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Solutions of second assignment (P.143)

1(a). The set A = (0, 1) is open, since for any point 0 < x < 0, the interval (x− δ, x+ δ)
is inside (0, 1) for δ = min(x, 1 − x). (0, 1) is not closed since it compliment is B =
(−∞, 0] ∪ [1,∞). For x = 0, for any ε > 0, interval (−ε, ε) always intersects A.

2(h). Let A = {x ∈ Rn| ‖x‖ = 1}. The compliment of A is B = {x ∈ Rn| ‖x‖ < 1, or
‖x‖ > 1}. B is open, so A is closed. We have cl(A) = A. For any point x ∈ A, any ε > 0,
the ball Bε(x) of radius ε centered at x always intersects B. Therefore, A has no interior
points. The same argument yields that every x ∈ A is a boundary point, so bd(A) = A.

7. For any x ∈ U , since U is open, there is δ > 0, Bδ(x) ⊂ U . That is, x is not an
boundary point. So U ⊂ cl(U)\bd(U). On the other hand, ∀y ∈ cl(U)), ∀δ > 0, Bδ(y)∩U 6=
∅. If y is not in bd(U), there is δ > 0, Bδ(y) is either in U or in its compliment. Combining
the above, ∀y ∈ cl(U) \ bd(U), there is δ > 0, Bδ(y) ⊂ U . This proves U = cl(U) \ bd(U).
This conclusion in general not true: U = [0, 1], cl(U) \ bd(U) = (0, 1).

17. Since
∑∞

n=1 ‖xn‖ is convergent, ∀ε, there is N , such that ∀n > m ≥ N ,
∑n

k=m ‖xk‖ <
ε. Now, we have ‖∑n

k=m xk sin k‖ ≤ ∑n
k=m ‖xk sin k‖ =

∑n
k=m ‖xk‖ < ε. From this, we

conclude that
∑∞

n=1 xn sinn is convergent.

26. First, it is easy to see that 1 ≤ an. We have for all n ≥ 1,

an+1 − an = (1 +
1

1 + an
)− (1 +

1
1 + an−1

=
an−1 − an

(1 + an)(1 + an−1)
.

In turn, |an+1 − an| = | an−1−an

(1+an)(1+an−1) | ≤
|an−an−1|

4 . By induction, |an+1 − an| ≤ |a1−a0|
4n .

Now, for n > m, we have |an − am| ≤
∑n−1

k=m |ak+1 − ak| ≤
∑n−1

k=m
|a1−a0|

4n ≤ |a1−a0|
4m−1 . From

this we conclude that {an} is Cauchy. So the sequence is convergent to a limit a. We take
the limit on the equation an = 1 + 1

1+an−1
, we get a = 1 + 1

1+a . We solve this equation to
get either a =

√
2 or a = −√2. We conclude a =

√
2 since an ≥ 1 for all n.

29. Yes. If x is not an accumulation point of A and B. Then there is a neighborhood U
of x, U contains no points of A and B other than x. Therefore, x can not be an accumulation
point of A ∪B.

34. By induction, d(xn+1, xn) ≤ rn−1d(x2, x1). For any n > m, we have d(xn, xm) ≤∑n−1
j=m d(xj+1, xj) ≤

∑n−1
j=m rj−1d(x2, x1) ≤ rm−1 d(x2,x1)

1−r . This shows that {xn} is Cauchy
in Rk, so it is convergent.

43. By the definition, xn ≥
√

3. We claim that xn < 3. This can be seen by induction.
It is true for n = 1, suppose it is true for n, xn+1 =

√
3 + xn ≤

√
3 + 3 < 3. We calculate

that xn+1 − xn =
√

3 + xn −
√

3 + xn−1 = xn−xn−1√
3+xn

√
3+xn−1

. Since x2 − x1 > 0, we conclude
that xn+1 − xn > 0. So {xn} is a bounded increasing sequence, and it is convergent
to a limit x (Note, we may also compute |xn+1 − xn| ≤ |xn−xn−1|√

3+xn
√

3+xn−1
≤ |xn−xn−1|

3 to get

|xn+1−xn| ≤ |x2−x1|
3n−1 . The same argument as in problem #26 yields that {xn} is convergent).

x must satisfy the equation x =
√

3 + x. So either x = 1−√13
2 or x = 1+

√
13

2 . We must have
x = 1+

√
13

2 since xn ≥
√

3 for all n (so x must be positive).

52(a). Let |xn| ≤ e−n,
∑∞

n=1 e−n is convergent, by comparison Theorem,
∑∞

n=1 xn is
absolutely convergent.

52(f). We use ratios test. |xn+1

xn
| = (1+ 1

n
)3

3 → 1
3 < 1. The series is convergent.


