GLOBAL C? ESTIMATES FOR CONVEX SOLUTIONS OF
CURVATURE EQUATIONS
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ABSTRACT. We establish C? a priori estimate for convex hypersurfaces whose princi-
pal curvatures k = (K1, -, Kkn) satisfying Weingarten curvature equation oy (k(X)) =
f(X,v(X)). We also obtain such estimate for admissible 2-convex hypersurfaces in the
case k = 2. Our estimates resolve a longstanding problem in geometric fully nonlinear
elliptic equations considered in [3, 19, 20, 14]

1. INTRODUCTION

This paper concerns a longstanding problem of the global C? estimates for curvature
equation in general form

(L.1) ox(k(X)) = f(X,v(X)), VX €M,
where oy, is the kth elementary symmetric function, v(X), k(X) are the outer-normal and
principal curvatures of hypersurface M C R™"*! at X respectively. op(k), k = 1,--- ,n,

are the Weingarten curvatures of the hypersurface M. In the cases k = 1,2 and n, they
are the mean curvature, scalar curvature and Gauss curvature respectively.

Equation (1.1) is associated with many important geometric problems. The Minkowski
problem ([21, 22, 23, 9]), the problem of prescribing general Weingarten curvature on outer
normals by Alexandrov [3, 13], the problem of prescribing curvature measures in convex
geometry [2, 22, 15, 14]), the prescribing curvature problem considered [4, 24, 8], all these
geometric problems fall into equation (1.1) with special form of f respectively. Equation
(1.1) has been studied extensively, it is a special type of general equations systemically
studied by Alexandrov in [3]. C? estimates are known in many special cases. When k = 1,
equation (1.1) is quasilinear, C? estimate follows from the classical theory of quasilinear
PDE. The equation is of Monge-Ampere type if k = n, C? estimate in this case for general
f(X,v) is due to Caffarelli-Nirenberg-Spruck [6]. When f is independent of normal vector
v, C? estimate has been proved by Caffralli-Nirenberg-Spruck [8] for a general class of
fully nonlinear operators F', including F' = oy, F = ‘;—’; If f in (1.1) depends only on v, C?
estimate was proved in [13]. Ivochkina [19, 20] considered the Dirichlet problem of equation
(1.1) on domains in R™, C? estimate was proved there under some extra conditions on the
dependence of f on v. C? estimate was also proved for equation of prescribing curvature
measures problem in [15, 14], where f(X,v) = (X, v)f(X). It is of great interest, both in
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geometry and in PDE, to establish C? estimate for equation (1.1) for 1 < k < n and for
general f(X,v).

C? estimates for equation (1.1) is equivalent to the curvature estimates from above for
K1,-*- ,kn. We state the main results of this paper.

Theorem 1. Suppose M C R"! is a closed convex hypersurface satisfying curvature
equation (1.1) for some positive function f(X,v) € C*(T), where T is an open neighborhood
of unit normal bundle of M in R*™ x S", then there is a constant C depending only on
n,k, || M||c1, inf f and || f||c2, such that

1.2 (X) <C.
(12) XeMiat - m ri(X) <
Estimate (1.2) is special to equation (1.1). One may ask if estimate (1.2) can be gen-
eralized to this type of curvature equations when f depends on (X,v) as in (1.1). The
answer is no in general.

Theorem 2. For each 1 <[ < k <mn, there exist C > 0 and a sequence of smooth positive
functions fi(X,v) with

1
||ft||C3(R”+1><Sn) + HEHC:‘(R"“’lXS") <C,

and a sequence of strictly convex hypersurface My C R with ||My||cn < C satisfying
quotient of curvatures equation

(1.3)

Tk (k) = fu(X,v),

oy
such that estimate (1.2) fails.

It is desirable to drop the convexity assumption in Theorem 1. In the case of scalar
curvature equation (k = 2), we establish estimate (1.2) for starshaped admissible solutions
of equation (1.1). The general case 2 < k < n is still open.

Following [7], we define

Definition 3. For a domain Q C R", a function v € C%(Q) is called k-convez if the
eigenvalues A(z) = (A1(x),- -+, A\ (2)) of the hessian V?v(x) is in Ty for all x € Q, where
I’y is the Garding’s cone

IF'e={ eR"| on(N\) >0, m=1,---,k}.
A C? regular hypersurface M C R™ ! is k-convex if k(X) € Ty for all X € M.
Theorem 4. Suppose k = 2 and suppose M C R™ 1 is a closed strictly starshaped 2-convex
hypersurface satisfying curvature equation (1.1) for some positive function f(X,v) €

C?(T"), where T' is an open neighborhood of unit normal bundle of M in R™" x S”, then
there is a constant C depending only on n,k, |M| o1, inf f and || f||c2, such that

(1.4) max  k;(X) < C.
XeM,i=1,+n



Theorem 1 and Theorem 4 are stated for compact hypersurfaces, the corresponding
estimates hold for solutions of equation (1.1) with boundary conditions, with C' in the
right hand side of (1.2) and (1.4) depending C? norm on the boundary in addition.

The proof of above two theorems relies on maximum principles for appropriate cur-
vature functions. The novelty of this paper is the discovery of some new test curvature
functions. They are nonlinear in terms of the principal curvatures with some good con-
vexity properties.

With appropriate barrier conditions on function f, one may establish existence results
of the prescribing curvature problem (1.1) in general.

Theorem 5. Suppose f € C?(R" x S") is a positive function and suppose there is a
constant r > 1 such that,

X _ ol )

(1.5 o A < 20 o =
and f~V*(X,v) is a locally convez in X € B;(0) for any fived v € S, then equation (1.1)

has a strictly convex C>* solution inside B,.

To state a corresponding existence result for 2-convex solutions of the prescribed scalar
curvature equation (1.1), we need further barrier conditions on the prescribed function f
as considered in [4, 24, 8]. We denote p(X) = | X]|.

We assume that
Condition (1). There are two positive constant r; < 1 < 7 such that

fXR = 20, for X] =,
(1.6) ¥ XYy < oD gy o

f( ’|X|) X 47,21@7, 01“‘ | 9.
Condition (2). For any fixed unit vector v,

9 k
(1.7) a—p( f(X,v)) <0, where|X|=p.

Theorem 6. Suppose k = 2 and suppose positive function f € C?(B,.,\ By, xS") satisfies
conditions (1.6) and (1.7), then equation (1.1) has a unique C>® starshaped solution M
in {r1 <|X| < r}.

The organization of the paper is as follow. As an illustration, we give a short proof of
C? estimate for oo-Hessian equation on R? in Section 2. Theorem 4 and Theorem 1 are
proved in Section 3 and Section 4 respectively. Section 5 is devoted to various existence
theorems. Construction of examples of convex hypersurfaces stated in Theorem 2 appears
in Section 6.



2. THE HESSIAN EQUATION FOR k = 2

To begin this section, we list one lemma which is well known (e.g., Theorem 5.5 in [5],
it was also originally stated in a preliminary version of [7] and was lately removed from
the published version).

