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Abstract. New types of hypersurface flows have been introduced recently with goals to
establish isoperimetric type inequalities in geometry. These flows serve as efficient paths
to achieve the optimal solutions to the problems of calculus of variations in geometric
setting. The main idea is to use variational structures to develop hypersurface flows
which are monotonic for the corresponding curvature integrals (including volume and
surface area). These new geometric flows pose interesting but challenging PDE problems.
Resolution of these problems have significant geometric implications.

1. Introduction

It has been observed that the isoperimetric difference is decreasing along the curve
shortening flow [9]

(1.1) Xt = −κν,

where κ is the curvature of the boundary and ν the outer normal. Let |Ω| and |∂Ω| be
the area and perimeter of a bounded domain Ω ⊂ R

2. Along the curve shortening flow,
let Ω(t) be the domain at time t. It follows from the Gauss-Bonnet Theorem and the
Cauchy-Schwarz inequality that, the isoperimetric difference

D(Ω(t)) = |∂Ω(t)|2 − 4π|Ω(t)|

is monotonic decreasing (and strictly decreasing if Ω(t) is not a round ball). The conver-
gence of curve shorting flow (1.1) yields the classical isoperimetric inequality in R

2.

If Ω0 ⊂ N is an optimal domain in a space N of the isoperimetric problem, then ∂Ω0 is
a hypersurface of constant mean curvature. The isoperimetric problem can be considered
as a problem of calculus of variation: for given A, find a domain Ω such that V(Ω) = |Ω|
is of maximal volume among all domains in N with A(Ω) = |∂Ω| = A. We search for
an effective path under volume constraint to achieve an optimal domain. For any
variational vector field η, let fν be its normal component. Then

δηV =

∫

∂Ω
fdµg,

where g is the induced metric of the boundary ∂Ω. The volume is preserved if and only if
∫

∂Ω
fdµg = 0.

1
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That is, the normal component f is orthogonal to the kernel of ∆g. This is the case if and
only if

(1.2) f = ∆gΦ,

for some Φ on ∂Ω.
One has freedom to pick any Φ. We would like to search Φ such that to ensure the

monotonicity of the hypersurface area. Since Ω may evolve, we look for Φ which is
defined in N (or a region of N).

Let’s first consider N = R
n+1. For any bounded domain Ω ⊂ R

n+1 with smooth
boundary ∂Ω, let X denote the position vector of the boundary surface, and let |X| be
the distance from the origin. In (1.2), we choose

Φ =
|X|2

2
.

Set u = 〈X, ν〉 as the support function of ∂Ω,

∆gΦ = ∆g
|X|2

2
=n−Hu.

This yields mean curvature type flow introduced in [15],

∂tX = (n −Hu)ν.(1.3)

Indeed, function Φ = |X|2

2 carries some very special geometric properties.

(1.4) ∇2
gΦ = ∇2

g

|X|2

2
= g − uh,

where h is the second fundamental form of ∂Ω. Denote σk(λ1, · · · , λn) to be the k-th
elementary symmetric function defined in R

n, which can be extended to be defined in
n× n symmetric matrices h = (hij). Denote

σ
ij
k (h) =

∂σk(h)

∂hij
.

Set

(1.5) W = σ
ij
k (h)∇jΦ∂i.

Contracting σij(h) with ∇2
gΦ in (1.4),

divW = ∇i(σ
ij
k (h)∇jΦ) = (n− k + 1)σk−1(h)− kuσk(h).(1.6)

where we have used σ
ij
k is divergent free and h is Codazzi. Integrating (1.6) over ∂Ω, we

have the well-known Minkowski identity,

(1.7) (n− k + 1)

∫

∂Ω
σk−1(h)dµg = k

∫

∂Ω
uσk(h)dµg.



ISOPERIMETRIC TYPE INEQUALITIES AND HYPERSURFACE FLOWS 3

This identity encodes key variational structure of the curvature integrals. Along flow (1.3),
the Newton-McLaurine inequality and Minkowski identity (1.7) yield the monotonicity of
the area,

dA

dt
=

∫

∂Ω
fHdµg ≤

∫

∂Ω
(nH −

2n

n− 1
σ2u)dµg = 0.(1.8)

Inequality (1.8) provides a crucial monotonicity property of flow (1.3). In [15], it was
proved that the hypersurface flow (1.3) exists for all time t > 0 and

Ω(t) → Ω(∞) = Bn+1, as t → ∞.

Bn+1 is a ball with the same volume of the initial domain. As A(∂Bn+1) = cnV
n

n+1 (Bn+1),
it follows the optimal isoperimetric inequality,

A(∂Ω(0)) ≥A(∂Ω(∞)) = cnV
n

n+1 (Ω(∞)) = cnV
n

n+1 (Ω(0)).

The monotonicity formula (1.8) implies that, if equality holds, then Ω must be a ball.
Flow (1.3) resembles certain features of the standard mean curvature flow, but it is

much simpler to deal with when the domains are starshaped and the existence of the flow
does not require any convexity assumption. Flow (1.3) is not equivalent to rescaled version
of the mean curvature flow [22].

The next flow is a special case of the flows in our earlier work [14]. Let

f =
1

H
∆g

|X|2

2
=

n

H
− u.

Or equivalently,

f =
1

H
−

u

n
.

In this case, instead of the volume, the first variation of the surface area has a divergence
structure. Along the following inverse mean curvature type of flow

∂tX =
1

nH
∆g

|X|2

2
ν = (

1

H
−

u

n
)ν,(1.9)

the surface area is invariant,

dA

dt
=

1

n

∫

∂Ω
∆g

|X|2

2
dµg = 0.

Along flow (1.9),

dV

dt
=

∫

∂Ω
(
1

H
−

u

n
)dµg =

∫

∂Ω

1

H
dµg −

n

n+ 1
V ≥ 0,

where the last inequality follows from Heintze-Karcher inequality see [20, 26, 3, 25]. Conse-
quently, one can deduce the sharp isoperimetric inequality if the initial ∂Ω is mean convex
(this condition is not needed for flow (1.3)) and if long time existence and exponential
convergence of the flow can be proved, then

V(Ω(0)) ≤ V(Ω(∞)) = (
A(∂Ω(∞))

cn
)
n+1
n = (

A(∂Ω(0))

cn
)
n+1
n .
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In contrast to flow (1.3), flow (1.9) is a normalized flow of the standard inverse mean
curvature flow [11].

