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1. INTRODUCTION

In this paper, we consider the regularity of degenerate elliptic quasilinear
equations in the form

:
i, j

�j (aij (x, u)�iu)= f, (1)

where aij (x, u) # C�(Rn_R), semi-positive. Our study of the problem is
motivated by the regularity problem for degenerate Monge�Ampe� re equations

det(uij)=k, (2)

where k is a nonnegative function.
When n=2, if u is a C1, 1 convex solution of the equation, suppose p is

a point such that the hypersurface (x, u(x)) is nonplanar near ( p, u( p)).
In a neighborhood of p, by performing a partial Legendre transformation
(see Section 5 for details), one may reduce the regularity of u near p to the
equation

�2
1 w+�2(k(x, w) �2w)=0, (3)

which is in a form of Eq. (1).
In general, convex solution u of (2) is at most in C1, 1 if k is only assumed

to be smooth and nonnegative (e.g., see [CKNS] and [G1]). In [G1], a
sharp sufficient condition was introduced to establish C1, 1 regularity of (2).
A basic question left is: When is a solution u of (2) smooth, or better than
C1, 1? We remark that if k is positive and smooth, by elliptic theory u is
smooth. One may expect u to be smooth if the decay of k near its null set
is under control, say of finite type. Unfortunately, this is not true. The
function u(x)=|x| 2+2�n provides an example that the solution u of Eq. (2)
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is merely in C2, 2�n even when k is analytic, vanishing at only one point of
order 2. What is wrong with the example is that the mean curvature of the
hypersurface (x, u(x)) is vanishing at the point k=0. This suggests that we
should only expect higher regularity of the solution u of (2) away from the
plannar points of the hypersurface (x, u(x)). This is what we will prove for
the case n=2 in the last section of this paper.

The difficulty concerned with Eq. (1) lies on the mixture of degeneracy
and nonlinearity. If the equation is elliptic, the regularity follows from De
Giorgi�Nash�Moser theory and Schauder theory. On the other hand, if aij

is independent of u, Eq. (1) is linear. There is well-developed hypoelliptic
theory. In particular, the theory of linear second order subelliptic operators
with smooth real coefficients is quite complete. Deep theorems have been
obtained by Ho� rmander [H] and Kohn [K1, K2] for sums of squares of
vectors fields and for operators related to �� b , and by Fefferman and Phong
[FP] and Olenik and Radkevitch [OR] for general second order differen-
tial operators with smooth nonnegative principal symbols. For each second
order degenerate operator L, one can associate a suitable metric in such
a way that it is as natural for the operator L as the Euclidean metric is
for the Laplace operator (see [FP] and [NSW]). The subellipticity of the
operator L can be completely characterized in terms of the geometry of
the associated metric, which is the Fefferman�Phong condition.

There have been some works on degenerate nonlinear elliptic equations
in connection with Bony's theory of paradifferential operators [B]. Under
some initial smoothness assumptions on the solution with some subelliptic
estimates, one may prove the solution is C� by paradifferential calculus
(e.g., see [X]). (As for our Eq. (1), the C1, 1 initial assumption on u will
suffice). To our knowledge, all the regularity results for degenerate
quasilinear elliptic equations are based on the a priori assumption that u
is in C1, 1 or more, which nevertheless is very hard to get. For example, the
initial C1, 1 assumption on w in (3) corresponds to C 2, 1 regularity of u in
(2) as they are related by the partial Legendre transformation. So far, there
is no better regularity result than C1, 1 for the degenerate Eq. (2) prior to
this paper. Here, we will establish regularity results for (1) with the C0, 1

initial smoothness assumption on the solution u. As a consequence, we will
prove a C� regularity result for the degenerate Eq. (2) in dimension two.

Our results are based on recent developments on De Giorgi�Nash�Moser
theory for degenerate equations (see [F] for an up-to-date bibliography).
In [F], some sufficient conditions were introduced to obtain Ho� lder
regularity of solutions of degenerate linear equations. Those conditions, we
shall call them ``subellipticity conditions,'' are in some way a version of the
Fefferman�Phong condition in the nonsmooth case. Under these conditions,
Harnack inequalities were proved for weak solutions of the degenerate
equations in divergence form. The Harnack inequality together with the
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Sobolev�Poincare� inequality gives Ho� lder regularity of weak solutions of
equations in the form

:
n

i, j

�i (aij (x) � ju)={* f +f0 , (4)

where {*=(*1�1 , ..., *n�n), *j # C 0, 1, and aij (x) !i!j is controlled by � *2
i !2

i

from below and above.
The main contribution of this paper is to obtain C� smoothness of the

solution u of Eq. (1) based on the assumptions that u is in C 0, 1, and that
the linearized equation satisfies subellipticity conditions. Our key step is the
proof of a commutator lemma in Section 4. This lemma singles out the first
order terms of the Caldero� n commutator with a careful control of the
coefficients. The difficulty is the limited smooth assumption; otherwise, the
lemma is a trivial consequence of the usual Kohn�Nirenberg formula. The
proof of the lemma makes use of symbol decomposition of pseudodifferen-
tial operators with limited smoothness (see [T]). A similar calculus was
also used previously by Guan and Sawyer in [GS] for the oblique derivative
problem.