Lemma 7. Denote Sym(n) the set of all n x n symmetric matrices. Let F be a C?
symmetric function defined in some open subset U C Sym(n). At any diagonal matriz
A € VU with distinct eigenvalues, let F(B,B) be the second derivative of C? symmetric
function F in direction B € Sym(n), then

fio
A — Ak

2.) F(B.B)= Y P*ByBu+2Y

jk=1 j<k

2
Bjk-

We use standard notation. We let x(A) be eigenvalues of the matrix A = (a;;). For
equation

we define )
P = oF , and FPPT8 = _OF )
Qpg 0apq0ays
For a local orthonormal frame, if A is diagonal at a point, then at this point,
of 0% f
J o I - d FPpad — .
Okip Jp: an OkpOkg Jra

The following facts regarding o will be used throughout this paper, their proof can be
found in [17].
(i) 07" = 0, and 037" (k) = o1,—2(klpq);

S\ DTS _ PP4qp2 PP,aq
(ii) o, " " hpgrhrs = oy, Roat — 1 Pppihgqu-

In what follows, we consider oo-Hessian equations in a domain 2 C R*+1:
(22) {02[D2’U,} = f(fﬂ,u,Du),
ulpg = ¢.

We believe C? estimates for equation (2.2) is known. Since we are not able to find any
reference in the literature, a proof is produced here to serve as an illustration.

For a symmetric 2-tensor W on a Riemannian manifold (M, g) is call a Codazzi tensor
if W is closed (viewed as a T'M-valued 1-form). W is Codazzi if and only if

VxW(Y,Z) = VyW (X, Z),

for all tangent vectors X, Y, Z, where V is the Levi-Civita connection. In local orthonormal
frame, the condition is equivalent to wj;; is symmetric with respect to indices 4, j, k.
Hessian V2u of a function u € C?(2), Q C R™, is Codazzi. It is well known that the
second fundamental form of a hypersurface in R"*! is a Codazzi tensor by the Codazzi
equation.

We need following lemma which is a slightly improvement of Lemma 1 in [14].



Lemma 8. Assume that k > 1, W = (w;;) is a Codazzi tensor which is in I'y. Denote

o= pa—l Then, for h=1,--- .n, we have the following inequality,
oPPad oPPad
(2.3) - ];k (W) wpphweqn + l (W) wppnwaqn
CAUS (Uz(W))h) ( NGV (Uz(W))h>
(S - ) (-0 et - e+ 0%

Furthermore, for any § > 0,
a (ox(W))

(2.4) _Uinqq(w)wpphwqqh +(1—a+ E) o (W)
(@(W)a]®  on :
2 O'k(W)(Oé + 1-— 504) |:0_l(v‘/) — ;Z(W)O"lpp qq(W)wpphwqqh.
Proof. Define a function
1
lanln(Z—];)l/(k_l) = k—llnak k‘—llnal
Differentiate it twice,
Frp 1 o 1 o”
F k—1 oy k—1 o
FPp:aq FPp Faq 1 Uppqu 1 UppO'qq 1 Upp#lq 1 O'ppqu
_ — k _ k "k l + |
F £? k—1 o k—1 0']% k—1 o k—1 0'12
Using previous two equalities,
lep,qq W LZP B Ui’ﬁ qu B Uqu N ngyqq B Uzpagq B Uz'op,qq N afpaqu '
a F ok oy o oy o 0']% o] UZQ

By the concavity of F', (FPP4) < (. Together with the above identity,

pp,qq pp,99q pp pp 99 99

o) g g o g g

k4L > <’f—l> ((a—l)k—(a+1)l).
Ok o] Ok o] Ok a]
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Here the meaning of ” > ” is for comparison of symmetric matrices. Hence, for each h with
(W11h,* ** , Wpnn), we obtain (2.3). (2.4) follows from (2.3) and the Schwarz inequality. O

Proposition 9. Suppose @ C R" is a bounded domain with smooth boundary. Suppose
f(p,u,z) € C?(R* xR x Q) is a positive function. The Dirichlet problem (2.2) has a global
C? bound depending on the C' bound of u, the domain Q and the C* bound of f.

Proof. Consider
€ a
¢ = max e><p{§]Du\2 + 5\%]2}%&,

[€=1,2€Q
where ¢ and a are to be determined later. Suppose that the maximum of ¢ is achieved
at some point xp in {2 along some direction {. We may assume that £ = (1,0,---,0).

Rotating the coordinates if necessary, we may assume the matrix (u;;) is diagonal, and
U1 = U2+ + = Upy ab the point.



We differentiate the function log ¢ twice at xq,

U114
(2.5) * + eujug + az; = 0,
U1l
and
U144 U%h
(2.6) - + Z supugy; + eul +a < 0.
Uil UH A
Contract with the matrix Jéiull,
ul
(2.7) 02 Ul1ii — 02 st + u1q Z sukaz Upii + unsa Uj; Z1a Z 02 u1 <

Uil k

At xg, differentiate equation (1.1) twice,

(2.8) oyuii; = [fj+ futti + fo; s,
and
(2:9) oY uiij; + o5 upgjtirs;
fis + 2fjutty + 2 fjp; 55 + fuutt] + 2fup,ujus + furj + foup,0s; + Z Foutkjs-

k

Choose j =1 in the above equation, and insert (2.9) into (2.7),

2 pq,rs
—C = Cun + fppuir + E Tor k11 — 057 UpgiUrst

2
Ui + u11 E EukO'z Uki; + U11€0' + a E 0’2 Uiq-
U11

k

Use (2.5) and (2.8),
D fprtknn +unn Y eupoiug =11 Y (Supfi + e futif — azpfp,).
k k k

Then

2
U
(2.10) 0 > —C—Cuit+ fppufi = > Uppttirr + Y Upgy — um
p#T p#q 1
i, 2

+upecsui; + (n — 1)augs E Uk -

Choose k =2,l =1 and h = 1 in Lemma 8, we have,

(@) (a+1—da)on[ 12 >
092 g1

Z Upp1 Urrl + a+ 5)
p#T



Inequality (2.10) becomes,

(2.11) 0 = —C—Cuir+ fopuly + (n— Daud; — C(oz)?
2
Huyeoiiud + 2 Z uty, — ol i UL
U1
k#1
w2
> ((n—1)a— Co)udy +upeobu?, + 2 Z Ui — a? i

E#1
where we have used (2.5) and the Schwarz inequality. We claim that if a is chosen large
enough that

(mn—1)a—Cy>1
then

2
(2.12) up ol + QZunk — o} ST}
o u11

Inequality (2.11) then yield an upper bound of u1;.
We prove the claim (2.12). We may assume that uq; is sufficient large. By (2.5) and
the Schwarz inequality,

11 2 11 Y111 2 2 2.2
(2.13) 05 UIIEUT] — 02 o > 02 un(eull — 92¢? U1U11 — 2a”x7).

If we require

(2.14) £ > 32 mgx[VuF,

and if uy; sufficient large, (2.13) is nonnegative. As in [10], we divide it into two different
cases. Denote \; = uy;.

Z)‘i < A1. In this case, for i # 1, since Ay > Ay > --- > Ay, and aéi =01 — A,

nn i
2u1 = 09" = 0y

Hence,
2

9 Z wdy — Z i U114

u
kA1 i1 1

Combined with (2.13), we obtain (2.12).

0.

\\/

> X = Ay, then A 5 < A2 < A and of" > 201 We further divide this case
n —

into two subcases.



