Solutions of Assignment #4

191, #8 Since K is compact and f is continuous, the max,cx f(z) = L is attained at
some xg € K. Since the single point {L} C R is closed and f is continuous, the pre-image
set M = f~1(L) is closed in K. Again, since K is compact, M is a closed subset of K, M
is compact.

P.196, #6. (a). Let (X,d) and (Y, p) are metric spaces. By the definition, f : X — Y is
not uniformly continuous in X, if and only if there is ¢y > 0 such that Vé; > 0 small, there
exist xp,yr € X with d(zk, yr) < Ok, p(f(zk), f(yr)) > €. Since % — 0, for any & > 0,
there is n, % < k. So f: X — Y is not uniformly continuous in X, if and only if there
exist €g > 0 and @y, yn, € X with d(zn,yn) < 1, p(f(20), f(yn)) = €. (b). Let 2, = n and
Yn =n+ 5-. We have |zn, — yn| = 5 < L, |f(zn) = fyn)| =1+ 72 > 1.

P.203, #3. Since f is a polynomial and non-constant, it is continuous and non-constant in
[0, 1]. Since [0, 1] is compact. There exist xo,yo € [0, 1] such that f(zo) = mingcp 1) f(z) =
m and f(yo) = max,c(o1) f(r) = M. By the assumption, f(0) = f(1). One of xg, yo must
not be end points 0,1. If 0 < zg < 1, then it is a local minmum of f in R. If 0 < yg < 1,
then it is a local maxmum of f in R.

P.231, #2(a) For xp € B C A and any € > 0, since ¢ is continuous in A, there is 6 > 0
such that if d(x,z0) < 9, ||f(x) — f(zo)|| < €. In particular, this is true for x € B with
d(z,z9) < d. That is, g|B is continuous.

P.231, #6(b). Let G = {(x, f(x))] = € R} be the graph of f. Assume f is continuous.
If (zo,y0) € G, we have yy # f(xo). That is, there is ¢ > 0, |yo — f(z0)| > €o. Since
[ is continuous, there is § > 0, such that V|z — 20| < 6, |f(z) — f(zo)| < . In turn we
have |yo — f(2)| > |yo — f(20)| — |f(x) — f(zo)| > 2. From this, we get ¥y € R with
ly —yol <% and |z —xo| <6, [f(z) —y| > |f(x) — ol — lyo —y| = ¢ That is, G¢ is open,
so G is closed (note that we have not used the boundedness of f yet). On the other hand,
if f(x) < M for all x € R and G is closed. For each xy € R, we want to show if x — x,
f(z) — f(zo). If this is not the case, there exist ¢y > 0, z,, — g, |f(xn) — f(x0)] > € > 0.
Since |f(x,)| < M, there is a subsequence ng, such that f(zy,) — yo for some yo € R and
yo # f(xo). But z,, — xo, by the closeness of G, (x,yo) € G. This means yo = f(xo).
Contradiction. The result is not true if f is not bounded. Example: f(z) =0 for z < 0
and f(x) = % if x > 0. The graph of f is closed, but f is not continuous.

P.231, #24. (a). If f is uniformly continuous, by the definition, we have p(f(xg), f(yx)) —
0 if d(zk,yx) — 0. On the other hand, if f is not uniformly continuous, there exist ey > 0,
g,y such that d(zy,yr) < 3 but p(f(zx), f(yr)) = €0, Vk. (b), Since f is uniformly con-
tinuous, for any € > 0, there is § > 0, such that p(f(x), f(y)) < € if d(z,y) < §. Now, since
{zt} is Cauchy, there is N such that for all n,m > N, d(zy,xm,) < d. In turn, we get (let
T =Tn, Yy =Tm) p(f(x—n), f(zmy)) < e thatis, {f(x,)} is Cauchy. (c), For any y € cl(A),
there exists {z,} C A such that z,, — y. In particular, {z,} is Cauchy. By (b), {f(zn)}
is Cauchy. Since N is complete, lim f(z,,) exists. We want to define f(y) = lim f(x,). We
need to show that it is independent of the choice of {z,,}. Suppose there is another sequence
{yn} C A, such that y, — y. Let z, = x,, if n even and z, = y,, if n odd. We have z, — y.
Again by (b), {f(zn)} is Cauchy and lim f(z,) exists as N is complete. From this we con-
clude that lim f(x,) = lim f(y,). Since f is uniformly continuous in A. For € > 0, there
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is § >0, p(f(x), f(y) < 5 if d(x,y) < 25. Finally, for any z,y € cl(A) with d(z,y) < 0,
we can find x,,y, € A such that d(z,z,) < g,d(y,yn) < g and p(f(x), f(z,)) < § and
p(f), fyn)) < §. We note that d(z,,yn) < d(zp,z) + d(x,y) + d(y,yn) < 20. Now
p(f(2), f(y)) < p(f(2), f(zn))+p(f(zn), f(yn))+p(f(yn), f(y)) < e Thatis f is uniformly
continuous in c/(A). From the definition of f in cl(A), the extension is unique.

P.231, #26. Since lim,_,,+ f (x) exists, there is g > 0 and M > 0 such that |f (z)] < M
for all x —a < 2dp. Since [a + dg, b] is compact and so f is uniformly continuous on this
closed interval. Ve > 0, there is 61 > 0, |f(z) — f(y)| < e if x,y € [a + o, b], |z — y| < d1.
We may pick 01 < dg. If |z — y| < d1 < Jp, and one of z,y is in (a,a + dy), we must have
z,y € (a,a+25). By Mean Value Theorem, f(z) — f(y) = f (2)(z —y) for some z between
z and y. So z € (a,a + 28), and |f'(z)| < M. That is |f(z) — f(y)| < M|z —y|. Now, we
pick 6 = min(d1, 557), then for all z,y € (a,b] with [z — y| < §, we have [f(z) — f(y)| <e.

P.231, #30. (a). First f is continuous in [0, 00). It is uniformly continuous on [0, 2] since
[0,2] is compact. Ve > 0, there is §; > 0, such that |[f(z) — f(y)| < € for all z,y € [0,2]
and |z — y| < 01. We may pick §; < 3. For z > 1, we have 0 < f(z) = 2\1/5 < 1.
Therefore, Vz,y € [1,00), by Mean Value Theorem there is z between z,y, |f(z) — f(y)| =
|f (z)(x—y)| < |z —yl|. As in the previous problem pick § = min(dy, €), it is straightforward
to verify that |f(z) — f(y)| < e |z —y| <9.

P.244, #2. No. Define f(z) = 2,0 < z < 1 and f(1) = 0. We have f,(z) — f(z)
pointwise in [0, 1]. As f is not continuous and f,, are continuous, f, can not converge to f
uniformly.

P.247, #2. 1t is uniformly convergent by M-test. Let g,(z) = fL—Z, we have |g,(z)] < %

By p-test, > 00, n% is convergent, so Y -2, gn(x) is uniformly convergent.



