Problem 1, Show that the subset $D = \{(x, y) | x \neq 1 \text{ and } y > 0\}$ is an open set in \mathbb{R}^2 .

Problem 2, Compute the following limits if they exist: (a), $\lim_{(x,y)\to(0,0)} \frac{(x+y)^2}{\sqrt{x^2+y^2}}$, (b), $\lim_{(x,y)\to(0,0)} \frac{1-\cos xy}{xy^2}$, (c), $\lim_{(x,y)\to(0,0)} \frac{xy}{x^2+y^2}$.

Problem 3, $\forall \mathbf{x} \in \mathbb{R}^n$, define $B_r(\mathbf{x}) = {\mathbf{y} \in \mathbb{R}^n ||\mathbf{y} - \mathbf{x}| < r}$.

(a) Prove that for $\mathbf{x} \in \mathbb{R}^n$ and $0 < s < t, B_s(\mathbf{x}) \subset B_t(\mathbf{x})$.

(b) Prove that if U and V are neighborhoods of $\mathbf{x} \in \mathbb{R}^n$, then so are $U \cap V$ and $U \bigcup V$.

(c) Prove that the boundary points of an open interval $(a, b) \subset \mathbb{R}$ are the points a and b.

Problem 4, Suppose \mathbf{x} and \mathbf{y} are in \mathbb{R}^n and $\mathbf{x} \neq \mathbf{y}$. Show that there is a continuous function $f : \mathbb{R}^n \to \mathbb{R}$ with $f(\mathbf{x}) = 1, f(\mathbf{y}) = 0$, and $0 \le f(\mathbf{z}) \le 1$ for every \mathbf{z} in \mathbb{R}^n .

Problem 5, Let $f : \Omega \subset \mathbb{R}^n \to \mathbb{R}^m$ satisfy $||f(\mathbf{x}) - f(\mathbf{y})|| \leq K ||\mathbf{x} - \mathbf{y}||^{\alpha}$ for all \mathbf{x} and \mathbf{y} in Ω for positive constant K and α . Show that f is continuous. (Such functions are called **Hölder-continuous** or, if $\alpha = 1$, **Lipschitz-continuous**.)

Problem 6, Find the partial derivatives $\frac{\partial w}{\partial x}, \frac{\partial w}{\partial y}$ for function $w(x, y) = \sin(xe^{xy})\cos y$.

Problem 7, Show that the function $f(r, \theta) = r \cos 2\theta$, r > 0 (in polar coordinates) is differentiable at each point in its domain. Decide if it is C^1 .

Problem 8, Compute the matrix of partial derivatives of $f(x, y) = (e^x, \sin xy)$.

Problem 9, Evaluate the gradient of $f(x, y, z) = \log(x^2 + y^2 + z^2)$ at (1, 1, 0).

Problem 10, Suppose f is a Hölder-continuous functions with $\alpha > 1$ in $B_1(0)$ (see problem 5) with f(0) = 0, prove that $f \equiv 0$ in $B_1(0)$. (Hint: What is the derivative of such function?)