There are other hypersurface flows discussed in the literature related to geometric in-
equalities. Most of them (e.g. [18, 19, 30]) are “normalized flows” with associated to
certain geometric quantity, where there are non-local terms involved. The novelty of
(1.3) is that we work directly on normalized flows. One advantage of this is that the
C0 estimate is immediate by the maximum principle. Another interesting feature is the
monotonic properties of all the quermassintegrals along the flow. This special feature will
be figured prominently in the rest discussion of this article.

2. Mean curvature type Flows in space forms and warped product spaces

We want to generalize the argument discussed to solve the isoperimetric problem in
general spaces. Let’s consider space forms. Recall the Gaussian normal coordinates for
the metric of a space form

ds2 = dρ2 + φ(ρ)2dz2

where dz2 is the standard reduced metric of a unit sphere in R
n+1. The cases of φ(r) =

sin ρ, ρ, sinh ρ yield metrics of Sn+1, Rn+1, and H
n+1 respectively. There is a natural choice

of function Φ which plays a similar role as
|X|2

2
in the Euclidean space discussed in the

previous section. Let

Φ =

∫ ρ

0
φ(t)dt, φ′ =

dφ

dρ
.

Then

∆gΦ = nφ′ −Hu(2.1)

where u = 〈DΦ, ν〉 is the generalized support function. R
n+1 is a special case with

Φ =
|X|2

2
. This leads to consider the following flow in [15],

∂tX = (nφ′ −Hu)ν.(2.2)

Since φ∂ρ is a conform Killing field,

(2.3) ∇2
gΦ = gφ′ − uh,

where h the second fundamental form of ∂Ω. Since the second fundamental form in space
form is Codazzi, with vector field W taking the same form as in (1.5),

divW = ∇i(σ
ij
k (h)∇jΦ) = (n− k + 1)φ′σk−1(h) − kuσk(h).(2.4)

This immediately deduces the following Minkowski identity

(2.5) (n− k + 1)

∫

∂Ω
φ′σk−1(h)dµg = k

∫

∂Ω
uσk(h)dµg.



ISOPERIMETRIC TYPE INEQUALITIES AND HYPERSURFACE FLOWS 5

As in the case of Rn+1, one obtains the same monotonicity formulas for the volume and
hypersurface area

V(Ω(0)) = V(Ω(t)) = V(Ω(∞))
A(∂Ω(0)) ≥ A(∂Ω(t)) ≥ A(∂Ω(∞)).

Since powers of volume of balls and powers of area of the boundary spheres do not always
have simple algebraic relation in space forms except in R

n+1, instead of having a simple
isoperimetric inequality as in R

n+1, we conclude an isoperimetric comparison inequality
with geodesic balls by establishing long time existence and exponential convergence [15].
If Ω has the same volume of a geodesic ball B,

V(Ω) = V(B),

then the surface area of ∂Ω is not less than the area of the sphere

A(∂Ω) ≥ A(∂B),

with equality holds if and only if Ω is a geodesic ball.

The hypersurface flow (2.2) can be extended further to more general warped product
spaces. Let (Nn+1, ḡ) be a Riemannian manifold with the warped product structure,

(2.6) ḡ = dρ2 + φ(ρ)2g̃, on [r0, r̄]×B

where g̃ is the Riemannian metric of the base manifold B which may not necessarily be
spheres. The following flow was considered in [17],

∂tX = (nφ′ −Hu)ν = ∆Φν,(2.7)

where u = 〈DΦ, ν〉 and Φ(r) and φ′ are defined the same as above. Flow (2.7) preserves

the volume, we need monotonicity of the area. As σ
ij
2 = ∂σ2

∂hij
= Hgij − hij , the trace of

its covariant derivative is

(2.8) ∇jσ
ij
2 (h) = −R̄iν ,

where ν is the unit outward normal of the hypersurface. The Minkowski identity (2.5) will
have extra terms involving Ricci tensor of the ambient space, since R̄iν 6= 0 in general.

The Ricci curvature tensor of (Nn+1, ḡ) is given by

(2.9) R̄ic = −nφ′′

φ
dρ2 − [(n− 1)φ′2) + φφ′′]g̃ + R̃ic.

For general warped product space, X = φ(ρ)∂ρ is a conformal Killing vector field,
identity (2.3) still holds. We have

∇i(σ
ij
2 (h)∇jΦ) = (n− 1)φ′σ1(h)− 2uσk(h)− R̄iνΦi.(2.10)

The Minkowski identity takes the following form for compact hypersurface M ⊂ Nn+1,

(2.11) (n− 1)

∫

M

φ′σ1dµ = 2

∫

M

uσ2dµ +

∫

M

R̄iνΦi.
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If M(t) is a smooth one-parameter family of closed graphical hypersurface in Nn+1

which solves the parabolic equations (2.7), then

A′(t) =

∫

(nφ′ −Hu)Hdµg

=

∫

(nφ′H −
2n

n− 1
σ2u)dµg +

∫

(
2n

n− 1
σ2 −H2)udµg

=

∫

n

n− 1
R̄iν∇iΦdµg +

∫

(
2n

n− 1
σ2 −H2)udµg.

If K − φ′2 + φφ′′ ≥ 0 and R̃ic ≥ (n − 1)Kg̃, it follows from (2.9) that

R̄iν∇iΦ ≤ 0.

Thus, the crucial monotonicity holds,

(2.12)
dA(∂Ω(t))

dt
≤ 0.

A solution to the isoperimetric problem for warped product spaces can be obtained as
follows. Let S(r) be a level set of r and B(r) be the bounded domain enclosed by S(r)
and S(r0). The volume of B(r) and surface area of S(r), both positive functions of r, are
denoted as V(r) and A(r), respectively. Note that V = V(r) is strictly increasing function
of r. Consider the single variable function ξ(x) that satisfies

A(r) = ξ(V(r)),(2.13)

for any r ∈ [r0, r̄]. The function ξ(x) is well-defined.

Theorem 2.1. [17] Let Ω ⊂ Nn+1 be a domain bounded by a smooth graphical hypersurface
M and S(r0) with n ≥ 2. Suppose ∂Ω is inside the region [r0, r̄]× B where is is the base
manifold. Suppose

(2.14)
R̃ic ≥ (n − 1)Kg̃,

0 ≤ (φ′)2 − φ′′φ ≤ K on [r0, r̄],

and assume φ(r) and g̃ satisfy the conditions (2.14), then flow (2.7) exists all time and
convergent exponentially to a slice r = r1 for some r1, and

Area(M) ≥ ξ(V ol(Ω)),(2.15)

where Area(M) is the area of M and V ol(Ω) is the volume of Ω, and function ξ is defined

in (2.13). If, in addition to (2.14), either (φ′)2 − φ′′φ < K or R̃ic > (n − 1)Kg̃ on [r0, r̄]
then “=” is attained in (2.15) if and only if M is a level set of r.