(B1) Suppose 02? > 1. Using (2.14), (2.5) and the Schwarz inequality,

2
U118
U11€ E 0'” 2 — E 2 —iL

U
i#1 i#1 1
2 2
22 2 22 U112 ii 2 ii U115
=05 U11EUSe — 05— + g (o5 ureus; — oy —=2)
U1l ; U1l
1>2
22 2 2.2 2 2,,2,,2 2 2
>05%u11 (eudy — 262ulu3y — 2a%23) + E obuyy (eu? — 2e2uiu? — 2a2x?)
i>2
30’2 u11(5u22 uil O'
1>2
>SS0 - o2
= 17\ 1
3
€
> — N\
“3(n—2)2""1 b

it is nonnegative if \; is sufficient large. In view of (2.13), in this subcase, (2.12) holds.
(B2) Suppose 032 = A\ — Ay + A\, + Z?;; Ai < 1. Again, we may assume that A; is
sufficient large, then,

A
_)\n:unn>)\1_1>?1

Hence, for ¢ sufficient small, we have,

u?
uneg o, E oy bl

1#£1 'L;él U1t
w2
=0y eu?, — oh" 11"—1— Z obuyeu?; — off 11’)
1<i<n U1
1
>§ 5" u11 (eu — Cuyy Z ol
1<i<n

2%)\%()\1 —1)2 - o2

Here, the first inequality comes from (2.5) and the Schwarz inequality. The process is simi-
lar to the first and second inequalities in subcase (B1). The above quantity is nonnegative,
if \; is sufficient large. (2.12) follows from (2.13). O

With the C? interior estimate, one may obtain a global C? estimate if the corresponding
boundary estimate is in hand. This type of C? boundary estimates have been proved by
Bo Guan in [12] under the assumption that Dirichlet problem (2.2) has a subsolution.
Namely, there is a function u, satisfying

UZ[DQQ} = f(CC,Q,DQ),
(2.15) {U|asz = ¢.



Theorem 10. Suppose @ C R" is a bounded domain with smooth boundary. Suppose
fp,u,z) € C?(R" x R x Q) is a positive function with f, > 0. Suppose there is a
subsolution u € C3(Q) satisfying (2.15), then the Dirichlet problem (2.2) has a unique
C3* Y0 < o < 1 solution u.

3. THE SCALAR CURVATURE EQUATION

We consider the global curvature estimates for solution to curvature equation (1.1) with
k = 2, i.e. the prescribing scalar curvature equation in R"*!. In [11], a global curvature
estimate was obtained for prescribing scalar curvature equation in Lorentzian manifolds,
where some special properties of the spacelike hypersurfaces were used. It seems for
equation (1.1) in R™*, the situation is different. A new feature here is to consider a
nonlinear test function log ), ™. We explore certain convexity property of this function,
which will be used in a crucial way in our proof.

Set u(X) = (X,v(X)). By the assumption that M is starshaped with a C' bound,
u is bounded from below and above by two positive constants. At every point in the
hypersurface M, choose a local coordinate frame {0/(0z1),---,0/(0xn+1)} in R™ such
that the first n vectors are the local coordinates of the hypersurface and the last one is the
unit outer normal vector. Denote v to be the outer normal vector. We let h;; and u be the
second fundamental form and the support function of the hypersurface M respectively.
The following geometric formulas are well known (e.g., [14]).

(3.1) hij = (0:X, 0;v),
and
Xij = —hyv (Gauss formula)
(3.2) (v)i = hij0; (Weigarten equation)
hijk = hi; (Codazzi formula)

Rijki = hikhji — hithji,  (Gauss equation),
where R;jp; is the (4,0)-Riemannian curvature tensor. We also have

hijkl = h@'jlk + hijimlk + hiijmlk

3.3
(3.3) = hiiij + (hmjha — himihig) Rk + (Bmghir — Bonihig) P

We need a more explicit version of Lemma 8 for k = 2 case.

Lemma 11. Suppose W = (w;;) is a Codazzi tensor which is in I'y. Forh=1,--- ,n and

1
K large so that o9 > I there exist universal constants « large and d small, such that the

following inequality holds,

2
w
(3.4) K(ag)i — Z Wpph Wyrh, — 5whh03h% + Z w?ih 2 0.
p#T 1 i#h



Proof. Consider function

oo(W
o 22V)
a1 (W)
We have,
2(02)n Yo wijn 02(d;wjn)”
UlQpp,qupphwqqh _ Z Wpph Weqh — J 3 49 J . L

p#q
On the other hand, one may write (e.g. [18])

2

(Wiih 01 — Wig ), Wkkh

_Qppngpphwqqh — Zz( X 0311 Zk ) _
1

From the above two identities and the Schwartz inequality, with K, « large enough,

(3'5) - Z Wpph Wyrh

pF#T
2
o 2i(winon —wii ) wign)?  2(092)n 205 Wjjn n 202(23‘ wjh)
O’% 01 O'%
o232 wjjn)? o (WhAROL = WhRK WAL — Whh Y gy, Whikh)”
= 2 - K(UQ)h + 2
o1 o1
D i (WiinO1 — WiiWhih — Wii Yz, Whkh)?
+ 2
01
2 hh\2 2 2
g2(Whnh WhhhO Whp Dith Wi
S LTy O B e L S
o 207 207 pre
By (3.5),
2 hho Wik 2
K(o2);, — prphwrrh — 00y whh7 +a Z Wiih
p#r ! i#h
2 2
oa(wphn)? | Whin Zi;«éh Wi 5U§Lhwhh’w%hh
O'% 20% O'% ’
Since,
1
whho'gh =02 — 5 Z WaqaWhb,
a#b;a,b#h
if 0 is sufficient small, we obtain (3.4). O

Theorem 4 is a consequence of the following theorem. A hypersurface M is called
strictly starshaped if u > ¢g for some ¢g > 0.

10



Theorem 12. Suppose k = 2 and suppose M C R is a strictly starshaped 2-convex hy-
persurface satisfying curvature equation (1.1) for some positive function f(X,v) € C(T),
where I' is an open neighborhood of unit normal bundle of M in R" x S”, then there is
a constant C' depending only on n,k, ||M||c1, inf f and || f||c2, such that

3.6 max ki(X) < C(1 max Kki(X)).
(3.6) XeM,i=1,n i(X) =+ X€dM,i=1,n i(X))

The proof of Theorem 12 is quite technical. The main step is to create a Maximum
Principle for an appropriate auxiliary curvature function. For that purpose, we set

a
. P= KL =loglog P — (1 1 —|X?
(3.7) D€, ¢ =loglog P — (1+¢)logu+ 5|X|,

where € and a are constants which will be determined later. Here, P = G(h;;) = g(x) with
g symmetric is smooth. We may assume that the maximum of ¢ is achieved at some point
Xo € M. After rotating the coordinates, we may assume the matrix (h;;) is diagonal at
the point, and we can further assume that hi1 > hoo - -+ = hyy,. Denote k; = hy;.

