 4ρ2

(cos θ, sin θ, 2t(ρ)).

Therefore, Φθ ⊥ Φρ and for ρ > 0, Φθ ∧ Φρ 6= 0.