The condition (φr)
2 − φrrφ ≤ K is necessary since this is equivalent to the condition

of stability of slice {r = c} as a hypersurface of constant mean curvature. The condition
0 ≤ (φr)

2−φrrφ is imposed in [17] for the gradient estimates of PDE of the radial function.
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3. Fully nonlinear flows and quermassintegrals in R
n+1

We consider hypersurface flows related to the quermassintegrals. In convex geometry,
there is the notion of quermassintegrals. If Ω ⊂ Rn+1 is a C2 domain, the quermassintegrals
can be expressed in terms of boundary curvature integrals:

A−1(Ω) = V(Ω), A0(Ω) = A(Ω), Ak(Ω) =

∫

∂Ω
σk(κ)dµg, k = 1, · · · , n− 1,

where κ = (κ1, · · · , κn) the principal curvatures of ∂Ω. The classical Alexandrov-Fenchel
inequality states that, there is dimensional constants C(n, k) such that for all compact
convex domain Ω ⊂ R

n+1,

(3.1) Ak−1(Ω) ≤ C(n, k)(Ak(Ω))
n+1−k
n−k , ∀k = 0, · · · , n− 1,

with equality holds if and only if Ω is a ball.
We want to design hypersurface flow as path to the optimal solution to inequality (3.1).

Set

(3.2) cn,k =
σk+1

σk
(I).

The l-th quermassintegral enjoys the following variational property, for any variational
vector field η = fν,

(3.3) δηAl(Ω) = (l + 1)

∫

∂Ω
fσl+1(κ)dµ.

Suppose

f =
f̃

σk+1(κ)
,

by (3.3),

δηAk(Ω) = (l + 1)

∫

∂Ω
f̃dµ.

If we want to have Ak preserved, we should look for speed function

f =
divW

σk+1

for some vector field W . In this case, a natural choice of W is given in (1.5), that is

W = σ
ij
k ∇jΦ∂j.

This leads us to consider the following inverse mean curvature type flow

∂tX = (
σk

σk+1
(κ)−

u

cn,k
)ν =

divW

σk+1
ν,(3.4)

so that Ak is preserved. By the Minkowski identity (2.5) and the Newton-McLaurine
inequality,

dAk+1(Ω)

dt
= (k + 2)

∫

∂Ω
(
σk

σk+1
(κ)−

u

cn,k
)σk+2(κ)dµ ≤ 0.
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The following monotonicity properties hold,

V(Ω(0)) ≤ V(Ω(t)) ≤ V(Ω(∞))
A(∂Ω(0)) ≤ A(∂Ω(t)) ≤ A(∂Ω(∞))

· · ·
Ak(∂Ω(0)) = Ak(∂Ω(t)) = Ak(∂Ω(∞))
Ak+1(∂Ω(0)) ≥ Ak+1(∂Ω(t)) ≥ Ak+1(∂Ω(∞))

· · ·

The sharp Alexandrov-Fenchel inequalitites for starshaped (k + 1)-convex domains was
established in [14] along this way. Recall that, Ω is l-convex if the principal curvature of
∂Ω, κ ∈ Γl, , where Γl is the Garding cone

Γl = {Λ ∈ R
n|σ1(Λ) > 0, · · · , σl(Λ) > 0.}

Flow (3.4) is equivalent to the inverse curvature flow ∂tX = σk

σk+1
ν introduced by Gerhardt

[11] by rescaling, see also [13].

One may also design a flow such that Ak−1 is preserved as follow [16]

∂tX = (cn,k −
σk+1

σk
u)ν =

divW

σk
ν,(3.5)

where the vector field W is again as in (1.5). When k = 0, (3.5) reduces to the mean
curvature type flow (1.3).

If flow (3.5) exists for all t ≥ 0 and converges to a sphere with the same Ak−1 of the
initial domain, we have the following monotonicity properties

V(Ω(0)) ≤ V(Ω(t)) ≤ V(Ω(∞))
A(∂Ω(0)) ≤ A(∂Ω(t)) ≤ A(∂Ω(∞))

· · ·
Ak−1(∂Ω(0)) = Ak−1(∂Ω(t)) = Ak−1(∂Ω(∞))
Ak(∂Ω(0)) ≥ Ak(∂Ω(t)) ≥ Ak(∂Ω(∞))

· · ·

This would immediately imply the sharp quermassintegral inequalities in convex geometry.
In question is the longtime existence and convergence of flow (3.5). The major PDE
problem for flow (3.5) is the curvature estimate (or C2 estimates). To overcome this
difficulty, we transform flow (3.5) to a parabolic PDE on S

n in [16]. Let Ω ⊂ R
n+1 be

a bounded strictly convex domain with smooth boundary. Let W i
j be its Weingarten

curvature tensor. It is well-known that the boundary hypersurface can be parametrized
by the support function of the inverse of its Gauss map if the domain is strictly convex.
Namely, the support function u = u(ν), where ν ∈ S

n are the outward normal vector
at points on the boundary. With this parametrization, the inverse of the Weingarten
curvature has a simple form (W−1)ij = eikukj + uδij =: Ai

j where eij is the metric tensor
of the standard unit sphere S

n. The induced metric of the hypersurface satisfies gij :=

eklAikAjl.



ISOPERIMETRIC TYPE INEQUALITIES AND HYPERSURFACE FLOWS 9

One can show that the following parabolic PDE of the support function u is equivalent
to flow (3.5) for convex domains,

∂tu = cn,k −
u

G
(3.6)

where G =
σn−k−1(A)
σn−k(A) and cn,k = 1

G(I) with I = (1, · · · , 1). For equation (3.6), admissible

solutions are for those u with A ∈ Γn−k. In this section, we prove exponential convergence
of flow (3.6).

We will assume normal coordinates of Sn and do not distinguish upper or lower indexes
of the tensors. Thus the metric of S

n can be denoted as δij . Moreover, we will use
Einstein’s convention, i.e., repeated indexes in tensor calculations implies summation over
the index. For convenience, we will use the following linearized operator,

L := ∂t −
u

G2
∇i∇j .(3.7)

C0 estimate can be immediately obtained by maximum principle,

min
Sn

u(0, ·) ≤ u(t, ·) ≤ max
Sn

u(0, ·),

for any t ∈ [0, T ].