We covariantly differentiate the function ¢ twice at Xy uisng Lemma 7,

% hii(X, ;)
' i - E— i, X) =0,
(3.8) ) Plog P (146) === +a(0;, X) =0
and by (2.1),
(39 0 > ¢
B P F 1+e (1+¢e)hy
= _ 1 _ 1 _ . x) _ AT )
PlOgP P2 IOgP (P log P)2 u ;hzl,l<alv > u
hZ (X, 0;)?
+(1L+e)hf + (1 + E)”<u;> + a — auh;;
1 1 1
— Kl L. K] P2
PlogP[;e h““Jr;e hit; + C;ﬁ o hagi — (P+P10gp) 2]
l+e hii (O, X 1+¢e)hy h2(X,0;)2
( )2 hia(0, X)  (1+¢) +(1+5)h?i+(1+5)”<72>
u u U
+a — auhii

1
- PlOgP Z hii ot Z Zl - hllhll hii + Z h“h” hzzl)hll
l

1 1
Kl P2
—I—Ze hm—i-g;ﬁ o — g iz — (P+PlogP) Al
_(1+5)Zl hiar(O, X) (1 +€)hi;
u

u
+a — auhii

h2(X,8;)?
+ﬂ+fm%+ﬂ+f)“tél>

11



Contract with o%,
(3.10)
0 > oYdi

1 3
= Plog P [Z "oy hiyiy+2f Z e h121 — 0 Z e hy + Z aé’e“l hlh
1

+Z¢:ﬂa ?xﬂi‘(ﬁ"‘ PlogP>02PiZ]+(n_1)aUl_2afu
_( +5)2102 l< 0 >_( +8)f+(1—|—€)0’gh12i+<1+€)02 zz<2’8> )
u u u
At g, differentiate equation (1.1) twice,
(3.11) (02)k = 05 hir. = dx f(O) + hurdy f(Or),
and
(3.12) 5 hiikk + 05 hpgehege > —C — Chiy + > hudy £(8),
!

where C' is a constant under control.
Insert (3.12) into (3.10),

(3.13) ¢

K pq,rs K K112
> PlogP Ze (—=C — ChYy — 05" hpgihrst) + Ze *hgudy f(Ok) +2f§l:€ thiy
1 1 g
K i K 2 i P2
Zelh”—l—ZaQelh”z—F;G p——. aﬁi—(FJrPlOgP)azPi]
_( +€>ZZZQ l< l >+<1+€)U%lh?i+(1+€)o-2 ufﬂ > )
+ak1 — Ca
By (3.8) and (3.11),
Zl eﬁlh”k 1+e¢
(314) zk:dl/f(ak) PlogP ZJ uk 8ku
1+¢
= —a)_ dyf(Ok)(X,0%) — > " dx f(Or) (X, Oh).
k k
Denote
Ay = " (K (09)] - Z hppihaqi), Bi = 22 ethiy, Ci=o0y ) e hiy;
p;éq 1#i l
1 1 .
oy e (L P2,
; e BT Plogp) 7

12



2
Note that log P > k1 and }51‘2)113 < Ckie” " by (3.11). Since k1e " < e, combining
0g
(3.13), (3.14) and using

- Z qu7 pqlhrsl = Z hpql Z hpplhqql>

P#4q
we find for any K > 0,

(3.15) oy
> —Cla+K)+(a—C)hi1 +

1 K 2 2
Plog P zl:@ HK(o2); — Z hppihgqr + Z hpql)

P#q p#q
1 1
+ZﬁW%+Za g~ (st Job P7|
by Ko — Kg P  PlogP
02 hz21 <X’ al>

+eodh? 4 (1+¢)

u
- —C(a+K)+(a—C’)h11+PlOgPZi:(Ai—i-Bi—i-Ci—l—Di—Ei)
ih2 (X, ;)2
teob'h? + (1+€)—U2 “22’ >

Choose k=2,1=1,6 =1(so « =1) and h =i in Lemma 8. Then,

2 .
- Z hppihrm' + (0—2)2 P 0'2[(0—1)1

o o P>
p#r 2 !

Hence,
1
- thpihrri > (02)?(—’{ -=)=0
f
DFET
for K large enough. Therefore, A; > 0 for K sufficiently large.
Lemma 13. Suppose
nk; < K1, Vi>2,
then
Bi+Ci+D; — E; 20,
if k1 sufficient large.

Proof. We have,
P? = ("hiii + Y " hug)* = € hi; 2 e T hyshig + (Y e hug)®

1£i 1£i I£i
By the Schwartz inequality,
(St < e Y e,
1#14 l#1i I#i

13



Hence,
P2 < EQKI h22m +2 Z ef'il+f‘€z hllzhmz + Z e hllz

1#1 I#4
In turn,

K] efi 1 1
> Z(Qem —|-U“ Kl _|_20_ll67)hm+o.zz mh2 _(7+ )(f” 2mh2

o K| — K; 114 P PlogP 2€ 111
1 1 K\ 40 Kl 1 Kit+K]
—(F + W)(P —€ )0'2 Z hllz (P Pl Z € hiiihui
I#i I#i
ol 1 1 y el —
_ 9 _ 2 K] - i K]+ R, 2 I h
i
1 1 1 1 i
1— (= Kilgliehi p2. 74 RitBip . oo
+[ (P+Plogp)e ] 2 11 (P+P10gp)o-2 ;6 g lll
i
As
hZ; + h3; = 2hyihii,
1 1 ;
(317) Z (F + m)g%zgm—i-mhm + Z P Pl )O‘lzgliz—i-l-@zh?”
1#4,1 & 1#4,1
1 1 i .
> 2+ ) X o
1,1

Combine (3.16) and (3.17),

0

72 _yer et = e 1 1 ikt 2
= 2 — L+ 205 ———1h7. — 1Ry
;[( logP) + 209 p— ] llz+(P+P10gP)026 T
1 1 K1 1 u el 2 1
e ‘hi. — bokithip oo
+[(P * PlOgP)e logP] i (P + PlOgP)UQG 14110114
0'” nl 11 K1 __ 1 G R
g %;(2 a logP) hiii + 20 rhllz po2¢ hii;
er1 1 1
+[ P - logp]o-élemh?u 2PO-ZZ m+nlhzmh11i-

By the assumptions in the lemma, for each ¢ > 2,

nk; < k1 and Jéi =K1+ Z Kj.
J#Li
We have, for i > 2
2log P > 2Kk > 0y

14



Taking «1 sufficient large, we have,
el 1 1
525 2 .
2P 7 2n "~ log P

Expanding e* and as nk; < K1,

. e e} —
pet ety et -1 ,@iz (k1 — ki)t
oy —— = oy efi—m— =o05€ —
K1 — R; K1 — Rj =1 {!
)3 KitK1
K1 — K ) .. e
> 051651(4‘1) > coriosle™ > coriol R
for some positive constant cg. Here, we have used the fact xjos! > 209/n. The lemma
follows from (3.18), previous three inequalities, provided x; is sufficiently large. O
Lemma 14. If
nk; < K1,
for some index i > 2, then if k1 sufficient large,
1 2 1

Bj—i-Cj—i-Dj—(*-i-

jjp2>0
Pt a_1Plgp 2 20

for any j > 1.

2 1
Proof. Replace the term Plog P Y 1 Plog P in the proof of previous lemma, note
that N
2 o 1 2
- > —(2r — 27) > 0.
n—1log P /@1(%1 n7102)

Hence, the arguments in the previous proof can be carried out without further changes. U
Lemma 15. For any fized index j, if

nK; > Ki,
we have, for sufficient large k1, K and sufficient small ¢,

O'%thzj<X, 0;)? N

(Aj+Bj+Cj+D; —E;)+ (1+¢) 2 = 0.

