
Solutions of Assignment #5

253, #2 For fn(1) = 0 for all n and for 0 ≤ x < 1, lim n3xn → 0. We get limn→∞ fn(x) =
(1 − x) limn→∞ n3xn = 0 for each 0 ≤ x < 1. Therefore fn(x) converges pointwise to 0 on
[0, 1] On the other hand,

∫ 1
0 fn(x)dx = n3

∫ 1
0 xn(1− x)dx = n3( 1

n+1 − 1
n+2) = n3

(n+1)(n+2) →
∞, therefore fn is not uniformly convergent on [0, 1].

P.274, #2. Not necessary. For example, fn(x) = (−1)n(x + x2

n ) for 0 ≤ x ≤ 1.
P.274, #4. Since B is bounded, we have |f(x)| ≤ M for all f ∈ B and for all 0 ≤ x ≤ 1. In

turn, |I(f)| ≤ ∫ 1
0 |f(x)|dx ≤ M for all f ∈ B, and the set A = {I(f)|f ∈ B} is bounded in R.

Let L = supA. We have fn ∈ B, I(fn) → L. Now, {[fn} is bounded and equi-continuous,
it has a subsequence {fnk

}, and fnk
(x) → f0(x) uniformly on [0, 1]. By Theorem 5.3.1,

L =
∫ 1
0 f0(x)dx. Since B is closed, f0 ∈ B.

P.286 #2. Suppose the degrees of {pn} is bounded by N . Let x0, x1, · · · , xN be any
N distinct points in R. For each polynomial p with degree ≤ N , p(x) =

∑N
i=0 πi(x) p(xi)

πi(xi)
,

where πi(x) = (x − x0)(x − x1)...(x − xN )/(x − xi) (this follows from the Fundamental
Theorem of Algebra). We have pn(x) =

∑N
i=0 πi(x)pn(xi)

πi(xi)
for each n and for all x ∈ R.

We now pick x0, x1, · · · , xN ∈ [0, 1]. Since {pn} is uniformly convergent to f(x) on [0, 1],
pn(xi) → f(xi) for i = 0, 1, · · · , N . Taking the limit on the above formula for pn(x), we
conclude that f(x) =

∑N
i=0 πi(x) f(xi)

πi(xi)
, and f is a polynomial. Contradiction.

P.289, #2. We use Abel test. Let fn(x) = (−1)n 1
n and ϕn(x) = xn. We have

∑
fn(x) =∑

(−1)n 1
n converges uniformly on [0, 1], and |ϕn(x)| ≤ 1 for all n and for all 0 ≤ x ≤ 1.

Therefore,
∑ (−1)nxn

n converges uniformly on [0, 1].
P.294, #2 First, for any |x| < 1,

∑∞
n=0 xn = 1

1−x . the series is uniformly convergent on
[−1 + δ, 1 − δ] for any 1 > δ > 0. Therefore, we can differentiate the series term-by-term
for any |x| < 1 to get 1

(1−x)2
=

∑
n=1 nxn−1 =

∑
n=0(n + 1)xn.

P.316, #8. Not necessary. See question 2 of page 253.
P.316, #28. It is uniformly convergent on [0, 396] to 0, since nayε > 0, |fn(x) − 0| =

|x|
n ≤ 396

n < ε for all x ∈ [0, 396] and for all n > 396
ε . Also, we note that fn(x) → 0 for all

x ∈ R. But it is not uniformly convergent in R, since fn(n) = 1 for all n.
P.316, #50. We first show that there is N such that degree of pn is bounded by N for

any n. If this is not the case, there exists a subsequence {pnk
} such that degree of pnk+1

is at
least one higher than the degree of pnk

. If m is the degree of pnk
and l the degree of pnk+1

,
then l > m. Since xl is the dominating term in pnk+1

as |x| → ∞, there is xk ∈ R such
that |pnk+1

(xk)− pnk
(xk)| ≥ 1. So we have limk→∞ |pnk+1

(xk)− pnk
(xk)| ≥ 1, contradiction

to the assumption that pn(x) uniformly convergent in R. So degrees of pn is bounded by
some N for all n. By problem 2 of page 286, for any N distinct points x0, x1, · · · , xN ,
pn(x) =

∑N
i=0 πi(x)pn(xi)

πi(xi)
for each n and for all x ∈ R. Since {pn} is uniformly convergent

to f(x) on R, pn(xi) → f(xi) for i = 0, 1, · · · , N . We obtain that f(x) =
∑N

i=0 πi(x) f(xi)
πi(xi)

,
and f is a polynomial.
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P.316, #62(b). Since log 1 = 0, the series makes sense only we sum up from 2. As we
know that |x|k

log k →∞ when |x| > 1. And since < 0 1
log k < 1 for k > 2, the series is convergent

for |x| < 1. The series is convergent at x = −1 by alternating test, and it is divergent at
x = 1 since 1

log k ≥ 1
k when k large, and

∑ 1
k is divergent.