Let λ be a vector and G =
σn−k(λ)

σn−k−1(λ)
. If λ ∈ Γn−k, then

G(I) ≤ Gii ≤ k + 1, where I = (1, · · · , 1).(3.8)

Let’s first deal with the uniform lower bound of G(t, ·).

Lemma 3.1. Suppose (3.6) has a solution u(t, ·) on [0, T ]× S
n, we have

min
[0,T ]×Sn

G(t, ·) ≥ min
Sn

G(0, ·) > 0.

Proof. Recall ut = cn,k −
u
G
,

∂tG =Gij(Aij,t)

=Gij(ut,ij + utδij)

=
u

G2
GijGij +Gij(

ujGi

G2
+

uiGj

G2
−

2uGiGj

G3
)−

Gij

G
uij +Gij(cn,k −

u

G
)δij

(3.9)

where Gij := ∂G
∂Aij

and Gij := ∇i∇jG with respect to the standard metric of Sn. We can

combine the last two terms in (3.9),

−
Gij

G
uij +Gij(cn,k −

u

G
)δij =−

1

G
GijAij + cn,kG

ii

=cn,kG
ii − 1 ≥ 0.

(3.10)

The last inequality follows from (3.8). Putting (3.10) into (3.9),

L(G) ≥Gij(
ujGi

G2
+

uiGj

G2
−

2uGiGj

G3
),(3.11)
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where L is defined in (3.7). By applying the standard maximum principle to (3.11) on G,
we finish the proof. �

The proof for the uniform upper bound for G is similar as the proof of Lemma 3.5 in
[16].

Lemma 3.2. Suppose (3.6) has a solution u(t, ·) on [0, T ]× S
n, we have

max
[0,T ]×Sn

G(t, ·) ≤ C,

where C is a constant only depends on the initial hypersurface.

Proof. We derive the evolution of u
G
.

∂t
u

G
=
ut

G
−

u

G2
Gij(ut,ij + utδij)

=
u

G2
Gij(

u

G
)ij +

ut

G
(1−

u

G
Gii)

=
u

G2
Gij(

u

G
)ij + (cn,k −

u

G
)
1

G
(1−

u

G
Gii).

(3.12)

By our C0 estimate, u is uniformly bounded from above and below by positive constants.
Assume the minimum of u

G
> 0 is attained at P0. Then at P0, using critical points

condition, we have

0 ≥L(
u

G
) = (cn,k −

u

G
)
1

G
(1−

u

G
Gii).(3.13)

Without loss of generality, we assume u
G

< cn,k, otherwise u
G

≥ cn,k is bounded from

below. Thus at P0, from (3.13), we obtain 1− u
G
Gii ≤ 0. Namely,

u

G
≥

1

Gii
≥

1

k + 1
,(3.14)

where the last inequality follows from Lemma 3.8. This yields
u

G
≥ c > 0. By the

uniformly boundedness of u, we finish the proof. �

The next lemma provides the C1 and C2 estimates for admissible solutions of flow (3.6).

Lemma 3.3. Suppose (3.6) has a solution u(t, ·) on [0, T ]× S
n, we have

max
[0,T ]×Sn

|∇u|2 ≤ C, max
[0,T ]×Sn

|∇∇u|2 ≤ C,

where C is a constant only depends on the initial hypersurface.

Proof. We first derive the evolution |∇u|2.

(|∇u|2)t =2ulutl = −2ul(
u

G
)l

=− 2
|∇u|2

G
+ 2

u

G2
ulG

ijAij,l

=− 2
|∇u|2

G
+ 2

u

G2
ulG

ijAil,j,

(3.15)
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where we used Aij is Codazzi in the last step. Thus

(|∇u|2)t =− 2
|∇u|2

G
+ 2

u

G2
ulG

ij(uil,j + ujδil)

=− 2
|∇u|2

G
+

u

G2
Gij(|∇u|2)ij − 2

u

G2
Gijuilujl + 2

u

G2
Gijuiuj .

(3.16)

Equivalently, we have

L(|∇u|2) =− 2
|∇u|2

G
− 2

u

G2
Gijuilujl + 2

u

G2
Gijuiuj .(3.17)

On the other hand, we have

L(u2) =2u(cn,k −
u

G
)−

u

G2
Gij(u2)ij

=2u(cn,k −
u

G
)−

2u2

G2
Gijuij −

2u

G2
Gijuiuj

=2u(cn,k −
u

G
)− 2

u2

G
+ 2

u3

G2
Gii −

2u

G2
Gijuiuj

(3.18)

where we have used the following contraction,

Gijuij = GijAij − uGii = G− uGii.(3.19)

Adding (3.17) and (3.18), we obtaino

L(|∇u|2 + u2) =− 2
|∇u|2

G
− 2

u

G2
Gijuilujl + 2cn,ku− 4

u2

G
+ 2

u3

G2
Gii

≤− 2
|∇u|2

G
+ 2cn,ku− 4

u2

G
+ 2(k + 1)

u3

G2
.

(3.20)

where we have used Gii ≤ k + 1. Since u, G are uniformly bounded above and below and
G. By standard maximum principle, we obtain the gradient estimate.

We now consider C2 estimate. The evolution equation of Aij is (c.f. Proposition 3.4 in
[16]),

L(Aij) =
u

G2
G̈(∇iA,∇jA) +

2

G2
uiGj −

2u

G3
GiGj −

1

G
(
u

G
Gkk + 1)Aij + (cn,k +

u

G
)δij

=
u

G2
G̈(∇iA,∇jA)−

2u

G3
(Gi −

G

2u
ui)(Gj −

G

2u
uj)

−
u

G2
(GkkAij −Gδij)−

1

G
(Aij − cn,kGδij) +

1

2uG
uiuj

≤−
u

G2
(GkkAij −Gδij)−

1

G
(Aij − cn,kGδij) +

1

2uG
uiuj

(3.21)

where we have used the concavity of G̈ and also removed the negative quadratic term.
Suppose λmax is the maximal eigenvalue of Aij for all points and 0 ≤ t ≤ T . If it is
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attained at t0 ∈ (0, T ], we may assume λmax = A11(x0, t0), for t0 > 0, x0 ∈ Sn. At P0, we
have

0 ≤ L(A11) ≤−
u

G2
(GkkA11 −G)−

1

G
(A11 − cn,kG) +

1

2uG
u1u1.(3.22)

Since GkkA11 −G =
∑

kk

Gkk(A11 −Akk) ≥ 0, we can eliminate the first term on the right

side of (3.22) and obtain

0 ≤−
1

G
(A11 − cn,kG) +

1

2uG
u1u1.(3.23)

Equivalently, we obtain

A11 ≤ cn,kG+
|∇u|2

2u
.(3.24)

Since |∇u|2 and G are bounded from above, u is bounded from below, we proved Aij is
uniformly bounded from above. This immediately implies the desired C2 bounds. �

Without appealing to the corresponding hypersurface flow (3.5) like in [16], we will
provide direct proofs for the convergence property of the flow at infinity. With C2 estimates
in hand, the Krylov Theorem yields C2,α estimates and the higher regularity estimates
follows from standard theory for parabolic equations. Therefore, flow (3.6) exists all time
and one may argue that solution is sequentially convergent to solitons of the form

cn,k =
u

G
.

