Solutions of Assignment #4

P261, #8. We want to prove that every point in S is an umbilical point. This is equivalent to show that a any point p, any $v \in T_pS$ is an eigenvector of dN_p . For such p, v, there is a (local) geodesic γ such that $\gamma(0) = p, \gamma'(0) = v$. Since $k_g = 0, k_n^2 = k^2$, and N and n are parallel. by the assumption, γ is a plane curve, by Frenet formula, $N'(t) = n'(t) = -k\gamma'$. It follows from Rodrigus' formula, γ is a line of curvature. in particular, v is an eigenvector of dN_p .

P282, #1. Since $S \subset \mathbb{R}^3$ is compact, there exist r > 0 $p \in S$ such that $S \subset \overline{B}_r(0)$ and |p| = r. As we know, K(p) > 0. By Gauss-Bonnet, $\int_S K < 0$. So there is $q \in S$, K(q) < 0. Now, as S (should be assumed) is connected, by the continuity of K, there is a point $a \in S$, K(a) = 0.

P282, #3 It should be algebraic values of volumes N(A), N(B). $V(N(A)) = \int_{N(A) \subset \mathbb{S}^2}$, and similar expression for V(N(B)). Since the Jacobi of the Gauss map is $K, V(N(A)) = \int_A K d\sigma$. Now the statement follows Gauss-Bonnet as Γ is geodesic, and $\chi(A) = \chi(B)$.

P294, #1. This follows from the proof of Minding's theorem in P289, i.e., the first fundamental form is independent of θ in geodesic polar coordinates.

P294, #4 This is one of the questions in the midterm exam, we did it in the class.

P294, #6. We may assume the pre-image \tilde{C} of C is $\{(\rho_0, \theta) | \theta_1 \leq \theta \leq \theta_2\}$. So the length of C is $\int_{\theta_1}^{\theta_2} \sqrt{G} d\theta$. Using the Gauss lemma to expend

$$\sqrt{G} = 0 + \rho_0 + \sqrt{G}_{\rho\rho}(\rho^*, \theta^*) \frac{\rho_0^2}{2}.$$

If ρ_0 is sufficient small, $\sqrt{G}_{\rho\rho} = -K\sqrt{G}_{\rho\rho}$. Now the statements of (a) and (b) follow accordingly.

P294, #7. We may assume γ is arc-length parameterized. Let $v = X_{\rho}, w = \gamma'$. Use Lemma2 in page 257, as γ is a geodesic, $\frac{d\phi}{ds} = -[\frac{Dv}{ds}]$. Use formula (1) in page 239, $a = 1, b = 0, u = \rho, v = \theta$, as $\Gamma^2 11 = 0, \Gamma^2 12 = \frac{G_{\rho}}{2G}, \frac{Dv}{ds} = \frac{G_{\rho}}{2G}X_{\theta}$ (the coefficient in front of X_{ρ} must be 0 since X_{ρ} is a unit vector field). As v is a unit vector filed, $\frac{Dv}{ds} \perp v$. by the Gauss lemma, $\frac{X_{\theta}}{G^{frac12}}$ is a unit vector field $\perp v$, from the orientation, $N \wedge v = \frac{X_{\theta}}{G^{frac12}}$. It follows from Definition 9 in page 248 $[\frac{Dv}{ds}]\frac{X_{\theta}}{G^{frac12}} = \frac{Dv}{ds} = \frac{G_{\rho}}{2G}X_{\theta}$, so $[\frac{Dv}{ds}] = (\sqrt{G})_{\rho}\theta'(s)$. the equation is verified.

P294, #10 Set $Q = \varphi \circ \psi^{-1}$, we want to show Q = id on S. Set $A = \{q \in S | Q(q) = q, dQ_p = ID\}$. It's obvious A is closed and non-empty since $p \in A$. We verify A is open. Suppose $q \in SA$, pick a geodesic normal coordinates at p, consider exp_q which is a local parametrization around q. For any geodesic ray γ starting from $q, \tilde{\gamma} = Q(\gamma)$ is also a geodesic starting from q since Q is an isometry and Q(q) = q. Since $\tilde{\gamma}'(0) = dQ_q \gamma'(0) = \gamma'(0)$. γ and

 $\tilde{\gamma}$ are two geodesic with the same initial point and same initial velocity, they must be the same. From this, we conclude Q = id near q. Some A is open. By connectedness, A = S.

