
Solutions of Assignment #4
P261, #8. We want to prove that every point in S is an umbilical point. This is equivalent

to show that a any point p, any v ∈ TpS is an eigenvector of dNp. For such p, v, there is a
(local) geodesic γ such that γ(0) = p, γ

′
(0) = v. Since kg = 0, k2

n = k2, and N and n are
parallel. by the assumption, γ is a plane curve, by Frenet formula, N

′
(t) = n

′
(t) = −kγ′

.
It follows from Rodrigus’ formula, γ is a line of curvature. in particular, v is an eigenvector
of dNp.

P282, #1. Since S ⊂ R3 is compact, there exist r > 0 p ∈ S such that S ⊂ B̄r(0) and
|p| = r. As we know, K(p) > 0. By Gauss-Bonnet,

∫
SK < 0. So there is q ∈ S, K(q) < 0.

Now, as S (should be assumed) is connected, by the continuity of K, there is a point a ∈ S,
K(a) = 0.

P282, #3 It should be algebraic values of volumes N(A), N(B). V (N(A)) =
∫
N(A)⊂S2 ,

and similar expression for V (N(B)). Since the Jacobi of the Gauss map is K, V (N(A)) =∫
AKdσ. Now the statement follows Gauss-Bonnet as Γ is geodesic, and χ(A) = χ(B).

P294, #1. This follows from the proof of Minding’s theorem in P289, i.e., the first
fundamental form is independent of θ in geodesic polar coordinates.

P294, #4 This is one of the questions in the midterm exam, we did it in the class.

P294, #6. We may assume the pre-image C̃ of C is {(ρ0, θ)|θ1 ≤ θ ≤ θ2}. So the length
of C is

∫ θ2
θ1

√
Gdθ. Using the Gauss lemma to expend

√
G = 0 + ρ0 +

√
Gρρ(ρ∗, θ∗)

ρ2
0

2
.

If ρ0 is sufficient small,
√
Gρρ = −K

√
Gρρ. Now the statements of (a) and (b) follow

accordingly.

P294, #7. We may assume γ is arc-length parameterized. Let v = Xρ, w = γ
′
. Use

Lemma2 in page 257, as γ is a geodesic, dφ
ds = −[Dvds ]. Use formula (1) in page 239, a =

1, b = 0, u = ρ, v = θ, as Γ211 = 0,Γ212 = Gρ
2G , Dv

ds = Gρ
2GXθ (the coefficient in front of

Xρ must be 0 since Xρ is a unit vector field). As v is a unit vector filed, Dv
ds ⊥ v. by the

Gauss lemma, Xθ
Gfrac12

is a unit vector field ⊥ v, from the orientation, N ∧ v = Xθ
Gfrac12

. It
follows from Definition 9 in page 248 [Dvds ] Xθ

Gfrac12
= Dv

ds = Gρ
2GXθ, so [Dvds ] = (

√
G)ρθ

′
(s). the

equation is verified.

P294, #10 Set Q = ϕ ◦ ψ−1, we want to show Q = id on S. Set A = {q ∈ S|Q(q) =
q, dQp = ID}. It’s obvious A is closed and non-empty since p ∈ A. We verify A is open.
Suppose q ∈ SA, pick a geodesic normal coordinates at p, consider expq which is a local
parametrization around q. For any geodesic ray γ starting from q, γ̃ = Q(γ) is also a geodesic
starting from q since Q is an isometry and Q(q) = q. Since γ̃

′
(0) = dQqγ

′
(0) = γ

′
(0). γ and

1



2

γ̃ are two geodesic with the same initial point and same initial velocity, they must be the
same. From this, we conclude Q = id near q. Some A is open. By connectedness, A = S.

P306, #3c. From (a) and (b), x is a parametrization of S with coordinate nbhd contains
α(0, l)). In this coordinates, xs = d(expα(t))(v(t)) from the definition of exp. By chain rule
and the Gauss lemma, xt = α

′
(t) + sDdtv(t). v ⊥ D

dtv (as v is a unit vector field), together
with the assumption α

′ ⊥ v, we conclude E = 1, F = 0. If α is an arc-length parameterized,
xs(0, t) = α

′
(t), so G(0, t) = 1. If in addition α is also a geodesic,

Gs(s, t) =
d

ds
< xt,xt >= 2 <

D

ds
xt,xt >= 2 <

D

dt
xs,xt >= 2

d

dt
< xs,xt > −2 < xs,

D

dt
xt > .

Since F = 0 and D
dtxt|s=0 = 0, Gs(0, t) = 0.

P306, #5. We will use 3(c). Some preparation. In Fermi coordinates (u, v), E = 1, F = 0
and Γ1

11 = Γ2
11 = Γ1

12 = 0, Γ2
12 = Gu

2G ,Γ
1
22 = −Gu

2G ,Γ
2
22 = Gv

2G . Write γ(v, t) = X(u(v, t), v).
Use these and formula (1) in page 239,

γt = utXu, γv = Xv + uvXu,
D

∂t
Xu = 0,

D

∂t
Xv =

Gu
2G

utXv.

Note by the assumption, uv(v, 0) = 0. In particular, at t = 0, γv = Xv. We also note that
in Fermi coordinates, at u = 0, Xu, Xv are orthonormal along γ(v, 0). Also,

D

∂t
γv = uvtXu +

Gu
2G

Xv.

Now for (a),

E
′
(0) = 2

∫ l

0
<
D

∂t
γv, γv > |t=0dv = 2

∫ l

0
<
Gu
2G

Xv, Xv > |u=0dv = 0,

as Gu(0, v) = 0 by 3(c). Use the fact that Gu(0, v) = 0, G(0, v) = 1, and the Gauss equation
for E = 1, F = 0, K = −1

2
Guu
G ,

D

∂t

D

∂t
γv|t=0 = (uvttXu +

1
2

(
Guut
G

)tXv + (
1
2
Guut
G

)2Xv)t=0

= uvttXu|t=0 +
1
2
Guu(0, v)u2

t (0, v)Xv

= uvttXu|t=0 −Ku2
t (0, v)Xv.

Note that ut(0, v) = η(v). We have

1
2
E

′′
(0) =

∫ l

0
<
D

∂t
γv,

D

∂t
γv > |t=0dv +

∫ l

0
<
D

∂t

D

∂t
γv|t=0, γv|t=0 > dv

=
∫ l

0
<
D

∂v
γt,

D

∂v
γt > |t=0dv +

∫ l

0
< uvttXu|t=0 −Ku2

t (0, v)Xv, Xv|t=0 > dv

=
∫ l

0
(
dη

dv
)2dv −

∫ l

0
Kη2dv.
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For (b), Suppose there is a curve α with α(0) = γ(0), α(l) = γ(l), and l(α) ≤ l − δ

for some δ > 0, and α is sufficient close to γ. By (a), E
′′
(0) > 0 unless dη

dv ≡ 0. Since
η(0) = η(l) = 0, this implies η ≡ 0. That is, is α is not the same as γ, η can not vanish
identically, so we have E

′′
(0) > 0. So the energy Eα > Eγ .