Since by the Newton McLaurine inequality and using G = u
cn,k

,

0 ≥
2

cn,k
H − 2nG =

2

cn,k
(∆u+ nu)− 2n

u

cn,k
=

2

cn,k
∆u.

This yields that u is a super-harmonic function on S
n. So u is a constant. This implies

the convergence of flow (3.6).
We will use a similar argument as in Proposition 5.5 of [15] to show that when t is

large enough, different eigenvalues of Aij at the same point are comparable uniformly for
arbitrary small ǫ.

Lemma 3.4. Let u = u(t, ·) solves the initial value problem (3.6). Then for any ǫ > 0,
there exists a T0 > 0, such that for any t > T0,

max
i<j,z∈Sn

|λi(t, z) − λj(t, z)| < ǫ,(3.25)

where λ(t, z) are the eigenvalues of Aij at (t, z).
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Proof. We have the evolution of the following integral on S
n. For simplicity, we denote

I :=

∫

Sn

σn−k(Aij)dz
n, then

d

dt
I(t) =(k + 1)

∫

Sn

(cn,k −
uσn−k−1

σn−k

)σn−k−1dz
n

≤(k + 1)

∫

Sn

(cn,kσn−k−1 −
uσ2

n−k−1

σn−k

)dzn

≤(k + 1)

∫

Sn

[cn,kσn−k−1 −
(n− k)(k + 2)

(n− k − 1)(k + 1)
uσn−k−2]dz

n

+ (k + 1)

∫

Sn

u[
(n− k)(k + 2)

(n− k − 1)(k + 1)
σn−k−2 −

σ2
n−k−1

σn−k
]dzn.

(3.26)

The first integral in the last inequality of (3.26) vanishes due to the Minkowski identity
on S

n. By the Newton-McLaurine inequality,

[
(n − k)(k + 2)

(n− k − 1)(k + 1)
σn−k−2 −

σ2
n−k−1

σn−k
] ≤ 0(3.27)

pointwisely. The “=” is attained if and only if λ1 = · · · = λn. We continue to argue as in
[15]. We start with

I(t)− I(0) =

∫ t

0
A′(s)ds.

From (3.26) and (3.27), we have I ′(s) ≤ 0. By our regularity estimates, we have I(t)

is uniformly bounded from above and below. Thus,

∫ ∞

0
A′(t)dt < ∞. Since we have

established uniform a priori estimates for all the derivatives of u for any order and also
0 < C1 ≤ u ≤ C2 uniformly, I ′(t) is uniformly continuous with respect to t. On the other
hand, dµg is also uniformly bounded from up and below. This proves that for any ǫ > 0,
there exists a large enough T0 > 0, such that for any t > T0, the Newton-MacLaurin
difference can be arbitrarily small. Namely,

0 ≤
σ2
n−k−1

σn−k
−

(n− k)(k + 2)

(n− k − 1)(k + 1)
σn−k−2 ≤ ǫ.(3.28)

�

Lemma 3.4 yields that Aij is positive definite with eigenvalues bounded from below and
above when t large. With uniform convexity, when t is large,

G−G11A11 ≥ C1 > 0.
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At maximum point (t, x0) of |∇u(t, x)| with ∇u = (u1, 0, · · · , 0), since u1j = 0 so that
A11 = u. We may assume Gij diagonal, it follows from (3.17),

L(|∇u|2) =− 2(−
|∇u|2

G
−

u

G2
Gijuilujl +

u

G2
Gijuiuj)

≤− 2|∇u|2(
1

G
−

G11A11

G2
) ≤ −2C1

|∇u|2

G
.

That is, |∇u|2 is convergent to 0 exponentially. One may also go back to the corresponding
hypersurface flow (3.5) to deduce the exponential convergence. Aij is uniform definite when
t large, thus flow (3.5) is uniformly parabolic. Then one may infer Proposition 3.1 in [16]
to get the exponential convergence.

We don’t know if the convexity of Aij is preserved along flow (3.6), this would imply
the curvature estimates and longtime existence for flow (3.5).

4. fully nonlinear flows in H
n+1 and S

n+1

Let Nn+1(K) be a space form of constant sectional curvature K. There is corresponding
notion of qumermassintegrals Ak(Ω) for convex domain Ω in N

n+1(K) (e.g., [27]). If the
boundary ∂Ω is C2, it holds Cauchy-Cronfton formula,

A−1(Ω) =V(Ω), A0(Ω) =

∫

∂Ω
dµg

A1(Ω) =

∫

∂Ω
σ1(κ)dµg + nKV(Ω)

Ak(Ω) =

∫

∂Ω
σk(κ)dµg +K

n− k + 1

k − 1
Ak−2(Ω), k = 2, · · · , n − 1.(4.1)

More importantly, these geometric quantities enjoy the same variational property as in
R
n+1 (e.g., [2]),

(4.2) δηAk(Ω) = (k + 1)

∫

∂Ω
σk+1(κ)fdµ,

for any variational vector field η = fν. Recall the Minkowski Identity (2.5) discussed in
Section 2,

(4.3)

∫

M

[σk+1(κ)u −
n− k

k + 1
φ′(ρ)σk(κ)]dµ = 0.

For general warped product spaces, Minkowski identity (4.3) involves a term related to
Ricci tensor of the ambient space, due to lack of Codazzi properties (2.11).

Suppose we want to compare Al and Ak for given k < l and balls Br(0), r > 0 in
N
n+1(K) are the optimal solutions of this isoperimetric problem. Let ξl,k(s) be the unique

positive function such that

(4.4) ξl,k(Ak(Br)) = Al(Br), ∀r > 0.