Plog P
Proof. By the Schwarz inequality,

Jip2 _ _Jj K 2 Jj K KL 2
oy P; = oy (Ze thi)™ < oy Ze lZe 'hip;-
l l l

Hence,
angf
(3.19) C;j——==>0.
By Lemma 11, for some sufficient large constant C,
U%]% < C[K(U2)j2' - Z hppihaq; + Z hIQIj]’
1 p#q I#j

15



Thus,

JJ p2 jj
(320) oy ay (€ hyg+ 3 ethy)?
Plog P Plog P 139 = J
Co}
S P 21{] hJZJJ + Z e hllj
a1 I#j
K] K 'O-j] el 2
< C[Z hll] 0_2 ]hJJJ]
I#] !
I#j
We claim that
et — e
D i+ Y oy —hiyy > € ) kil
I#j I#j I#j
To prove the claim, we divide it two cases.
Case (A): k; > Kj, obviously,
zze -
mhug rhzzj > e hug
Case (B): k; < kj, we have
O‘él . I"v‘j*l"»‘l+0'gj S 1
Kj—k  Kj—k
Therefore,
e”lhll] + Uélelih”j e” hllg (e — e“l)h%lj = e”fh%lj.
The claim is verified. Hence, by (3.20) and the claim,
J%J P2
<ci(Aj+Bj+ Dj
PlogP S ¢4y + B + Dy).

Denote 0; = 1/c;. It follows from (3.19) and (3.8) that,

o3/ h2(X,0;)?
(Aj+ B;j +Cj+Dj — Ej) + (1 + &)=

Plog P u?
Jip2 2
oy hi (X, 05) 1— 5. G
> (1+e) ”u2 (Plogjé)2 2P
olIh2 (X, 0;)? aclhi:(X,0;)2
R RIS A e LS K R

—(1—=19; )aQU%J (X,0;)%

The above is nonnegative, if k1 sufficiently large, and ¢ is small enough.

16



Proof of Theorem 12. We are in the position to give C? estimate. We use a similar
argument in the previous section. We need to deal with every index in (3.15). First, we
note that nk1 > k1. By Lemma 15,

11h2 X. 0 2
(A1 + By + Cr + Dy — By) + (14 2)22 0007
U2

21
(3:21) Plog P

We divide into two different cases.
Case (A): Suppose nka < k1. In this case, we use Lemma 13. For i > 2, note that A; > 0,

(3.22) (A;+B;+C;+ D; — E;) > 0.

Plog P
Combine (3.21), (3.22) and (3.15),
o8t > —C + (a — O)ky.

We obtain C? estimate if a is sufficiently large.
Case (B): Suppose nkg > k1. We assume that index i satisfies nk;, > k1 and nk;;+1 < K1.
Hence, for index j < ig, nkj > 1. Lemma 15 implies,

1 Ugjh?j <Xa aj>2
For index j > 79 + 1, by Lemma 14,
1 0§’ h2,(X,0;)?
Ji p2 Jip2 A2
SCR T M WP A1 1
- n—1"(Plog P)? u?
B n—3 Ugjh?j<X7 aj>2 n—SaU%jhjj<X,aj>2
= (1+5)[(1—m(1+€)) 2 +2n_1 " ]
n—3 i
—— 1a20§]<X, 9;)%.
> —Ca’k.

The last inequality holds, provided ¢ is sufficiently small. Combining (3.23), (3.24) and
(3.15), we obtain,

oYy > —C + (a — C)k1 +eob'r} — Ca’ky.

We further divide the case into two subcases to deal with the above inequality.
Case (B1): Suppose 032 > 1. As nka > K1,

oidi > —C+(a—C)r +eo’si - Ca’ry
> —C+(a—C)r1+ %Fﬂ% — Cad’y.
n

The above is nonnegative if k1 and a are sufficiently large.

17



Case (B2): Suppose 032 < 1. In this subcase, we may assume that r; is sufficiently large,
then k, < 0. By the assumption, 1 > k1 + (n — 2)k,. This implies,

K1 — 1

n—2"

Since o™ + Ky, = k1 + 031, we have 03" > k. Hence,

—Kp 2

obigi > —C+ (a—C)ky +eoh"w2 — Ca’ry

> —C+(a—C)k1+ ﬁm(m —1)% - Ca*k;.
The above is nonnegative, if a and k; are sufficiently large. The proof of Theorem 12 is
complete. O

We remark that the similar curvature estimate can be established for Dirichlet boundary
problem of equation

= D
(325) 02[H(x’ u(x))] f(xa u, U’)a
ula = ?,
where Q C R" is a bounded domain. Though such graph over 2 may not be starshaped.
With the assumption of C' boundedness, one may shift the origin in R™*! in the direction
of E,4y1 = (0,---,0,1) in appropriate way so that the surface is starshaped with respect

to the new origin. Then the proof in this section yields the following theorem, which
completely settles the regularity problem considered in Ivochkina [20, 19] when k = 2.

Theorem 16. Suppose u is a solution of equation (3.25), then there is a constant C
depending only on n,k, Q, ||ul|c1, inf f and || f||c2, such that

(3.26) max |V2u(z)| < C(1 4+ max |Vu(z)|), Vi=1,---,n.
e €002

4. A GLOBAL C? ESTIMATE FOR CONVEX HYPERSURFACES

In this section, we consider the global C? estimates for convex solutions to curvature
equation (1.1) in R""'. We need further modify the test function constructed in the
previous section.

Theorem 17. Suppose M C R™! is a convex hypersurface satisfying curvature equation
(1.1) for some positive function f(X,v) € C*(T), where T is an open neighborhood of unit
normal bundle of M in R™™ x S", then there is a constant C depending only on n,k,
|M||c1, inf f and || f||c2, such that

. , < . _
(41) XX n ri(X) < O+ XeaM i n ri(X))

To proceed, consider the following test function,
1
(4.2) P(r(X) =+ 52, 6= 2 log P(s(X)) ~ Nlogu,

where IV is a constant to be determined later. Note that,

Ky 4+ k2 = o1(k(X))? = 202(k(X)).

18



We assume that ¢ achieves its maximum value at g € M. By a proper rotation, we may
assume that (h;;) is a diagonal matrix at the point, and hi1 > hog -+ = hpp.
At xg, differentiate ¢ twice,

>k Fkhik u;
4. , = =R N2
(43) s iyt
_ khkheki th‘z‘<az‘,X> _ o,
P U
and,
1 2
(4.4) 0 > F[Z Iﬁkhkkﬂ‘i + Z h%ki + Z h;%qi] — ﬁ[z Ekhkki]2
k k p#£q k
N NS
u u
1
= F[Z kg (hii g + (3 — hiihig)hii + (hiihgr — hie) by
%
2 hii (X, )
+ Z higgi + Z higil — ﬁ[z Kehiri]” — NZW
k p#q k
i 2(0;, X )?
_nhi Nh% + NM.
u u
Now differentiate equation (1.1) twice,
(4.5) ophiy = dxf(Xj)+dyf(v;) = dxf(9;)+hj;d,f(9y),
(4.6) oyt hiigj + op " hpgshysj

= dxf(Xj;) +dk (X}, X;) + 2dxd, [ (Xj,v;) + dif(vi,vy) + do f(v)5).
= —hjidx f(v) + d5 f(9;,0;) + 2hj5dxdy f(D;,0;) + h3,d2 (95, 05)

+ Z hiejjd f(Ok) — h3jdy f (v)
k
> —C—Crj—Crl+ Y hjidy f(Or)
k
> —C—Cri+ Y hijdy f(Or).
k

It follows from (4.3) and (4.5),

1 NO'iizshiis<as,X> N
(4.7) Plz:/izhszzduf(as) - - = —uzs:dxf(as)@s,X)-
We will also use
—op P hpghea = =P hypihgg + ng,qqhgqb

which follows from Lemma 7.
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Denote