We express our thanks to C. Fefferman and J. J. Kohn for their comments
and encouragement. We thank Y. Y. Li for many stimulating discussions;
the investigation of the regularity of equations in the form (1) in large part
stemmed from our joint works [GL1] and [GL2] on degenerate Monge�
Ampere� -type equations related to geometric problems. The results in this
paper were obtained while the author was visiting Princeton University.
We thank Princeton University for their hospitality.

2. SUBELLIPTICITY CONDITIONS AND MAIN RESULTS

We first recall subellipticity conditions in [F].
Let 0/Rn be a domain. Let (aij (x)) be a nonnegatively definite matrix

function in 0.

Definition 1. Let T=�n
j=1 :j�j be a vector field in 0. We say T is a

subunit with respect to (aij (x)) if

:
n

j=1

(:j!j)
2�:

n

i, j

aij (x) !i !j (5)

for all ! # Rn. If # is an absolutely continuous curve in 0, we say # is a sub-
unit curve (with respect to (aij (x))) if #$ is a subunit vector field. If x, y # 0,
we define a distance function d(x, y) (with respect to (aij (x))) as
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d(x, y)=inf [t>0 | there is a subunit curve # : [0, t] � 0

such that #(0)=x, #(t)= y]. (6)

d(x, y)=� if the above set is empty. Let x # 0, r>0 be fixed. Let

Cj (x, r)=[#j (t), 0�t�r | #(t)=(#1(t), ..., #n(t)) be a subunit curve

with #(0)=x] (7)

for j=1, 2, ..., n.

Subelliptic conditions for degenerate linear Eqs. (4) in [F] can be stated
as follows:

(SE1). (i) _&>0, such that

& :
n

j=1

*2
j (x) !2

j �:
n

i, j

aij (x) !i!j�
1
&

:
n

j=1

*2
j (x) !2

j (8)

\(x, !) # 0_Rn, where

(ii) *1 , ..., *n are in C0, 1(0� ), and d associated with �* is finite in 0.

(iii) Let 4i (x, r)=maxs j # C j (x, r) *i (s1 , ..., sn). \x0 # K//0 there is a
neighborhood U of x0 , such that, if 0<=j�|!j |�1 for j=1, ..., n and if we
denote by H( } , x, !)=(H1 , ..., Hn) the integral curve of the vector field
!1 *1 �1+ } } } +!n*n �n starting from x, we assume

|
t

0
*j (H(s, x, !)) dx�tC=1 , ..., =n

4j (x, t) (9)

for j=1, ..., n, where C=1 , ..., =n
is independent of t # (0, t0), x # U and

! # >n
j=1 [=j , 1].

When n=2, we may assume *1=1. The condition (SE1) can be replaced
by

(SE2). With the condition (iii) in (SE1) replaced by: There is a
constant c>0, such that

|
t

0
*2(x+s, y) ds�ct max

x<z<x+t
*2(z, y). (10)

Now we have following result in dimension 2.

Theorem 2. Suppose u # C0, 1(0), u is a weak solution of the equation

�2
1 u+�2(k(x, u) �2 u)= f (11)
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with k(x, u)�0, k(x, u) # C �(0_R). Let k� (x)=k(x, u(x)). If k� 1�2 satisfies
subelliptic condition (SE2), then u # C�(0).

The next is a simple application of our Theorem 2 to the degenerate
Monge�Ampe� re equations.

Theorem 3. If u satisfies the degenerate Monge�Ampe� re equation,

uxxuyy&u2
xy=k(x, y) (12)

near the origin. Suppose k�0, k # C �(R_R), and u # C1, 1. Suppose that
near the origin uyy�C0>0, and that there exist constants A>0 and B�0,
and positive integers l�m, such that

1
A

(x2l+By2m)�k(x, y)�A(x2l+By2m). (13)

Then, u # C� near the origin.

The proof of Theorem 3 together with discussions of the Monge�Ampe� re
equations will be given in the last section of the paper. As for the regularity
of the Eq. (1), we need some definitions.

Definition 4. Let L be a linear operator of the form

Lu=:
n

i, j

�i (aij (x) � ju)

with aij # C0, 1(0), (aij)�0, and tr(aij (x))>0 for all x in 0. We say L
satisfies subunit condition in 0 if there is a constant C such that,

|Axk
(x) } !| 2�Ct!A!, (14)

\! # R, \x # 0 and \k=1, 2, ..., n. We say L is :-subelliptic, if there is
:>0, such that, for any subunit vector fields T1 , ..., TN , and for any
f0 , f1 , ..., fN # L�(0), if v is a weak solution of the equation

Lv= f0+T1 f1+ } } } +TN fN , (15)

then v # C:(0), and for each K//0,

&v&C : (K)�C

where C depends only on K, & fj &L�(0) , &v&L 2 (0) , &Tj&C 1 .

Definition 5. Let L be a :-subelliptic linear operator in 0. We say L
is elliptic extendible in 0, if for any x in 0 there is a neightborhood U//
V//0 of x, and a smooth second order differential operator of divergence
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form L� ={ } A� 2 } { such that the operator L*=L+L� is :~ -subelliptic for
some :~ >0, L* is elliptic near �V, and L*=L in U.