P306, #3c. From (a) and (b), **x** is a parametrization of S with coordinate nbhd contains $\alpha(0, l)$). In this coordinates, $\mathbf{x}_s = d(exp_{\alpha(t)})(v(t))$ from the definition of exp. By chain rule and the Gauss lemma, $\mathbf{x}_t = \alpha'(t) + s\frac{D}{dt}v(t)$. $v \perp \frac{D}{dt}v$ (as v is a unit vector field), together with the assumption $\alpha' \perp v$, we conclude E = 1, F = 0. If α is an arc-length parameterized, $\mathbf{x}_s(0,t) = \alpha'(t)$, so G(0,t) = 1. If in addition α is also a geodesic,

$$G_s(s,t) = \frac{d}{ds} \langle \mathbf{x}_t, \mathbf{x}_t \rangle = 2 \langle \frac{D}{ds} \mathbf{x}_t, \mathbf{x}_t \rangle = 2 \langle \frac{D}{dt} \mathbf{x}_s, \mathbf{x}_t \rangle = 2 \frac{d}{dt} \langle \mathbf{x}_s, \mathbf{x}_t \rangle - 2 \langle \mathbf{x}_s, \frac{D}{dt} \mathbf{x}_t \rangle.$$

Since $F = 0$ and $\frac{D}{dt} \mathbf{x}_t|_{s=0} = 0$, $G_s(0,t) = 0$.

Since $\mathbf{r} = 0$ and $dt \mathbf{x}_{t|s=0} = 0$, $\mathbf{G}_s(0, v) = 0$.

P306, #5. We will use 3(c). Some preparation. In Fermi coordinates (u, v), E = 1, F = 0 and $\Gamma_{11}^1 = \Gamma_{11}^2 = \Gamma_{12}^1 = 0$, $\Gamma_{12}^2 = \frac{G_u}{2G}$, $\Gamma_{22}^1 = -\frac{G_u}{2G}$, $\Gamma_{22}^2 = \frac{G_v}{2G}$. Write $\gamma(v, t) = X(u(v, t), v)$. Use these and formula (1) in page 239,

$$\gamma_t = u_t X_u, \gamma_v = X_v + u_v X_u, \frac{D}{\partial t} X_u = 0, \frac{D}{\partial t} X_v = \frac{G_u}{2G} u_t X_v$$

Note by the assumption, $u_v(v, 0) = 0$. In particular, at t = 0, $\gamma_v = X_v$. We also note that in Fermi coordinates, at u = 0, X_u, X_v are orthonormal along $\gamma(v, 0)$. Also,

$$\frac{D}{\partial t}\gamma_v = u_{vt}X_u + \frac{G_u}{2G}X_v$$

Now for (a),

$$E'(0) = 2\int_0^l <\frac{D}{\partial t}\gamma_v, \gamma_v > |_{t=0}dv = 2\int_0^l <\frac{G_u}{2G}X_v, X_v > |_{u=0}dv = 0,$$

as $G_u(0,v) = 0$ by 3(c). Use the fact that $G_u(0,v) = 0, G(0,v) = 1$, and the Gauss equation for $E = 1, F = 0, K = -\frac{1}{2}\frac{G_{uu}}{G}$,

$$\begin{aligned} \frac{D}{\partial t} \frac{D}{\partial t} \gamma_v|_{t=0} &= (u_{vtt} X_u + \frac{1}{2} (\frac{G_u u_t}{G})_t X_v + (\frac{1}{2} \frac{G_u u_t}{G})^2 X_v)_{t=0} \\ &= u_{vtt} X_u|_{t=0} + \frac{1}{2} G_{uu}(0, v) u_t^2(0, v) X_v \\ &= u_{vtt} X_u|_{t=0} - K u_t^2(0, v) X_v. \end{aligned}$$

Note that $u_t(0, v) = \eta(v)$. We have

$$\begin{aligned} \frac{1}{2}E^{''}(0) &= \int_0^l < \frac{D}{\partial t}\gamma_v, \frac{D}{\partial t}\gamma_v > |_{t=0}dv + \int_0^l < \frac{D}{\partial t}\frac{D}{\partial t}\gamma_v|_{t=0}, \gamma_v|_{t=0} > dv \\ &= \int_0^l < \frac{D}{\partial v}\gamma_t, \frac{D}{\partial v}\gamma_t > |_{t=0}dv + \int_0^l < u_{vtt}X_u|_{t=0} - Ku_t^2(0,v)X_v, X_v|_{t=0} > dv \\ &= \int_0^l (\frac{d\eta}{dv})^2 dv - \int_0^l K\eta^2 dv. \end{aligned}$$

For (b), Suppose there is a curve α with $\alpha_{(0)} = \gamma(0), \alpha(l) = \gamma(l)$, and $l(\alpha) \leq l - \delta$ for some $\delta > 0$, and α is sufficient close to γ . By (a), E''(0) > 0 unless $\frac{d\eta}{dv} \equiv 0$. Since $\eta(0) = \eta(l) = 0$, this implies $\eta \equiv 0$. That is, is α is not the same as γ, η can not vanish identically, so we have E''(0) > 0. So the energy $E_{\alpha} > E_{\gamma}$.