KR Kj
AZ:F%(K P o hypihgg), _QZ A
b,q
o 1 20t
C=2 X % D= Y e, B (3 )
J#i J

Contracting with 0¥ in both side of inequality (4.4), it follows from (4.5)-(4.7),

(4.8)
1
0 > F[ZH;(—C—C,‘QZ — P Ryl
l
. y - 20
+U?hiiz"f?_Ulzczhz?izﬁ?‘*'zggh%li"‘gk thqz - k Z“J jji) 2
P#q
h” Wh2 (9, X
—NU -I—N mh2 +Nak m<2 >
u
= Z C—CF&?—K(O’M?-FK(U;C) pp a4, oplPg ql+appqqh2 1)
l
205t
—|—ku/<;[ —oi'h Z’iz +nghllz+0k Zh‘pqz - k Z“J jii)
P#q
kf W72 thii<ai7X> N
—N*‘f‘N hii+NT_zzS:de(as)<a&X>
>

}ﬂ}jﬁK—C*—C%?—f(wkﬁ)+0khM§:H?—OkhiE:Hﬂ
l l

l

kf iva | A ORhE(0,X)? N
—N— whi A—ﬂ—————§ 5)(0s, X
NU +N0khzz+N u2 u - de(a )<6 >

+Z(AZ +B;+C; +D; — Ez)

i
The main part of the proof is to deal with the third order derivatives. We divide it to
two cases:

(1) i #1;
(2) i=1.

Lemma 18. For each i # 1, if
\/gl%i g R1,

we have,
Ai+Bi+Ci+D;—E; > 0.
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Proof. By (2.4) in Lemma 8 (note that ¢}¥"%" = 0), when K is sufficiently large,

« 01);
(49) K(0u)} = o it > a1+ I > o,
so A; >0
(4.10) P*(B; + C; + D; —E-)
= Z P(2k;o7, ol 4 20 + O'Z,Z)hjzﬂ + Po'hZ,; — 20,’3(2 H?hiﬂ + K2R,
J#i J#
+ ) krkthmmibu)
m#l
= > [PBo} + 207 — 205_1(xlijf)) — 20} K3]h3;; + (P — 267 )i hi;
i
—204 Y~ Kkithammihui
m£l
= Z(P + Q(P )) hj2]z ( ) hz2“ - 20']? Z KK hmma R
J#i m#l
+2P Z IQZO'kJ ”h%Z
J#

Note that, for each fixed 1,

(4.11) 22 Z /{kh]ﬂ = Z Z thfli + Z Z K%hiki

jFi k#ig l#1 k1,1 k#i l#£4,k
> 2 ) mkkthukihu.
k£l;k I
By \/gm < Ky or K,l 3/@
2P
(412) Z( 3 + 2I€ ]]2 Z 3h12m 2 ZIilth Kfjhjji'
J#i,1 J#i,1 J#i,1
Then (4.10) becomes,
(4.13) P?(B; + C; + D; — E;)
> (P + 2650l hiy; + (51 — K)o hiy; — 4o} kihigik b
P
R D CIRT) v
j#L ji
> o (K] + 36Ny + (57 — kD) — Akakshaihnn] + 2P ) ki 03,

J#i
The above is nonnegative, provided the following inequality holds,

(4.14) \/Hl + 32 \//{1 — K2 = 2Kk
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Set = k;/k1. Inequality (4.14) is equivalent to the following inequality,
3zt +22% -1 <0.

This follows from the condition x; > v/3k;. The proof is complete. O

We need another Lemma.

Lemma 19. For A=1,--- ,k—1, suppose there exists some positive constant 6 < 1, such
that ky/k1 = 0. Then there exits a sufficient small positive constant 0’ depending on 0,
such that, if kyy1/k1 < &', we have

Ai+ Bi+Ci+ D; — E; >0,
fori=1,--- A

Proof. By (4.10) and (4.11),

(4.15) P*(Bi+ C; + D; — E))
= > [PBo} + 20} — 2031 (xlij)) — 20 K3]h2;; + (P — 267 oy b,
J#i
=20} Y kkihigibu
k#l
> Y (P+261)0yh3 + (P = 263)0i b — Aol rihiii Y Rjhyji
i J#
+P22 Ok— 1(K|j) — Ok— 1(”‘2])) it
JFi
For i = 1, the above inequality becomes,
(4.16) P?(B; + C; + D; — E;)
> Z(&%%O‘il + Hldij hjjl + Z /€20']i1h111 4ot kihin Z/@'jhjjl
j#1 j#1 j#1
+PZ ar-1(klf) = 206-1(k[1))h3;1 — Kiog ATy
J7#1
P PZ ap-1(klf) = 204-1(k[1))h}j1 — Kiog hipy.
J#1

For i # 1, we replace the index j # 4,1 with j # i in (4.12), then

(417)P*(B; + C; + D; — E;) > PZ or—1(kl7) — ox—1(klij))h w—/f oihZ,.
JF
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By (2.4) in Lemma 8,

2
K o, (or); ok
@y A > S+ DL - Do,
A
KiO Q Q@
> S 5l0+5) D (08 haai)® + 5 Y 030 haaihun
DY a ab
+Z 0'>\ O')\ O\ 0’)\ ab )haazhbbz}
a#b
For A = 1, note that ¢{* =1 and o{® > — 0. Hence,
Q Q
(4.19) (1+3) > haaihw = 2(1+ 5) > hagihani + )hm
a#l
2 (1 117, C Z haaz
a#l
In turn,
Pk;oy, Ki PC
(420) P2Az > 022 (1 ) %lz — Zh’aaz
1 1 a#1
/'4320'”
> k (L+ —)hiy; — Cakii ¥ h2g
(L4251 R/ F1)? z ZGZ# .
2 ’Q Uk llz Ca lehaaz
a#1
The last inequality comes from the fact
o 1\2
(4.21) 1—1—1 > (14 (n—1)5)".

For A > 2, obviously, for a # b,

(4.22) R a,\aia’bb

(kpor—2(klab) + ox_1(K|ab))(keor—2(k|ab) + or—1(k|ab))
—(Kakpor—2(K|ab) + kqaor—1(K|ab) + kpor—1(k|ab) + ox(k|ab))or—_2(k|ab)
o5 _1(r|ab) — ox(k|ab)o_o(r|ab)

0,

WV
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by the Newton inequality. It follows from (4.22),

(4.23) > (030 = a0y Vhaaihon
a#b;a,b<
> = Y (3 1(klab) — o(klab)or_a(klab))hiy;
a#b;a,b<
K
> = Y G (08 )
Kp
a#b;a,b<
Ca  Kxat1
> _(p(m)Zza:(Uiahaai)Q > _G;(Ugahmi)?