The following is a general regularity result for degenerate Eq. (1).

Theorem 6. Suppose u # C0, 1(0), u is a weak solution of the equation

:
n

i, j

�i (aij (x, u) �ju)= f (x) (16)

with aij # C�(0_R), (aij)�0, f # C�(0). Let a~ ij (x)=a(x, u(x)). If the
operator L=�n

i, j �i (a~ ij (x) �j) satisfies subelliptic condition (SE1), and L is
subunit and elliptic extendible in 0, then u # C�(0).

The proofs of Theorem 2 and Theorem 6 will rely on a commutator
lemma. Before we state the lemma, we introduce some notations.

Definition 7. Let 4s, s # R, be Ho� lder�Zygmund spaces. We denote
Cs

*=4s if s>0, s � Z, and Cl

*=Cl, 0, if l # Z+. If B is a linear operator,
B is bounded from 4s+m

comp(Rn) � 4s
loc(R

n) for some m # R, and \0<s�t,
then we say B # Om

t .

Commutator Lemma. Let a(x, u) # C�(0_R), suppose u # Ct
*(0) for

some t�1. Let

|D| s=(1&2)s�2 (17)

for x # R, where 2=�2
1+ } } } +�2

n . Then, for s<t, \=>0, there are
operators Bj # Os&1+=

t&s , i=1, 2, ..., n+1, and B0 # Os&2+=
t&s , such that

[|D| s, a(x, u(x))]= :
n

j=1

ax j
(x, u(x)) Bj+au(x, u(x)) Bn+1+B0 . (18)

We will use the Commutator Lemma to prove Theorems 2 and 6 in the
next section. The proof of the Commutator Lemma will be postponed to
Section 4.

3. PROOF OF THE THEOREMS

In this section, we will prove Proposition 8 below. Theorems 2 and 6
will follow from the proposition and a result due to Franchi (stated as
Theorem 9 in this section). The following proposition paves a way from
C0, 1 to C� for the solutions of (1).
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Proposition 8. Suppose u # C0, 1(0), u is a weak solution of the equation

:
n

i, j

�i (aij (x, u) �ju)= f (x) (19)

with aij # C�(0_R), (aij)�0, f # C�(0). Then u # C �(0), if the linear
operator

Lv=:
n

i, j

�i (a~ ij (x) �j v), (20)

where a~ ij (x)=a(x, u(x)), is subunit and :-subelliptic for some :>0, and if
it is elliptic extendible in 0.

The basic idea involved in proving the proposition is simple. It repeats,
following three steps: (i) differentiate the equation; (ii) rewrite the resulting
equation in the right form using the Commutator Lemma; and (iii) apply
the subellipticity assumption to get higher regularity. Since the real proof
is quite lengthy, we will give a formal and hueristic argument first.

Let A(x, u)=(aij (x, u)). Equation (16) can be rewritten as

{ } A(x, u) } {u= f. (21)

If we differentiate (21) and let v=�k u, the v satisfies the equation

{ } A(x, u) } {v=�k f &{(Ax k
(x, u)+Au(x, u) �ku) } {u. (22)

Since A(x, u(x)) is subunit, and u is in C 0, 1, we may write (22) as

{ } A(x, u) } {v= f� + :
n

i=1

Ti f� i (23)

with Ti subunit, f� , f� 1 , ..., f� N # L�. By the subellipticity assumption, v # C:(0)
for some :>0.

We hope to differentiate (22) to get higher regularity. But, since v is only
in C: for some 0<:<1, we can not apply the usual differentiation. This
is where fractional differentiation comes in. Suppose u # C*

1+; for some
0<;�1; we want to show that u # 41+;+:�2. We already have ;�:. Let
w=|D| (;&:�2) v. Apply |D| (;&:�2) on Eq. (22); w then satisfies the equation

{ } A(x, u) } {w=�k } |D| (;&:�2) f &{ } Axk
(x, u)({ } |D| (;&:�2) u)

&{ } Au(x, u)( |D| (;&:�2) } (�ku{u))

+{ } [A(x, u), |D| (;&:�2)] } {v

+{ } [Ax k
(x, u), |D| (;&:�2)] } {u

+{ } [Au(x, u), |D| (;&:�2)](�ku{u). (24)
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By the Commutator Lemma,

[A(x, u), |D| (;&:�2)]= :
n

j=1

Ax j
(x, u) Bj+Au(x, u) Bn+1+B0 (25)

with Bj # O;&1+=+:�2
1+:�2 , j=1, 2, ..., n+1, B0 # O;&2+=+:�2

1+:�2 , and

[Ax k
(x, u), |D| (;&:�2)], [Au(x, u), |D| (;&:�2)] # O;&1+=+:�2

1 . (26)

If we note that Bj{v # 4:�2&=, j=1, 2, ..., n+1, {u, �ku # C ;
* , ;�:, we

have

{ } A(x, u) } {w= f *+ :
N

i=1

T� i fi* (27)

with f *, fi* # C*
:�2+= , i=1, 2, ..., N, and T� i subunit. If we pick 0<=<:�2,

again, by the subellipticity assumption, w # C:. That is, u # 41+;+:�2. From
this we conclude that u # C*

2+:�2 .
The whole process would go through if Du is a weak solution of (22).