Then we want to establish

(4.5) ξl,k(Ak(Ω)) ≤ Al(Ω),
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with equality holds if and only if Ω is a geodesic ball.
As in the case of R

n+1, the divergence identity (4.2) leads us to the following flow
N
n+1(K) in [4],

∂tX =
(

φ′ σk

σk+1
−

u

cn,k

)

ν =
divW

σk+1
ν.(4.6)

where the vector field W = σ
ij
k ∇jΦ∂j as in (1.5). The quermassintegrals (4.1) enjoy the

following monotonicity property,

d

dt
Al =







≥ 0, if l < k

= 0, if l = k

≤ 0, if l > k

for all 0 ≤ l ≤ n− 1.
In order to prove (4.5) for l = k + 1, one needs to establish the long time existence and

convergence of the flow in the corresponding space form.

The hypersurface flow equation (4.6) is equivalent to the initial value problem of a
positive radial function ρ on sphere S

n,

(4.7)

{

∂tρ = (φ
′

F
− u

cn
)ω, for (z, t) ∈ S

n × [0,∞)

ρ(·, 0) = ρ0,

where ρ is the radial function and F =
σk+1

σk
for simplicity. Let function γ be defined as

dγ

dρ
=

1

φ
.

The corresponding evolution equation for γ can be written as

(4.8) ∂tγ = φ′

uF
− 1

cn,k

By examining the evolution equation of ρ or γ, the standard maximum principle yields C0

estimate

(4.9) min
x∈M

ρ(x, 0) ≤ ρ(x, t) ≤ max
x∈M

ρ(x, 0).

Straightforward computation yields

(4.10)

L(
hi
j

u
) = φ′

uF 2F
kl;pq∇ihpq∇jhkl +

1
cn
∇

hi
j

u
∇Φ+ 2

u
· φ′

F 2F
kl∇k

hi
j

u
∇lu

+ 1
2uFφ′∇iφ′∇jφ

′ − 2φ′

uF
(∇

iF
F

− ∇iφ′

2φ′ )(
∇jF

F
−

∇jφ
′

2φ′ )

−2φ′

uF
(h2)ij +

[

−K φ′

F 2F
kk −K u

F
+ 2φ′

cn
+ 1

uF
∇Φ∇φ′

]hi
j

u

+K( φ′

uF
+ 1

cn
)δij ,

where L := ∂t −
φ′

F 2F
kl∇k∇l is the linearized parabolic operator.

From now on, we will discuss (4.6) separately for H
n+1 and for S

n+1, due to different
PDE issues involved for these cases.

The Case N
n+1 = H

n+1. The main problem here is preservation of starshapedness of flow
(4.6), equivalently, the gradient estimate for the corresponding flow (4.7) or flow (4.8).
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Let

(4.11) L := ∂t −
cosh(ρ)

ω2F 2
F ij(sinh2(ρ)ω2δik − γiγk)∂kj ,

be the linearized operator of flow (4.8), where ω =
√

1 + |∇γ|2.
At maximum point of ∂tγ

(4.12) L(γt) = −
sinh(ρ)

∑

F ii

ω3F
γt(γt +

1

cn,k
−

ω2

∑

F ii
)

(4.12) provides a lower bound of F ≥ C0 > 0 for all t > 0 provided that |∇γ| is uniformly
bounded. Bound of |∇γ| is equivalent to uniform lower bound of u. (4.10) and the
maximum principle yield the curvature estimates which is equivalent to C2 estimates.

(4.13) max
(x,t)∈Sn×[0,T )

|∇2ρ|(x, t) ≤ C,

where C is a constant depending on the uniform lower and upper bound of ρ and upper
bound of |∇ρ|.

The main issue is the gradient estimate which is still open for equation (4.8). We

compute evolution equation for |∇γ|2

f(γ) where f(γ) > 0 is any smooth positive function. Let

L be the linearized operator as in (4.11). Then at the maximum point of |∇γ|2

f
, with the

assumption that ∇γ = γ1,
(4.14)

L(ln |∇γ|2

f
) = f ′

cnfφ2ω6F 2 (φω
3F − cnω

2 cosh ρ)2 −
2 cosh ρ

∑
j≥2 F

jj

φ2F 2|∇γ|2 (γjj +
sinh2 ρ|∇γ|2

2 cosh ρ
)2

+ cosh ρ
2φ2F 2

∑

j≥2 F
jj( sinh

4 ρ

cosh2 ρ
|∇γ|2 − 4) + f ′ cosh2 ρ

fω2φ2F 2 (
∑n

i=1 F
ii − cn)

+ f ′

f
1

ω2φ2F 2 |∇γ|2F 11 + f ′

f
cosh2 ρ
ω2φ2F 2 |∇γ|2

∑

j≥2 F
jj

−|∇γ|2 cosh ρ
ω4φ2F 2F

11
(

1
2(

f ′

f
)2(3|∇γ|2 + 1)− f ′′

f
ω2

)

,

where φ = sinh ρ.
Though we are not able to get gradient estimate in full, with the help of (4.14), the

following can be proved under certain initial condition by letting f(γ) = cosh2 ρ

sinh4 ρ
.

Proposition 4.1. Suppose γ(·, t) solves the corresponding initial value problem (4.7) on
S
n for t ∈ [0, T ). Assume the initial hypersurface satisfies the following condition,

Condition (C) : max
x∈Sn

|∇ ln(cosh ρ)|2(x, 0) ≤ 12 + 3min
t=0

sinh2 ρ,(4.15)

Then this upper bound is uniform for all t > 0, i.e.,

(4.16) max
(x,t)∈Sn×[0,T )

|∇ ln(cosh ρ)|2(x, t) ≤ 12 + 3min
t=0

sinh2 ρ.
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By standard parabolic PDE theory, after established C0, C1, and C2 estimates, we
obtained all the a priori estimates under Condition (4.15) and in turn the long time
convergence of the flow. Also, in the special case that k = n − 1, namely along the
following flow

∂tX =
(

φ′σn−1

σn
−

u

cn,n−1

)

ν,(4.17)

since convexity implies gradient estimates. With that, the speed function is bounded from
below. This yields that the convexity of hypersurfaces are preserved along flow (4.6).
Hence, one has all the a priori estimates and convergence.

