Due on October 3.

Problem 1 [10], Compute an equation for the plane tangent to the graph of $f(x,y) = \frac{e^{x^2+y^2}}{\cos(x+y)}$ at x = 1, y = -1.

Problem 2 [10], Use chain rule to compute $\frac{\partial f}{\partial x}$ and $\frac{\partial f}{\partial y}$ if $f = \sin(uv), u = x + y$ and v = x - y.

Problem 3 [20], Let $f(x, y) = \frac{xy(x^2-y^2)}{x^2+y^2}$ if $(x, y) \neq (0, 0)$ and f(0, 0) = 0. (a), If $(x, y) \neq (0, 0)$, calculate $\frac{\partial f}{\partial x}$ and $\frac{\partial f}{\partial y}$. (b), show that $\frac{\partial f}{\partial x}(0, 0) = \frac{\partial f}{\partial y}(0, 0) = 0$. (c), show that $\frac{\partial^2 f}{\partial x \partial y}(0, 0) = 1$, $\frac{\partial^2 f}{\partial y \partial x}(0, 0) = -1$. (d), what went wrong? Why are the mixed partial derivatives are not equal?

Problem 4 [10], A function $f : \mathbb{R} \to \mathbb{R}$ is called an analytic function provided

$$f(x+h) = f(x) + f'(x)h + \dots + \frac{f^{(k)}(x)}{k!}h^k + \dots = \sum_{k=0}^{\infty} \frac{f^{(k)}(x)}{k!}h^k$$

the series on the right-hand side converges and equals f(x + h). Prove that, if f satisfies the following condition: On any closed interval [a, b], there is a constant M (depending on [a, b]) such that for all $k = 1, 2, \dots, |f^{(k)}(x)| \leq kM^k$ for all $x \in [a, b]$, then f is analytic.

Problem 5 [10], Let $f(x, y, z) = x^2 + y^2 + z^2 + kxz$. (a) Verify the (0, 0, 0) is a critical point for f.

(b) Find all values of k such that f has a local minimum at (0, 0, 0).

Problem 6 [10], Show that if $x_0 = (x_1^0, x_2^0)$ is a critical point of a C^3 function f and $f_{11}(x_0)f_{22}(x_0) - f_{12}^2(x_0) < 0$, then there are points x and \tilde{x} near x_0 such that $f(x) > f(x_0)$ and $f(\tilde{x}) < f(x_0)$.

Problem 7 [10], Find the absolute maximum and minimum value for the function f(x, y) = xy on the rectangle R defined by $-1 \le x \le 1, -1 \le y \le 1$.

Problem 8 [10], Find the absolute maximum and minimum values for the function $f(x, y, z) = x^2 + y^2 + z^2 + x + yz$ on the ball $B = \{(x, y, z) | x^2 + y^2 + z^2 \le 1\}$.

Problem 9 [10], Find the maximum and minimum of f(x, y) = xy - y + x - 1 on the set $x^2 + y^2 \le 2$.