Since u is only assumed in C0, 1, this is not clear. One would like to try
elliptic approximation, but a C1 a priori estimate is needed for the approxima-
tion. This is what is involved in the following proof.

Proof of the Proposition. For any x0 in 0, by the assumption there is
a neighborhood U//V//0 of x0 , and there exists a C � matrix function
A� (x) in 0, such that A� equals 0 in U, and A*=A(x, u)+A� 2(x) is positive
definite near �V, and L*={(A*{) is subunit and :~ -subelliptic. For any
,(x) # C �

0 (U ), then u~ =,u is a weak solution of the equation

{(A*(x, u) {u~ )=,f +({,) A(x, u)({u)+{(A(x, u) u({,)). (28)

For any =>0, let A=(x, u)=A*(x, u)+=I. Let v= be the solution of the
Dirichlet problem of equation

{(A=(x, u) {v)=,f +({,) A(x, u)({u)+{(A(x, u) u({,)), (29)

with v| �V=0.
Now we indicate C, which may vary line by line, a constant independent

of =.

Step 1. &v=&C 1, :~ (V� )�C. By elliptic theory v= is in H 2
p(V), for any

0<p<�. Furthermore,

|v=(x)|�C, (30)
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\x in V, and

&v=&C1, : (K)�C, (31)

for any K//V� near �V and away from U� .

Claim: &v=&C 1 (V� )�C. Suppose this is not true. There is a sequence =j ,
with &v=j &C 1(V)=cj> j. Let wj=v=j �cj , where wj satisfies the equation

{(A= j (x, u) {w)=
1
cj

(,f +({,) A(x, u)({u)+{(A(x, u) u({,))), (32)

with w| �V=0.
If we differentiate (32), let D=�k , gj=Dwj , then gj is in H 1

p(V) and is
a weak solution of the equation

{(A= j (x, u) {gj)=
1
cj

2(({,) A(x, u)({Du)+F

&{((A=j
x k

(x, u)+A=j
u (x, u) �k u) {wj), (33)

where F=F(x, u, {u, ,, {,, f, {f ). As u is in C0, 1, F is a bounded function.
Since L is subunit, we have

|{, } A } !| 2�Ct!A!,

|Axk
} !| 2�Ct!A!,

and

|{u| |Au } !| 2�Ct!A!, (35)

for some constant C>0, \! # Rn. Using the fact u # C0, 1, we may write (33)
as

{(A=j (x, u) {gj)= f� + :
n

i=1

Ti f� i

with Ti subunit, f� , f� 1 , ..., f� N # L�, with their L� norms bounded independent
of =j . By assumption, (30), and (31),

&gj&C:~ (V� )�C.

Therefore, there is a subsequence which we still write as wj , which is
convergent in C1, :~ �2(V� ) to a function w0. Then w0 satisfies the equation

{(A*(x, u) {w0)=0 (36)
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with w0 | �V=0. But the C 1 norm of w0 is 1. This contradicts the uniqueness
of the weak solution of (36). Therefore, the claim is true.

Now, if we differentiate (29), Dv==�kv= satisfies

{(A=(x, u) {Dv=)=2({,) A(x, u)({Du)+F

&{((A=
xk

(x, u)+A=
u(x, u) �ku) {v=), (37)

where F is as in (33), and it is a bounded function. Using the same
argument in the proof of the claim, we conclude that v= is uniformly
bounded in C1, :~ norm. Passing = to 0, we get u~ is in C1, :~ . We conclude that
u is in C1, :~ (U).

Step 2. Suppose u # C*
1+; for some :~ �;�1, &v=&C*

1+; (V� )�C, then
&v=&C*

1+;+:~ �2 (V� )�C, and u # C*
1+;+:~ �2 .

We only need to show

&v=&C*
1+;+:~ �2 (V� )�C. (38)

Let w==|D| (;&:~ �2)Dv=. Applying |D| (;&:~ �2) to Eq. (37), w= satisfies the
equation

{(A=(x, u) {w=)=|D| (;&:~ �2)F+2({,) A(x, u)({ |D| (;&:~ �2) Du)

+2[|D| (;&:~ �2), ({,) A(x, u)] {Du

&{A=
x k

(x, u)({|D| (;&:~ �2)v=)

&{A=
u(x, u)( |D| (;&:~ �2)(�k u{v=))

+{[A=(x, u), |D| (;&:~ �2)] {Dv=

+{[A=
x k

(x, u), |D| (;&:~ �2)] {v=

+{[A=
u(x, u), |D| (;&:~ �2)](�ku {v=). (39)

We note that F is in C; since u and v= are in C 1, ;. By the Commutator
Lemma,

[A=
u(x, u), |D| (;&:~ �2)]= :

n

j=1

A=
x j

(x, u) Bj+A=
u(x, u) Bn+1+B0 (40)

with Bj # O;&1+=~ +:~ �2
1+:~ �2 , j=1, 2, ..., n+1, B0 # O;&2+=~ +:~ �2

1+:~ �2 , and

[A=
xk

(x, u), |D| (;&:~ �2)], [A=
u(x, u), |D| (;&:~ �2)] # O;&1+=~ +:~ �2

1 . (41)
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If we note that Bj{v # 4:~ �2&=~ , j=1, 2, ..., n+1, {u, �ku # C ;
*, ;�:~ , we

have

{(A=(x, u) {w=)= f *+ :
N

i=1

T� i f *i (42)

with f *, f *i # C*
:~ �2&=~ , i=1, 2, ..., N, and T� i a subunit. If we pick 0<=~ <:~ �2,

by assumption and the ellipticity of Eq. (37) near the boundary,

&w=&C :~ (V� )�C.