Here, we choose a sufficient small §’, such that,

(4.24) 5/ < 5\/6/02.
By (4.22),
(4.25) 2 (05908 — U,\Oia’bb)haaz’hbbi
a<\;b>A
> -2 Z Ug\aa—?\b|haaihbbi|
as<\;b>A
1
> —€ Z (08" aai)2_g (o8 hyni)?.
a<Ab>A a<Ab>A

Again by (4.22),

bb aa,bb bb
(4.26) Z (030X —oaoy\ " )haaihoy = — Z 30 | Paaihobil
a#b;a,b>A a#b;a,b>A
2
= — Z (Uiahaai) .
a#b;a,b>A

Combining (4.18), (4.23), (4.25) and (4.26), by (4.18),

Ki0 aa aa
5oz [(1=26) D (08 haai)® = Ce Y (05 haai).
A

as< a>A

(4.27) A >
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Therefore,

(4.28)

WV

WV

WV

WV

WV

P2 A,
PHQ ” Pk;oC.
(120 ) (08 haat)” = g D (08 haai)”
A asA A a>\
PIQQUZZ KO k2Kk:C
(120 Y (ST g — g Y (08 haai)’
1 a<x A A asA
O3k, K2k, C.
Ko (1 — )(1+52)Z(1—T+1) h2, — gQ;;Z(aga aai)?
a<\ a a>\
C K,>\
KIop(1 = 26)(1+0%)(1 — 25028 " n2,
a<<\ a>\

2 i
ki O Zhaaz -

as<\ a>A

aaz

In the above, we have used the fact that we may choose ¢’ and e satisfying

(4.29)

§'C3 < 26, (1—2¢)*(146%)>1

By (4.16), (4.17), (4.20) and (4.28), for each i, we have,

(4.30)
Now, for j <
(4.31)
For A <7<
(4.32)

P?(A;+ B; + C; + D; — E;)
> Z(PU]C 1(”‘])_2P0k 1(K|7f.]) j]l_ aé’{'lzh]ﬂ

j#i J>A
A,
op-1(klj) — 20k-1(klij) = riog_a(klij) — or_1(klij)
> K1--- K _Cﬁl"'/‘@kﬂ
Kj RiKj
K1+ Rk Kk+1
> 1-C
KRj ( (5I<61 )
> Tk 0u8/6).
Kj
k, in a similar way, we have,
(klj) = 2071 (klif) = Coas > 221 €8’ j6) — S
0r_1(K|7) — 20_1(K|27) — = — .
k—1 J k—1 J 5,aP K K1
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For 5 > k,

. .. Oe Ry
(4.33) op—1(K|J) — 2041 (k|ij) — /:2 -
1
C. ki . . C
K1 Kk Ki K1
K1 R R Cea EOL / Cea
> ———(1-C—)——= > —(1—-0C40"/)) — —.
Kk ( 5/@1) K1 K ( 40°/9) K1
We may choose
§ < 6/(20y),
so that (4.31) is nonnegative. We further impose that
& < e0r/(2Ceq)-
Thus, both (4.32) and (4.33) are non-negative. The proof is complete. O

A directly corollary of Lemma 18 and Lemma 19 is the following.

Corollary 20. There exists a finite sequence of positive numbers {(51'}?:1, such that, if the
following inequality holds for some 1 < i < k,

s > 0
K1
then,
1 ..
(4.34) 0 < F[Z ri(K(ox)} — o M hppthgqr + Uip’qqh?oql) + Z J?hzzqi}
! P,
20}, 2
P2 (D wihis)”.
J

Proof. We use induction to find the sequence {51'}?:1- Let 6, = 1/v/3. Then k1/k1 =1 >
61. The claim holds for i = 1 follows from the proof in the previous lemma. Assume that
we have determined ¢; for 1 < ¢ < k — 1. We want to search for §; 1. In Lemma 19, we
may choose A = ¢ and § = 9;. Then there is some 5£+1 such that, if k;411 < 51’-“/{1, we have
Aj+Bj+Cj—|—Dj—Ej >0f01“ 1<]<Z Pick

dit1 = min{d1, 641}

If ki11 < dj11K1, by Lemma 18, Aj + Bj + Cj + Dj — Ej > 0 for j > i+ 1. We obtain
(4.34) for i + 1 case. O

Proof of Theorem 17. Again, the proof will be divided into two cases.
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Case (A): There exists some 2 < i < k, such that k; < §;x1. By Corollary 20, (4.8),(4.5)
and the Schwarz inequality,

1 i
0 > P[Zﬁl(—C—Cﬁlz—K(Uk)?)‘i‘kfzﬁ?—gkh?izl:ﬂzz]—

l

B h2(0;, X)
—l—NJZh?z’—i—Nw_fg dx f(95)(0s, X).
1 2 1) 2
> P[C(K)C’(K)El K] = ot his + Noj'hj; = O(N)
3
N _C’(K)fﬁp‘i‘ C(K) + (N — 1eogrr — C(N),

in the last inequality, we have used

11 k
K10} 2 Eo'k

If we choose
eop(N —1) > C(K) + 1,
an upper bound of x; follows.
Case(B): If the Case(A) does not hold. That means ki > dxr1. Since k; > 0, we have,
O = KiKo K = 5k:“1-
This implies the bound of k. O

We have three remarks about the above C? estimate.

Remark 21. Following the same arguments, we can establish similar C? estimates for
convex solutions of oi-Hessian equation

(4.35) or(V2u) = f(z,u, Vu).

Remark 22. The k:ey in the proof of C? estimate is a good choice of test function P.
Here we pick P = Z . Our arguments can be adopted for P = Z 7 for any m = 2.

Remark 23. The assumptzon of convexity of solutions can be weakened. Our proof works
if the principal curvatures are bounded from below by some constant, with test function
modified as log P+ g(u) +a|X|?. The convexity assumption can also be weakened to k -+ 1
convez.

5. THE PRESCRIBED CURVATURE EQUATIONS

The a priori estimates we establish in the previous sections may yield existence of
solutions to the prescribing equation (1.1). By Theorem 1 and Theorem 4, we need
to obtain C! bounds for solutions. The treatment of this section follows largely from
Caffarelli-Nirenberg-Spruck [8]. We are looking for starshaped hypersurface M.

For x € S”, let
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be the position vector of the hypersurface M.
First is the gradient bound.

Lemma 24. If the hypersurface X satisfies condition (1.7) and p has positive upper and
lower bound, then there is a constant C depending on the minimum and mazimum values
of p, such that,

Vol < C.
Proof. We only need to obtain a positive lower bound of u. Following [15], we consider
¢ = —logu +v(|X).

Assume X is the maximum value point of ¢. If X is not parallel to the normal direction
of X at Xy , we may choose the local orthonormal frame {ej,--- ,e,} on M satisfying

(X,e1) #0, and (X,e;) =0, 7> 2.

Then, at X,
(5.1) up = 2uy'(X,e;),
b = (X e0) b — Rl + () A J0XE) X TR
Thus,
(52) 0 > ofgyu= —mﬁag il — L + oh2 +4[(v)? + " (X, e1) %0}
++/ 012 — 2uhg)].
By (4.5),

ophin = dxf(er) + hudy f(er).
Using (5.1) and (X, e1) # 0, we have

hi1 = 279'u.
Hence, (5.2) becomes,
1 g
(5:3) 0 > ——[(X,en)dxfler) +kf] +ohis +4[(Y)* +7"1(X, 1)’y

+’y'a,ii[2 — 2uhy;] — 29(X, e1)d, f(e1).
Condition (1.7) yields,

(W] = p" kS + Pde(%};)] = PP kS + dx f(X)).

