
Solutions of Assignment #4
191, #3 Since K is compact and f is continuous, the maxx∈K f(x) = L is attained at

some x0 ∈ K. Since the single point {L} ⊂ R is closed and f is continuous, the pre-image
set M = f−1(L) is closed in K. Again, since K is compact, M is a closed subset of K, M
is compact.

P.196, #6. (a). Let (X, d) and (Y, ρ) are metric spaces. By the definition, f : X → Y is
not uniformly continuous in X, if and only if there is ε0 > 0 such that ∀δk > 0 small, there
exist xk, yk ∈ X with d(xk, yk) ≤ δk, ρ(f(xk), f(yk)) ≥ ε0. Since 1

n → 0, for any δk > 0,
there is n, 1

n ≤ δk. So f : X → Y is not uniformly continuous in X, if and only if there
exist ε0 > 0 and xn, yn ∈ X with d(xn, yn) ≤ 1

n , ρ(f(xn), f(yn)) ≥ ε0. (b). Let xn = n and
yn = n + 1

2n . We have |xn − yn| = 1
2n < 1

n , |f(xn)− f(yn)| = 1 + 1
4n2 ≥ 1.

P.203, #3. Since f is a polynomial and non-constant, it is continuous and non-constant in
[0, 1]. Since [0, 1] is compact. There exist x0, y0 ∈ [0, 1] such that f(x0) = minx∈[0,1] f(x) =
m and f(y0) = maxx∈[0,1] f(x) = M . By the assumption, f(0) = f(1). One of x0, y0 must
not be end points 0, 1. If 0 < x0 < 1, then it is a local minmum of f in R. If 0 < y0 < 1,
then it is a local maxmum of f in R.

P.231, #2(a) For x0 ∈ B ⊂ A and any ε > 0, since g is continuous in A, there is δ > 0
such that if d(x, x0) < δ, ‖f(x) − f(x0)‖ < ε. In particular, this is true for x ∈ B with
d(x, x0) < δ. That is, g|B is continuous.

P.231, #6(b). Let G = {(x, f(x))| x ∈ R} be the graph of f . Assume f is continuous.
If (x0, y0) ∈ Gc, we have y0 6= f(x0). That is, there is ε0 > 0, |y0 − f(x0)| ≥ ε0. Since
f is continuous, there is δ > 0, such that ∀|x − x0| < δ, |f(x) − f(x0)| ≤ ε0

4 . In turn we
have |y0 − f(x)| ≥ |y0 − f(x0)| − |f(x) − f(x0)| ≥ 3ε0

4 . From this, we get ∀y ∈ R with
|y − y0| ≤ ε0

2 and |x− x0| < δ, |f(x)− y| ≥ |f(x)− y0| − |y0 − y| ≥ ε0
4 . That is, Gc is open,

so G is closed (note that we have not used the boundedness of f yet). On the other hand,
if f(x) ≤ M for all x ∈ R and G is closed. For each x0 ∈ R, we want to show if x → x0,
f(x) → f(x0). If this is not the case, there exist ε0 > 0, xn → x0, |f(xn)− f(x0)| ≥ ε0 > 0.
Since |f(xn)| ≤ M , there is a subsequence nk, such that f(xnk

) → y0 for some y0 ∈ R and
y0 6= f(x0). But xnk

→ x0, by the closeness of G, (x0, y0) ∈ G. This means y0 = f(x0).
Contradiction. The result is not true if f is not bounded. Example: f(x) = 0 for x ≤ 0
and f(x) = 1

x if x > 0. The graph of f is closed, but f is not continuous.
P.231, #24. (a). If f is uniformly continuous, by the definition, we have ρ(f(xk), f(yk)) →