That is, (38) holds for any :~ �;�1.
Now, at each stage, when we reach u # Cm for m�2, m # Z, we apply

Dm&1 on Eq. (37), using the assumption for the linear equation, to get
u # C*

m+:~ . Once u # C*
m+; for ;�:~ , by using |D|;&:~ �2 on the resulting

equation, repeating the previous argument (using the Commutator Lemma),
we can conclude u # C*

m+1+:~ �2(U). Since x0 is arbitrary, the proof of the
proposition is complete.

Now, Theorem 6 can be easily deduced from Proposition 8 and the next
theorem due to Franchi [F].

Theorem 9. Suppose aij (x) are bounded and measurable, and (aij (x))�0
satisfies subelliptic condition (SE1) (or (SE3) if n=2). Let T1 , ..., TN be
subunit vector fields in 0 with C 0, 1 coefficients. If u is a weak solution of the
equation

:
i, j

�i (aij (x) �ju)= f0+T1 f1+ } } } +TN fN (43)

with f0 , f1 , ..., fN # L�(0). Then, there is :>0 depending only on 0 and
Condition (SE1), such that u # C:(0), and for each K//0,

&u&C : (K)�C

where C depends only on K, & fj&L� , &Tj&C 1 , and (SE1) (or (SE2) when
n=2).

Remark 10. In [F], the right-hand side of Eq. (43) is of the form {* f.
One can easily adapt the proof in [F] for Theorem 9. Elliptic extendible
condition Theorem 6 has been removed recently in [G2].

Proof of Theorem 2. Since k(x, u)�0, k(x, u) # C2(0_R) and u # C0, 1,
L is subunit. We only need to check the elliptic extendibility of the
operator Lv=�2

1v+�2(*2(x)) �2 v), if *(x) satisfies subelliptic condition
(SE2). For any x0=(a, b) in 0, by (SE2) and (10), there is T>0, such that
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*(a&T, b) and *(a+T, b) are positive. We may assume b=0. Since *(x)
is continuous, there is $>0, such that *(a&T, y) and *(a+T, y) are
positive for | y|<$. We pick a smooth nonegative function h( y) with
h( y)=0 when | y|<$�4 and h( y)=$2 when | y|>$�2. Let *

*
=(*2+h)1�2.

It's easy to check that *
*

satisfies (SE2), and the operator L*v=�2
1v+

�2(*
*

2�2 v) is elliptic near the boundary of a neighborhood V of x0 . Now
Theorem 2 follows from Proposition 8 and Theorem 10.

4. DECOMPOSITION OF PSEUDODIFFERENTIAL OPERATORS
AND PROOF OF THE COMMUTATOR LEMMA

In this section, we shall use the symbol smoothing method for pseudo-
differential operators to prove our Commutator Lemma in Section 2.

First, we recall some facts about pseudodifferential operators with limited
smoothness.

Definition 11. Let _(x, !) be a symbol, suppose {;
! _ # C s

* for each
; # Zn

+. We say _ # C s
*S m

1, $ do for some 0�$�1, if

&{:
x{;

! _(x, !)&C# (K)�C:, ;, #, K (1+|!| )m&|;|+$( |:|+#) (44)

\x # K//0, |!|�1, |:|+#�s. We say a pseudodifferential operator
P # C s

*Sm
1, $ , if P has a symbol p(x, !) # C s

*
S m

1, $ .

The following two propositions will be useful. The proofs of the
propositions can be found, for example, in [T].

Proposition 12. If p # C s
*S m

1, $ for some 0�$<1, then \$<#<1, there
are symbols p*(x, !) # C�S m

1, # , pb(x, !) # C s
*S m&(#&$)s

1, # such that

p(x, !)= p*(x, !)+ pb(x, !). (45)

Moreover, if p # C s
*S m

1, 0 , p* in the decomposition (45) has the following
property:

{;
xp*(x, !) # C �S m

1, # if |;|�s ; (46)

and

{;
xp*(x, !) # C �S m+#( |;|&s)

1, # if |;|>s. (47)

We have the following mapping property for pseudodifferential operators
in C s

*Sm
1, $ .
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Proposition 13. If P # Cs
*Sm

1, $ for some s>0, then

P : 4r+m � 4r for 0�r<s.

Proposition 14. If P # C s
*Sm

1, 1 , then

P : 4r+m+= � 4r for 0�r<s.

Lemma 15. If P # C s
*Sm

1, $ for some s>0, 0�$<1, then P # Om
s .