Theorem 4.2. Let M0 be a radial graph of function ρ0 over S
n in H

n+1. Suppose either
k = n− 1, or Condition (4.15) is satisfied. Then flow (4.6) exists all time and convergent
exponentially to a geodesic sphere. To be precise, solution γ(z, t) of (4.8) exists in interval
[0,∞), and there exist a uniform constant α > 0 which depends only on the initial graph,
such that for any (z, t) ∈ S

n × [0,∞],

(4.18) eαt|∇γ|2(z, t) ≤ max
z∈Sn

|∇γ|2(z, 0),

where the covariant derivatives are with respect to the spherical metric on S
n.

As a consequence, sharp isoperimetric inequality comparing An−1 with all other Ak for
convex domains in H

n+1 can be proved. In two other special cases, we can manage to get
around and obtain sharp quermassintegral inequalities. More specifically, we can compare
the first and second quermassintegrals, A2 and A1, with A0 respectively.

In the case of h-convexity, full range of quermassintegral inequalities were obtained in
[10, 31] using expanding and contracting type of flows. Very recently, the results in [31] for
h-convex domains in H

n+1 were reproved using flow (4.6) directly in [21] by establishing
that h-convexity is preserved along flow (4.6). The sharp relation between A2 and A0 was
previously proved in [24] by a different method.

Recall the inverse mean curvature flow

(4.19) ∂tX =
1

H
ν

and inverse curvature flow

∂tX =
σ1

σ2
ν(4.20)

studied in [12] (see also [8]).

Lemma 4.3. Let M(t) be a smooth family of hypersurfaces.

(1) If M(t) solves the inverse mean curvature flow equation (4.19) with initial condi-
tion M(0) = M , then

(4.21) e−
n−1
n

t(A1(t)− ξ1,0(A0(t))) ≤ A1(0) − ξ1,0(A0(0)).

(2) If M(t) solves the inverse curvature flow equation (4.20) with initial condition
M(0) = M , then

(4.22) e
− 2(n−2)

n−1
t(A2(t)− ξ2,0(A0(t))) ≤ A2(0) − ξ2,0(A0(0)).
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We provide two proofs for the sharp geometric inequality between A1 and A0 for a
star-shaped domain Ω ⊂ H

n+1 with smooth boundary. Notice that if the boundary hy-
persurface satisfies the gradient bounds in Theorem 4.1, then the sharp inequality follows
immediately from the long time existence and exponential convergence of flow (4.6) with
k = 1.

As a conclusion, we have the following sharp geometric inequalities.

Theorem 4.4. [4] Suppose Ω is a bounded domain in H
n+1 with smooth boundary. The

following three results hold:

(1) When l = 1 or l = 2, if Ω is starshaped and l-convex, then

ξl,0(A0(Ω)) ≤ Al(Ω).

(2) For all l = −1, 0, · · · , n− 2, if Ω is convex,

ξn−1,l(Al(Ω)) ≤ An−1(Ω).

(3) In general, if ∂Ω satisfies Condition (4.15), then for all k < l, l, k = 0, · · · , n− 1,

ξl,k(Ak(Ω)) ≤ Al(Ω).

Equality holds if and only if Ω is a geodesic ball.

Case (1) in the theorem for l = 2 was proved in [24] using different flow. We believe
Condition (4.15) is redundant in above Theorem. We also refer [5] for the Minkowski
inequality in the anti-de Sitter-Schwarzschild space.

Proof. Cases (2) and (3) follow from the longtime existence and convergence of flow (4.6)
under Condition (4.15) or for k = n− 1. We provide two proofs for l = 1 of Case (1).
Proof 1: We’ll combine flow (4.6) and inverse mean curvature flow to complete the proof.
Let M(t) be a solution to the inverse mean curvature flow (4.19) with initial condition
M(0) = ∂Ω. By Gerhardt’s estimate for the radial function ρ(t), there exists a large
enough T >> 0, such that

(4.23) |∇ log cosh ρ(T )| ≤ min
x∈M(T )

sinh2 ρ(T )

By Proposition 4.3, we have

(4.24) A1(M)− ξ1,0(A0(M)) ≥ e−
n−1
n

T (A1(M(T ))− ξ1,0(A0(M(T )))).

Let M̃(t) be a solution to the modified inverse mean curvature flow

(4.25) ∂X = (
cosh ρ

H
−

u

n
)ν

with initial condition M̃(0) = M(T ). Notice that (4.25) is a special case of flow (4.6)

when k = 1. Notice that M̃(0) = M(T ) which satisfies the gradient bounds in Theorem
4.1, then the following sharp inequality

(4.26) A1(M̃ (0)) − ξ1,0(A0(M̃ (0))) ≥ 0
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follows from the long time existence, exponential convergence of flow (4.6) with k = 1, and

the monotonicity formulas of Ak along the flow. Since M̃(0) = M(T ), combining (4.24)
and (4.26), we finish the proof.
Proof 2: The following argument is due to Simon Brendle, using inverse mean curvature
flow directly to prove the inequality.

Let now Σ̂t be a family of geodesic spheres evolving under inverse mean curvature flow
with |Σ̂t| = |Σt|. Moreover, since d

dt
|Σt| = |Σt|, we have

|Σ̂t| = et|Σ̂0| = et|Σ0|.

Recall

A1(Σt) =

∫

Σt

Hdµ − nV (t).

When t is large enough, we have along the inverse MCF,

H = n+O(te−
2
n
t).

Thus
A1(Σt) = n|Σt| − nV (t) +O(te−

2
n
t)|Σt|

≥ n|Σt| − nξ−1(|Σt|) +O(te−
2
n
t)|Σt|

= n|Σ̂t| − nξ−1(|Σ̂t|) +O(te−
2
n
t)|Σ̂t|

= n|Σ̂t| − nV (Σ̂t) +O(te−
2
n
t)|Σ̂t|

= A1(Σ̂t) +O(te−
2
n
t)|Σ̂t|

where the inequality follows from isoperimetric inequality in hyperbolic space, the second
identity follows from the fact that |Σ̂t| = |Σt|, the third identity follows from the equality
case of sharp isoperimetric inequality in hyperbolic space, and the last identity follows
from the definition.