0 if d(xk, yk) → 0. On the other hand, if f is not uniformly continuous, there exist ε0 > 0,
xk, yk such that d(xk, yk) ≤ 1

k but ρ(f(xk), f(yk)) ≥ ε0,∀k. (b), Since f is uniformly con-
tinuous, for any ε > 0, there is δ > 0, such that ρ(f(x), f(y)) < ε if d(x, y) < δ. Now, since
{xk} is Cauchy, there is N such that for all n,m ≥ N , d(xn, xm) < δ. In turn, we get (let
x = xn, y = xm) ρ(f(x−n), f(xm)) < ε. that is, {f(xn)} is Cauchy. (c), For any y ∈ cl(A),
there exists {xn} ⊂ A such that xn → y. In particular, {xn} is Cauchy. By (b), {f(xn)}
is Cauchy. Since N is complete, lim f(xn) exists. We want to define f(y) = lim f(xn). We
need to show that it is independent of the choice of {xn}. Suppose there is another sequence
{yn} ⊂ A, such that yn → y. Let zn = xn if n even and zn = yn if n odd. We have zn → y.
Again by (b), {f(zn)} is Cauchy and lim f(zn) exists as N is complete. From this we con-
clude that lim f(xn) = lim f(yn). Since f is uniformly continuous in A. For ε > 0, there
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is δ > 0, ρ(f(x), f(y)) < ε
2 if d(x, y) < 2δ. Finally, for any x, y ∈ cl(A) with d(x, y) < δ,

we can find xn, yn ∈ A such that d(x, xn) < δ
2 , d(y, yn) < δ

2 and ρ(f(x), f(xn)) < ε
4 and

ρ(f(y), f(yn)) < ε
4 . We note that d(xn, yn) ≤ d(xn, x) + d(x, y) + d(y, yn) < 2δ. Now

ρ(f(x), f(y)) ≤ ρ(f(x), f(xn))+ρ(f(xn), f(yn))+ρ(f(yn), f(y)) < ε. That is f is uniformly
continuous in cl(A). From the definition of f in cl(A), the extension is unique.

P.231, #26. Since limx→a+ f
′
(x) exists, there is δ0 > 0 and M > 0 such that |f ′(x)| ≤ M

for all x − a ≤ 2δ0. Since [a + δ0, b] is compact and so f is uniformly continuous on this
closed interval. ∀ε > 0, there is δ1 > 0, |f(x) − f(y)| < ε if x, y ∈ [a + δ0, b], |x − y| < δ1.
We may pick δ1 < δ0. If |x − y| < δ1 < δ0, and one of x, y is in (a, a + δ0), we must have
x, y ∈ (a, a+2δ0). By Mean Value Theorem, f(x)−f(y) = f

′
(z)(x−y) for some z between

x and y. So z ∈ (a, a + 2δ0), and |f ′(z)| ≤ M . That is |f(x)− f(y)| ≤ M |x− y|. Now, we
pick δ = min(δ1,

ε
2M ), then for all x, y ∈ (a, b] with |x− y| < δ, we have |f(x)− f(y)| < ε.

P.231, #30. (a). First f is continuous in [0,∞). It is uniformly continuous on [0, 2] since
[0, 2] is compact. ∀ε > 0, there is δ1 > 0, such that |f(x) − f(y)| < ε for all x, y ∈ [0, 2]
and |x − y| < δ1. We may pick δ1 < 1

2 . For z ≥ 1, we have 0 < f
′
(z) = 1

2
√

z
< 1.

Therefore, ∀x, y ∈ [1,∞), by Mean Value Theorem there is z between x, y, |f(x)− f(y)| =
|f ′(z)(x−y)| ≤ |x−y|. As in the previous problem pick δ = min(δ1, ε), it is straightforward
to verify that |f(x)− f(y)| < ε, |x− y| < δ.

P.244, #2. No. Define f(x) = x, 0 ≤ x < 1 and f(1) = 0. We have fn(x) → f(x)
pointwise in [0, 1]. As f is not continuous and fn are continuous, fn can not converge to f
uniformly.

P.247, #2. It is uniformly convergent by M -test. Let gn(x) = xn

n2 , we have |gn(x)| ≤ 1
n2 .

By p-test,
∑∞

n=1
1
n2 is convergent, so

∑∞
n=1 gn(x) is uniformly convergent.