Proof. By Proposition 12 we may write

P=P*+Pb

with P* # C�Sm
1, # , Pb # C s

*Sm&s(#&$)
1, # . If we pick #=(1+$)�2, then Pb #

Cs
*Sm&s(1&$)�2, with (s�2)(1&$)>0. By Propositions 13 and 14, P* # Om

� ,
Pb # Om

s . That is, P # Om
s .

Now, we are ready to prove the Commutator Lemma.

Proof of the Commutator Lemma. Suppose u # C t
*, we also have

u # C t
*S 0

1, 0 . That is, we may view u as a symbol in C t
*S 0

1, 0 . By Proposition 13,
we may decompose u as

u=u*+ub (48)

with u* # C�S 0
1, # , ub # C t

*S 0&t#
1, # , 1>#>0, to be chosen later. Since u is

real, we may assume u*(x, !), ub(x, !) are also real. We write

a(x, u(x))=a(x, u*(x, !))+[a(x, u(x))&a(x, u*(x, !))]. (49)

By the Taylor expansion, using the fact ub # C t
*S &t#

1, # , we have

a(x, u(x))&a(x, u*(x, !))=au(x, u(x))(u*(x, !)&u(x))

+O((u*(x, !)&u(x))2)

=&au(x, u(x)) ub(x, !)+O((u*(x, !)&u(x))2)

#&au(x, u(x)) ub(x, !)(C t
*S &2t#

1, # ). (50)

For the simplicity, in the rest of the proof, we will not distinguish
symbols and pseudodifferential operators associated with them. For two
symbols, _1 , _2 , we denote _1 } _2 for the operator with symbol _1 } _2 , and
we denote _1 b _2 as the composition operator of _1 and _2 .
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Now,

[|D| s, a(x, u)]#[|D| s, a(x, u*)]&[|D| s, au(x, u) ub] mod(Os&2t#
t&s ).

(51)

For [|D| s, a(x, u*)], we use standard pseudodifferential calculus,

[ |D| s, a(x, u*)]= :
|;|�1

C;{;
x(a(x, u*)) } {;

!(1+|!| 2)s�2. (52)

We denote a;, j (x, z)=(�;��x;)(���z j) a(x, z), where (x, z) are independent
variables in 0_R. Using the chain rule, Eq. (52) now can be written as

[ |D| s, a(x, u*)]= :
|;|=1

C;a;, 0(x, u*) } {;
!(1+|!| 2)s�2

+ :
|;|�1

C;a0, 1(x, u*) {;
xu* } {;

!(1+|!| 2)s�2

+ :
|;|�2

C;a;, 0(x, u*) } {;
!(1+|!| 2)s�2

+ :
|;|�2

:

j�1, |;$|�1
| ;$| +| j |�| ;|

C;a;$, j (x, u*)

_ `
j

i=1
:1+ } } } +:j=(;&;$)

{:i
x u* } {;

!(1+|!| 2)s�2. (53)

By Proposition 12, u* satisfies

�:
xu* # C�S 0

1, # if |:|�t

(54)�:
xu* # C�S #( |:|&t)

1, # if |:|>t.

Since t�1, {:
xu* # C �S #( |:|&1)

1, # , we have

`
j

i=1
:1+ } } } +:j=;&;$

{: i
x u* # C �S # � j

i=1 ( |: i |&1)
1, # =C�S # |;|&# |;$|&# j

1, # .

Therefore, the third term and the fourth term in (53) are in C�S s&2#
1, # , and

we have

[ |D| s, a(x, u*)]# :
|;|=1

C;a;, 0(x, u*) } {;
!(1+|!| 2)s�2

+ :
|;|�1

C;a0, 1(x, u*) {;
xu* } {;

!(1+|!| 2)s�2

mod(Os&2#
� ), (55)
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while

a;, 0(x, u*)=a;, 0(x, u)+O(ub)#a;, 0(x, u) mod(O&t#
t ), (56)

and

a0, 1(x, u*)=a0, 1(x, u)+O(ub)#a0, 1(x, u) mod(O&t#
t ). (57)

Putting (56) and (57) into (55), we get

[ |D| s, a(x, u*)]# :
n

j=1

ax j
(x, u) B� j+au(x, u) B� n+1 mod(Os&2#

t ) (58)

with B� j # Os&1
t , j=1, 2, ..., n+1.

We now deal with [|D| s, au(x, u) ub].

[ |D| s, au(x, u) ub]=|D| s b au(x, u) ub&au(x, u) ub b |D| s

=|D| s b au(x, u) b ub&au(x, u) b (ub b |D| s). (59)

We have

|D| s b au(x, u) b ub=|D| s b au(x, u*) b ub+|D| s b [au(x, u)&au(x, u*)] b ub

=au(x, u*) b |D| s b ub+[|D| s, au(x, u*)] b ub

+|D| s b [au(x, u)&au(x, u*)] b ub. (60)

By standard pseudodifferential calculus, (54), and (57)

[ |D| s, au(x, u*)] # Os&1
� , au(x, u)&au(x, u*) # O&t#

t . (61)

We get from (60), (61), and (57),

|D| 2 b au(x, u) b ub#au(x, u*) b |D| s b ub mod(Os&2#
t&s )

#au(x, u)|D| s b ub mod(Os&2#
t&s ). (62)

From (59), (62), (58), and (51)

[ |D| s, a(x, u)# :
n

j=1

ax j
(x, u) B� j+au(x, u) B� n+1

_au(x, u)( |D| 2 b ub&ub b |D| s) mod(Os&2#
t&s )

# :
n

j=1

axj
(x, u) Bj+au(x, u) Bn+1 mod(Os&2#

t&s ) (63)
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with Bj # Os&1
t , j=1, ..., n, Bn+1 # Os&#

t&s . If we let #=1&=�2, the lemma
follows.

