Problem 1 [10], Consider the unit sphere S given by $x^2 + y^2 + z^2 = 1$. S intersects the z axis at two points. Which variables can we solve for near these points? What about the points of intersection of S with the y axis?

Problem 2 [10], Show that $x + zy + 3yz^5 = 4$ is solvable for z as a function of (x, y) near (0, 1, 1). Compute $\frac{\partial z}{\partial x}, \frac{\partial z}{\partial y}$ at (0, 1).

Problem 3 [10], Show that there are positive numbers $\delta > 0$ and $\beta > 0$ and unique function u and v from interval $(-1 - \delta, -1 + \delta)$ into the interval $(1 - \beta, 1 + \beta)$ satisfying

 $xe^{u(x)} + u(x)e^{v(x)} = 0 = xe^{v(x)} + v(x)e^{u(x)}$

for all x in the interval $(-1-\delta, -1+\delta)$ with u(-1) = v(-1) = 1. (Hint: Implicit Function Theorem)

Problem 4 [10], Suppose $f, g, h : \mathbb{R} \to \mathbb{R}$ are differentiable. Show that the vector field $\mathbf{F}(x, y, z) = (f(x), g(y), h(z))$ is irrotational.

Problem 5 [10], Find the arc length of $\mathbf{c}(t) = \log t\mathbf{i} + t\mathbf{j} + 2\sqrt{2t}\mathbf{k}$ for $1 \le t \le 2$.

Problem 6 [10], Evaluate the integral $\int \int_{R} (ax^2 + by + c) dx dy$ for $R = [0, 1] \times [0, 1]$.

Problem 7 [10], Let f be continuous on $R = [a, b] \times [c, d]$; for a < x < b, c < y < b, define

$$F(x,y) = \int_{a}^{x} \int_{c}^{y} f(u,v) du dv.$$

Show that $\frac{\partial^2 F}{\partial x \partial y} = \frac{\partial^2 F}{\partial y \partial x} = f(x, y)$. Use this example to discuss the relationship between Fubini's theorem and the equality of mixed partial derivatives.

Problem 8 [10], Reverse the iterated $\int_{-2}^{2} \int_{0}^{4-y^2} (4-x) dx dy$ as $\int_{a}^{b} \int_{f(x)}^{g(x)} (4-x) dy dx$ for some constant a, b and some functions f(x), g(x), then evaluate it.

Problem 9 [10], Evaluate $\int_0^1 \int_0^{x^2} (x^2 + xy - y^2) dy dx$. Describe this iterated integral as an integral over a certain region D in the xy plane.

Problem 10 [10], Find $\int_0^4 \int_{y/2}^2 e^{x^2} dx dy$.