Solutions of second assignment (P.143)

1(a). The set A = (0, 1) is open, since for any point 0 < x < 0, the interval $(x - \delta, x + \delta)$ is inside (0, 1) for $\delta = \min(x, 1 - x)$. (0, 1) is not closed since it compliment is $B = (-\infty, 0] \cup [1, \infty)$. For x = 0, for any $\epsilon > 0$, interval $(-\epsilon, \epsilon)$ always intersects A.

2(h). Let $A = \{x \in \mathbb{R}^n | \|x\| = 1\}$. The compliment of A is $B = \{x \in \mathbb{R}^n | \|x\| < 1$, or $\|x\| > 1\}$. B is open, so A is closed. We have cl(A) = A. For any point $x \in A$, any $\epsilon > 0$, the ball $B_{\epsilon}(x)$ of radius ϵ centered at x always intersects B. Therefore, A has no interior points. The same argument yields that every $x \in A$ is a boundary point, so bd(A) = A.

7. For any $x \in U$, since U is open, there is $\delta > 0$, $B_{\delta}(x) \subset U$. That is, x is not an boundary point. So $U \subset cl(U) \setminus bd(U)$. On the other hand, $\forall y \in cl(U)$), $\forall \delta > 0$, $B_{\delta}(y) \cap U \neq \emptyset$. If y is not in bd(U), there is $\delta > 0$, $B_{\delta}(y)$ is either in U or in its compliment. Combining the above, $\forall y \in cl(U) \setminus bd(U)$, there is $\delta > 0$, $B_{\delta}(y) \subset U$. This proves $U = cl(U) \setminus bd(U)$. This conclusion in general not true: U = [0, 1], $cl(U) \setminus bd(U) = (0, 1)$.

17. Since $\sum_{n=1}^{\infty} \|x_n\|$ is convergent, $\forall \epsilon$, there is N, such that $\forall n > m \ge N$, $\sum_{k=m}^{n} \|x_k\| < \epsilon$. Now, we have $\|\sum_{k=m}^{n} x_k \sin k\| \le \sum_{k=m}^{n} \|x_k \sin k\| = \sum_{k=m}^{n} \|x_k\| < \epsilon$. From this, we conclude that $\sum_{n=1}^{\infty} x_n \sin n$ is convergent.

26. First, it is easy to see that $1 \leq a_n$. We have for all $n \geq 1$,

$$a_{n+1} - a_n = (1 + \frac{1}{1 + a_n}) - (1 + \frac{1}{1 + a_{n-1}}) = \frac{a_{n-1} - a_n}{(1 + a_n)(1 + a_{n-1})}.$$

In turn, $|a_{n+1} - a_n| = \left|\frac{a_{n-1} - a_n}{(1+a_n)(1+a_{n-1})}\right| \le \frac{|a_n - a_{n-1}|}{4}$. By induction, $|a_{n+1} - a_n| \le \frac{|a_1 - a_0|}{4^n}$. Now, for n > m, we have $|a_n - a_m| \le \sum_{k=m}^{n-1} |a_{k+1} - a_k| \le \sum_{k=m}^{n-1} \frac{|a_1 - a_0|}{4^n} \le \frac{|a_1 - a_0|}{4^{m-1}}$. From this we conclude that $\{a_n\}$ is Cauchy. So the sequence is convergent to a limit a. We take the limit on the equation $a_n = 1 + \frac{1}{1+a_{n-1}}$, we get $a = 1 + \frac{1}{1+a}$. We solve this equation to get either $a = \sqrt{2}$ or $a = -\sqrt{2}$. We conclude $a = \sqrt{2}$ since $a_n \ge 1$ for all n.

29. Yes. If x is not an accumulation point of A and B. Then there is a neighborhood U of x, U contains no points of A and B other than x. Therefore, x can not be an accumulation point of $A \cup B$.

34. By induction, $d(x_{n+1}, x_n) \leq r^{n-1}d(x_2, x_1)$. For any n > m, we have $d(x_n, x_m) \leq \sum_{j=m}^{n-1} d(x_{j+1}, x_j) \leq \sum_{j=m}^{n-1} r^{j-1}d(x_2, x_1) \leq r^{m-1}\frac{d(x_2, x_1)}{1-r}$. This shows that $\{x_n\}$ is Cauchy in \mathbb{R}^k , so it is convergent.

43. By the definition, $x_n \ge \sqrt{3}$. We claim that $x_n < 3$. This can be seen by induction. It is true for n = 1, suppose it is true for n, $x_{n+1} = \sqrt{3} + x_n \le \sqrt{3} + 3 < 3$. We calculate that $x_{n+1} - x_n = \sqrt{3} + x_n - \sqrt{3} + x_{n-1} = \frac{x_n - x_{n-1}}{\sqrt{3 + x_n}\sqrt{3 + x_{n-1}}}$. Since $x_2 - x_1 > 0$, we conclude that $x_{n+1} - x_n > 0$. So $\{x_n\}$ is a bounded increasing sequence, and it is convergent to a limit x (Note, we may also compute $|x_{n+1} - x_n| \le \frac{|x_n - x_{n-1}|}{\sqrt{3 + x_n}\sqrt{3 + x_{n-1}}} \le \frac{|x_n - x_{n-1}|}{3}$ to get $|x_{n+1} - x_n| \le \frac{|x_2 - x_1|}{3^{n-1}}$. The same argument as in problem #26 yields that $\{x_n\}$ is convergent). x must satisfy the equation $x = \sqrt{3 + x}$. So either $x = \frac{1 - \sqrt{13}}{2}$ or $x = \frac{1 + \sqrt{13}}{2}$. We must have $x = \frac{1 + \sqrt{13}}{2}$ since $x_n \ge \sqrt{3}$ for all n (so x must be positive).

52(a). Let $|x_n| \leq e^{-n}$, $\sum_{n=1}^{\infty} e^{-n}$ is convergent, by comparison Theorem, $\sum_{n=1}^{\infty} x_n$ is absolutely convergent.

52(f). We use ratios test. $\left|\frac{x_{n+1}}{x_n}\right| = \frac{(1+\frac{1}{n})^3}{3} \to \frac{1}{3} < 1$. The series is convergent.