Remark 16. (i) Though we assume a # C�(0_R) in the Commutator
Lemma, this is not necessary. In fact, if we use the composition formula
in [GS], we can prove that if a # C4(0_R), u # C t

*, for some 1�t<2,
if 0<s<1 then \=>0, and there are Bj # Ot&1+=

t&s , j=1, ..., n+1, B0 #
Os&2+=

t&s , such that

[ |D| s, a(x, u(s))]= :
n

j=1

axj
(x, u) Bj+au(x, u) Bn+1+B0 . (64)

(ii) We may also state corresponding results of Theorems 2 and 6,
with aij # C 4

*(0_R) and f # C 3

*(0)(k # C 4

*(0_R)) in place of aij # C�(0_R),
f # C�(0)(k # C�(0_R)); with the rest of the assumptions there, we may
conclude u # C*

3+:(0). We note that if we merely assume aij # C 2

*(0),
f # C 1

*(0)(k # C2(0)), we already have u # C*
1+:(0). And if aij # C*

l+1(0),
f # C l

*(0) for some l # R, l�3, then we have u # C*
l+:(0).

5. REGULARITY OF SOLUTIONS OF
MONGE�AMPE� RE EQUATIONS

We now apply our regularity results for the degenerate quasilinear
equations to the degenerate Monge�Ampe� re equation

det(uij)=k, (65)

where k�0. When k>0, the regularity of solution u of (65) is well-under-
stood (e.g., [CNS]). ln the degenerate case k�0, one may obtain C1, 1

regularity for the solution of (65) under some reasonable assumptions
(e.g., [G1]). In general, for the case k�0, C1, 1 regularity is the best we
can expect. The following example is essentially due to Sibony.

Example A. Let u(x, y)=max[(max[(x2& 1
2), 0])2, (max[( y2& 1

2), 0])2],
,(%)=(cos2%&sin2%)2. u satisfies

uxx uyy&u2
xy=0 in x2+ y2<1.

And

u|x 2+ y2=1=,(%).
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In Example a, k#0. The next example provides a k�0, vanishing at
only one point of order 2.

Example B. Let u(x)=|x| 2+1�n&1, x # Rn. u satisfies

{det(uij)=cn |x| 2 in [ |x|<1]
u| |x|=1=0

for some cn>0.

In Example b, x=0 is a planar point of the hypersurface S=(x, u(x)).
This example indicates that we can only expect higher regularity of u away
from the planar points of S=(x, u(x)). Our Theorem 5 more or less
indicates this is in fact true.

To prove Theorem 3, we use a partial Legendre transformation to translate
the regularity problem of Eq. (12) to a degenerate quasilinear equation of
the form (11) (e.g., [S]).

At the origin, we may assume {u(0)=0. We let

{s=x
t=uy .

(66)

The change of variables T (x, y)=(s, t) is C0, 1 near the origin by the
assumption of u # C1, 1. We have

JT=_sx

tx

sy

ty&=_ 1
uxy

0
uyy & (67)

J &1
T =_xs

ys

xt

yt&=_
1

&
uxy

uyy

0
1

uyy& .
(68)

By the assumption uyy�C0>0 near the origin, T and T&1 are C0, 1

diffeomorphisms near the origin.

Lemma 17. _R>0, \(x$, y$), (x", y") # BR=[ |x| 2+| y| 2<R]; there are
constants depending only on &u&C 2(B R) , and minB R

uyy , such that, for s$=
s(x$, y$), t$=t(x$, y$), s"=s(x", y"), t"=t(x", y"),

(s$&s")2+(t$&t")2�#2
1((x$&x")2+( y$& y")2) (69)

(x$&x")2+( y$& y")2�#2
2((s$&s")2+(t$&t")2) (70)

and T (Br�r 1
)/Br , T (Br)#Br�r2

for r�R.
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Proof.

t$&t"=uy(x$, y$)&uy(x", y")=|
1

0

d
d{

uy((x", y")+{(x$&x", y$& y")) d{

=|
1

0
[uxy( } )(x$&x")+uyy( } )( y$& y")] d{.

And |t$&t"|� &maxB R
|uxy( } )| |x$&x"|+minB R

uyy } | y$& y"|. We get

| y$& y"|�
1

minB R
uyy

|t$&t"|+
maxBR

|uxy |

minB R
uyy

|x$&x"|

�
1

minB R
uyy

|t$&t"|+
maxB R

|uxy |

minB R
uyy

|s$&s"|.

The important feature of the partial Legendre transformation (66) can be
seen from next two lemmas. With the help of the transformation (66),
the fully nonlinear Eq. (65) will be transformed to a simple quasilinear
equation.