Since A0(Σt) = |Σt|, we have ξ1(A0(t)) = ξ1(|Σt|) = ξ1(|Σ̂t|). Thus,

A1(Σt)− ξ1,0(A0(Σt)) ≥ A1(Σ̂t) +O(te−
2
n
t)|Σ̂t| − ξ1,0(|Σ̂t|)

= O(te−
2
n
t)|Σ̂t|,

where we used A1(Σ̂t)− ξ1,0(|Σ̂t|) = 0 on geodesic spheres.
We have for large enough t,

e−
n−1
n

t(A1(t)− ξ1,0(A0(t))) ≥ e−
n−1
n

tO(te−
2
n
t)|Σ̂t|

= e−
n−1
n

tO(te−
2
n
t)et|Σ0|

= O(te−
1
n
t),

where in the second identity, we have used the evolution of area functional under inverse
MCF, i.e. A′(t) = A(t).

By (4.21), this finishes the proof of

0 ≤ A1(0) − ξ1,0(A0(0)),

using the monotonicity.

The proof of l = 2 in Case (1) is similar to the Proof 1. �
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The case N
n+1 = S

n+1
+ . We already have C0 estimate (4.9). With φ(ρ) = sin ρ, φ′(ρ) =

cos ρ, the support function u =< X, ν > evolves as following respectively,

(4.27) L(u) =
|∇ρ|2 sin2 ρ

F
−

1

cn,k
∇ cos ρ∇u+ (

1

F 2
F ij(h2)ij −

1

cn,k
)u cos ρ,

where L = ∂t−
φ′

F 2F
ij∂ij . The lower bound of u ≥ c0 > 0 follows immediately in this case.

Then it follows (4.10) and concavity of F , one obtains curvature bound of flow (4.6) in

S
N+1
+ : there is C > 0 depending only on the initial data such that,

(4.28) max
M(t)

hij ≤ C, ∀i, j, hence ‖ρ‖C2(Sn) ≤ C.

For the longtime existence and exponential convergence of flow (4.6) in S
n+1
+ , we need

the key estimate of the lower bound of F

(4.29) F ≥ C0 > 0.

Unfortunately, estimate (4.29) is still open, except for the special case k = n− 1.

Proposition 4.5. Suppose k = n− 1 and Ω0 is strictly convex, and suppose ∂Ω(t) is the
solution of flow (4.6) in Sn+1

+ , then

(4.30) min
∂Ω(t)

uF ≥ min
∂Ω0

uF.

That is, uF is bounded from below by a positive constant depending only on initial data.
As a consequence, F is bounded from below uniformly and convexity is preserved.

Proof. One computes that

(4.31) L(uF ) = −
2

F
F ij∇iφ′∇ju+ |∇Φ|2 + u2(

∑

F ii

cn,k
− 1) +O(|∇(uF )|).

Note Φ = −φ
′
= − cos ρ, and ui = h

j
iΦj = −h

j
iφ

′

j . When t > 0 small, hji > 0, by (4.31),

at minimal point of uF , L(uF ) ≥ 0. Since the lower bound of F is independent of t,
preservation of convexity follows directly as n = k + 1. �

Theorem 4.6. [4] Suppose ∂Ω0 is strictly smooth convex domain in S
n+1
+ , then the evo-

lution equation (4.6) with k = n − 1 has a smooth solution for t ∈ [0,∞). Moreover, the
hypersurfaces converge exponentially to a geodesic sphere as t → ∞ in the C∞ topology.
As a consequence,

ξn−1,k(Ak(Ω0)) ≤ An−1(Ω0),∀k ≤ n− 1,(4.32)

“ = ” holds if and only if Ω0 is a geodesic ball.

We also consider the following fully nonlinear version of (2.2) in S
n+1
+ in [6],

∂tX = (cn,kφ
′ −

σk+1

σk
u)ν.(4.33)

Similar to all other flows in this article, monotonicity formulas hold for the quermassinte-
grals in S

n+1
+ as long as the flow exists. Flow (4.33) preserves convexity, and one has C1

estimates for solutions, and upper and lower bounds of F =
σk+1

σk
along flow (4.33). Except
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in the case of k = 0 (i.e., flow (2.2)) where C2 estimates follows directly from the theory
of quasi-linear PDE, C2 estimates for solutions of flow (4.33) is still an open question.

Flow (4.33) is the same as flow (3.5) in R
n+1 where φ′ = 1. In section 3, we convert

(3.5) to a parabolic equation (3.6) on S
n. It’s relative easier to work on (3.6) for admissible

solutions, even though we don’t have curvature estimate for the original equation (3.5).
One would like to search a similar transformation for flow (4.33) in S

n+1
+ .

Conclusion remarks. Flow approach for geometric inequalities is not new, however the
constraint hypersurface flows discussed here for isoperimetric problems are different from
previous works. The guiding idea is to use variational properties of the concerned geometric
functionals F and G along variational field η = fν,

δηF =

∫

M

fPdµ, δηG =

∫

M

fQdµ,

to design a flow of the form

(4.34) Xt = fν.

Then f must be of the form f = divW
P

for some vector field W if F is preserved. The
crucial step is to make proper choice of vector field W so that the functional G is monotone
along the flow, i.e.,

∫

M

QdivW

P
dµ ≥ 0 (or ≤ 0).

For quermassintegrals, W in (1.5) is a natural choice where the conformal vector field
V = φ ∂

∂ρ
plays key role. This choice leads to mean curvature type or inverse mean

curvature type flows. The PDE problems arising from these flows are interesting and
challenging. Resolution of these PDE problems have significant geometric implications.
General principles outlined here can be extended to treat other geometric problems in
other settings (e.g. [29, 32] and [28, 23]).
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[2] João Barbosa and Antônio Gervasio Colares, Stability of hypersurfaces with constant r-mean curvature.

Ann. Global Anal. Geom. 15 (1997), no. 3, 277-297.
[3] Simon Brendle, Constant mean curvature surfaces in warped product manifolds, Publ. Math. Inst.

Hautes Études Sci. 117 (2013), 247-269.
[4] Simon Brendle, Pengfei Guan, and Junfang Li, An inverse curvature type hypersurface flow in space

forms, preprint.
[5] Simon Brendle, Pen-Kei Hung and Mu-Tao Wang, A Minkowski inequality for hypersurfaces in the

anti-de Sitter-Schwarzschild manifold, Comm. Pure Appl. Math. 69 (2016), no. 1, 124-144.
[6] Chuanqiang Chen, Pengfei Guan, Junfang Li, and Julian Scheuer, A curvature hypersurface flow in

S
n+1
+ , work in progress.



22 PENGFEI GUAN AND JUNFANG LI

[7] L.L de Lima and F. Girao, An Alexandrov-Fenchel-type inequality in hyperbolic space with an appli-

cation to a Penrose inequality, Ann. Henri Poincarè 17 (2016), no. 4, 979-1002.
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