
Solutions of Assignment #3
P174, #24a, b. There are different proofs. In spirit, all are similar. Here we use Problem

26 in page 91 (2nd assignment). Locally, express S as a graph of z = u(x, y) over xy-plane
near 0, with u(0) = ∇xu(0) = ∇yu(0) = 0. It easy to compute that the 1st FF at 0 is the
identity matrix, the coefficients second FF at 0: e = uxx, f = uxy, g = uyy. Moreover, after
a rotation, we may assume uxy(0) = 0. So K(0) = uxx(0)uyy(0). Expand u near 0

u(x, y) =
1
2
uxx(0)x2 +

1
2
uyy(0)y2 + R,

where R is a term of order ≥ 3. (a) K(0) > 0 implies uxx(0) and uyy(0) are non-vanishing
and they have the same sign, say positive. That implies u(x, y) > 0 if (x, y) 6= (0, 0) near 0.
(b), on the other hand, if S is locally convex near 0, say u(x, y) ≥ 0 near 0, we must have
uxx(0) ≥ 0, uyy(0) ≥ 0.

P212, #11. (a) As Yu = Xu + aNu, Yv = Xv + aNv,

Yu ∧ Yv = Xu ∧Xv + aNu ∧Xv + aXu ∧Nv + a2Nu ∧Nv.

By Weingarten equation, Nu∧Xv = a11Xu∧Xv, Xu∧Nv = a22Xu∧Xv, Nu∧Nv = KXu∧Xv,

(1) Yu ∧ Yv = (1 + a2K + a(a11 + a22))Xu ∧Xv = (1− 2Ha + Ka2)Xu ∧Xv.

(b) From (1), N = N̄ , so Nu = N̄u, Nv = N̄v and

Yu = Xu + aNu = (1 + aa11)Xu + aa21Xv, Yv = Xv + aNv = (1 + aa22)Xv + aa12Xu.

Let A be the Weingarten matrix for X and Ā the corresponding Weingarten matrix for Y .
From above, relation, we have Ā = A(I +aAt)−1 where At the transport of A. Now at each
point p, we may pick a local coordinate such that at p E = G = 1, F = 0 and A is diagonal.
Then it will be easy to verify the formulas for K̄, H̄. (c), let a = 1

2c the formula for K̄ in
(b).

P212, #12 As we have proved that every compact surface has an elliptic point p such
that K(p) > 0. For minimal surface, as H = 0, must have K ≤ 0.

P.228, #3. Let γ ⊂ S be any curve, γ̄ = φ◦γ. As l =
∫ t
t0
‖γ′(t)‖dt and l̄ =

∫ t
t0
‖γ̄′(t)‖dt =∫ t

t0
‖dφ(γ

′
(t))‖dt. If φ is an isometry, l = l̄. If l = l̄ for any t > t0, differentiating t, we get

‖γ̄′(t)‖ = ‖dφ(γ
′
(t))‖ for any t and any γ. So < dφp(w), dφp(w) >=< w, w > ∀w ∈ TpS.

∀w1, w2 ∈ Tp, ∀α, β ∈ R, set w = αw1 + βw2, < dφp(w), dφp(w) >=< w, w > implies
< dφp(w1), dφp(w2) >=< w1, w2 > ∀w1, w2 ∈ TpS.

P.228, #18 Pick any parametrization (u, v), φ conformal implies

dφ(Xu) ∧ dφ(Xv) = λ2Xu ∧Xv

for some function λ 6= 0. We only need to show λ2 ≡ 1. Area preserving means∫

U
Xu ∧Xvdudv =

∫

U
dφ(Xu) ∧ dφ(Xv)dudv

1



2

for open set U . Take U = Br(p) ⊂ R2, divide above identity by r2 and let r → 0, we get
Xu ∧Xv = dφ(Xu) ∧ dφ(Xv). then by the first identity, λ2 = 1.

P.237, #2. Direct computation, use formulas in P236 for Γk
ij and the Gauss formula

(5)in 234.

P.237, #7. No, use Codazzi equation (7a) in page 236.

P.260, #2 k2 = k2
n + k2

g . C straight line segment if and only if k ≡ 0. This is equivalent
to kg ≡ 0 and kn ≡ 0. That’s C is geodesic and asymptotic.

P.260, #4.
d

dt
< v(t), w(t) > = < v

′
(t), w(t) > + < v(t), w

′
(t) >

= <
D

dt
v(t), w(t) > + < v(t),

D

dt
w(t) >,

since v
′
(t)− D

dtv(t), w
′
(t)− D

dtw(t) are parallel to N and < N, v >=< N, w >= 0.