Lemma 18. x(s, t), y(s, t) # C0, 1(TBR) is a weak solution of the equation

zss+�t(k(x(s, t), y(s, t)) �tz)=0. (71)

Proof. For z=x(s, t)=s, this is trivial. Let ' # C �
0 (T(BR)),

|
T (BR )

( ys's+kyt 't) ds dt

=|
B R
{&uxy

uyy \'x+\&uxy

uyy + 'y++k \ 1
uyy+

2

'y= uyy dx dy

=|
B

(&uxy 'x+uxx'y) dx dy=0

by approximation.

Lemma 19. u # C*
2+;(Br) for 0<r<R, ;�0 if and only if y(s, t) #

C*
1+;(TBr).

Proof. If u # C*
2+;(Br), from (66), T # C*

1+; , so y(s, t) # C*
1+;(TBr). On

the other hand, if y(s, t) # C*
1+; , by (68), J &1

t # C ;
*. We have

uyy(x(s, t), y(s, t)), uxy(x(s, t), y(s, t)) # C ;
*, (72)
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therefore uyy , uxy # C*
m(BR), with m=min(;, 1). This gives T # C*

1+m .
By (72) again, uyy , uxy # C*

m~ (BR) with m~ =min(;, 2m). Repeating the
argument, we get uyy , uxy # C ;

*. By Eq. (12), and the fact uyy�C>0, we
have uxx # C ;

*. That is, u # C*
2+; .

Using Theorem 2 and the above lemmas, one can easily prove the
following proposition.

Proposition 20. If u satisfies the degenerate Monge�Ampe� re equation,

uxxuyy&u2
xy=k(x, y) (73)

near the origin. Suppose k�0, k # C�(R_R), and u # C1, 1. If uyy�C0>0
near the origin, and k1�2(s, y(s, t)) satisfies (SE2) after the transformation T
in (66), then u # C� near the origin.

Now, we give a proof of Theorem 3 in Section 2.

Proof of Theorem 3. By Proposition 20, we only need to verify the
condition (10) for k1�2(s, y(s, t)). It suffices to show that for the function
g(s, t)=|s| l+B| y(s, t)|m (here (x, y) and (s, t) are related by the partial
Legendre transformation T in (66)), the following is true:

|
a

0
g(s+{, t) d{�Cag(z, t), (74)

for any s<z<s+a, 0<a<r�1.
For s and t fixed, let 1 be the line segement [(z, t) | s�z�s+a]. If

max1 |s| l�max1 | y(s, t)| m, (74) is trivial. So, we assume

max
1

|s| l<max
1

| y(s, t)| m. (75)

Let # be the image of 1 under T&1; we then have

|
a

0
g(s+{, t) d{=|

#
( |x| l+B | y|m). (76)

Let M=max# y, L=min# y. If M&L�(1�4H)a, where H>1 is a
constant such that (a+b)m�H( |a| m+|b|m) for all real numbers a and b.
Since # is C0, 1 by Lemma 17, we have
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|
#

( |x| l+B| y|m)=|
a

0
( |s+x| l+B | y(x)| m) dx

�|
a

0
|s+x| l dx+CB |

a

0
| y| m } dy

dx } dx

�|
a

0
|s+x| l dx+CB |

M

L
| ym | dy

�Ca max
#

g(x, y)

=Ca max
1

g(z, t). (77)

If M&L�(1�4H)a, without loss of generality, we may assume that M=
max# | y|. By (75), we have

a
2

�
(|s|+|s+a|

2
�Mm�l. (78)

Since l�m and 0<a<1, on #,

| y(x)|m�
Mm

H
&(M& y(x))m

�
Mm

H
&(M&L)m

�
Mm

H
&\ a

4H+
m

�
Mm

2H
+
\a

2+
l

2H
&\ a

4H+
m

�
Mm

2H
. (79)

Therefore,

|
#

( |x| l+B | y| m)�Ca(max
#

|x| l+max
#

B | y| m)�Ca max
1

g(z, t). (80)

The proof is now complete.

Remark 21. (i) By Remark 16, we can also obtain the regularity
u # C*

2+: if k # C 2

* , and u # C*
l+1+: if k # C l

*, l�4, of course, under the
assumption that k1�2(s, y(s, t)) satisfies (SE2).
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(ii) By modifying the argument in the proofs of Theorems 2 and 3,
we may obtain the corresponding regularity results of Theorem 3 and
Proposition 20 for the solution u of the equation

uxxuyy&u2
xy=k(x, y) g(x, u, {u)

with g # C�, g�C>0.

(iii) Finally, if (x(!, '), y(!, '), z(!, ')) is a C1, 1 embedded convex
surface in R3; if the Gauss curvature k(!, ') is smooth near (!, ')=(0, 0)
if (x(!, '), y(!, '), z(!, ')) is a graph over (x, y) near the origin; zyy�
C>0; and k(!(x, y), '(x, y)) satisfies condition (13), we can show that the
surface is smooth near (!, ')=(0, 0) by modifying the proofs of
Theorems 2 and 3 and updating the regularity at each stage. Existence of
C1, 1 isometric embedding of (S2, g) � R3 with Kg�0 has been established
in [GL1] and [HZ].
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