Since in the local frame, (X, e;) =0, for i > 2, so X = (X, e1)ey. (5.3) becomes,
(54) 0 > ok +4[(Y) + "X ) op + 9/ 0F [2 - 2uhii] — 29'd, F(X).
Choose

0= p" 'kf+p

v(t) =

«
?7
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for sufficient large «. Therefore,

AV A NIXPat +29 Y o + of ki > Ca’ayl,

and
k—1 k—1
Ué1>ak71>ak =fr
(5.4) is simplified to
2 k—1
(5.5) 0 > Coa fF + —3d f(X).
IX |
By the assumption on C° bound, we have |d, f(X)| < C. Rewrite (5.5),
1
= a(C ) >0
> [ (WOQ+MXH vfE) >0,
for sufficient large «, contradiction. That is, at Xy, X is parallel to the normal direction.
Since u is the support function, u = (X,v) = | X|. O

Theorem 25. Suppose k = 2, and f satisfies condition (1.6) and (1.7), equation (1.1)
has only one admissible solution in {r1 < |X| <ra}.

Proof. We use continuity method to solve the existence result. For 0 < ¢ < 1, according
to [8], we consider the family of functions,

1 1
YX,v) =tf(X 1 —t)C% —1
where ¢ is sufficient small constant satisfying
1 1
0< - 1)),
fos, min Gp+e(Cr—1)

and fy is some positive constant.

At t = 0, we let Xo(z) = z. It satisfies o2(k(Xo)) = C2. It is obvious that f!(X,v)
satisfies the barrier condition in the Introduction (1) and (2) with strict inequality for
0 < t < 1. Suppose that X; is the solution of f!. Then, at the maximum point of

= | X¢|, the outer normal direction 14 is parallel to the position vector X;. If that point
touches the sphere | X| = 7o, then , at that point,

C? X C?
S < oo (k(X)) = (X, =
T% UQ(H( t)) f( t ’Xt|> < 2

It is a contradiction. That is p; < 75. Similar argument yields that p; > r1. C° estimate
follows.
Since the outer normal direction

pr —Np
V2 + IVl
replace p by tp, v does not change. The same argument in [8] gives the openness for
0<t<
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In view of Evans-Krylov theory, we only need gradient and C? estimate to complete
the closedness part. With the positive upper and lower bound for p, Lemma 24 gives the
gradient estimate. The C? estimate follows from Theorem 4.

The proof of the uniqueness is same as in [8]. O

Now we consider the existence of convex solutions of equation (1.1) for the general k.

Lemma 26. For any strictly conver solution of equation (1.1) and f € C*(T x S"), if p
have a upper bound, then the global C? estimate (1.2) holds.

Proof. First, we will prove that each convex hypersurface satisfying equation (1.1) contains
some small ball whose radius has a uniform positive lower bound. Since our hypersurface
is convex with an upper bound, we only need to prove that the volume of the domain
enclosed by M has a uniform lower positive bound. Let w be the support function of
the hypersurface M. Since M is strictly convex, the support function u can be viewed a
function on the unit sphere. Let,

V(M) = / ok (Wa).
Here we denote (Wy);; = ui; + ud;j. We can rewrite equation (1.1),
Hence,
/ Ut (Wy) < C | uo,(Wy).
n Sn
Therefore,
Vik+1(M) < CVpya1 (M).
Here V,,41 is the volume of the domain enclosed by the hypersurface M. By the isoperi-

metric type inequality of Alexsandrov-Frenchel,
n—k+1

nJ:frl (M) < CVn—k—l—l(M) < CVn_H(M)
That is, the volume is bounded from below.

For any hypersurface M satisfying (1.1), we may assume that the center of the above
unit ball is Xj;. Let X — X3, = p'y, where y is another position vector of unit sphere.
Obviously, p' has positive upper and lower bound. We can view M as a radial graph
over the unit sphere centered at X,;. By the convexity assumption, Vp' is bounded by
maxgn p/. This gives the C'! bound for M. Theorem 1 yields global C? estimate of p'.
Thus, C? estimate of p follows. O

Proof of Theorem 5. The existence can be deduced by the degree theory as in [13].
Since the main arguments are the same, we only give an outline. Consider an auxiliary
equation,

(56) Uk(ﬁ(X)) — ft(X, I/),
where
1= () + (1 t)(Cﬁ[p(lvc +€(’X1k —1))E)".
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By the assumptions in Theorem 5, f* satisfies the structural condition in the Constant
Rank Theorem (Theorem 1.2 in [16]). This implies the convexity of solutions to equation
(5.6). Lemma 26 gives C? estimates. The Evans-Krylov Theorem yields a priori C3
estimates. To establish the existence, we only need to compute the degree at ¢t = 0. It is
obvious that, in this case, p = 1 is the solution. Then the same computation in [13] yields
the degree in non-zero. Hence, we have the existence part of the theorem. The strictly
convex follows from constant rank theorem in [16]. O

6. SOME EXAMPLES

Curvature estimate (1.2) is special for equation (1.1). It fails for convex hypersurfaces
in R™! for another type of fully nonlinear elliptic curvature equations. We construct such
examples for hypersurfaces satisfying the quotient of curvature equation,

o (¥)

= f(X,v).
(k) ( )

Choose a smooth function u defined on sphere such that the spherical Hessian
W, = (uij + UéZ]) el

but o, (Wy(yo)) < 0 at some point yo € S”. The existence of such functions are well known
(e.g., [1]). Set f = op—1(Wy), so f is a positive and smooth function. Set
ug = (1 —t) + tu.

(6.1)

We have W,,, € I';,_1 and

(6.2) fr = on1 (W),
is smooth and positive. Obviously, when t is close to 0, W, is positive definite. There is
some 1 >ty > 0, such that W, > 0 for ¢ < ¢, and
det(Wi,, (x0)) =0,
for some xg € S™. Denote 2, to the convex body determined by its support function u,
0<t<to.
Claim: for each 0 <t < tg after a proper translation of the origin, we have some positive
constant ¢y independent of t < tg such that,
(6.3) u(x) = c9g >0 forVeeS" andt <tp.
That is each 1y, contains a ball of fixed radius, t < ty.
Let’s first consider k = n,l =1 in equation (6.1). For 0 <t < ¢y, denote
(6.4) My = 0y, .
For each 0 < t < tg, M; is strictly convex. By (6.3), we have uniform C! estimate for the
radial function p;, where My = {p¢(z)z|z € S"}. We can rewrite the equation (6.2),

On ( ) 1

K1, s khn) = 5 —-

01 ft(V)

Since oy (Wy,,(20)) = 0, the principal curvature of M; will blow up at some points as
t — to. The uniform curvature estimate (1.2) for equation (6.5) can not hold.

(6.5)
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We prove claim. Fix 0 <t < ty, after a proper translation, we may assume the origin
is inside the convex body €2,,. It follows from the construction,

ft =c>0,
for some constant ¢ > 0 and for any ¢ < ty,x € S”, and
(6.6) Jutllossny < C,

where constant C is independent of ¢. At the maximum value points zf of functions wut,
we have,
W, (25) < ()1

Hence,
uilah) > F (wh) > C > 0.
Estimate (6.6) implies that there is some uniform radius R such that on the disc Br(z})
with center at xg,
ug(x) = % > 0,Vx € Br(x}).
By the Minkowski identity,

/ on(Wy,) = cn/ upop—1(Why,) = cn/ Upfr = cn/ utft >¢> 0.
n n n Br(zt)nsn

Hence, there exists y§ € S" satisfying

o (Wan () > =

Wn

By (6.6), there are some uniform radius R > 0, such that for y € S* N By(y), we have,

C
= — .

Hence, near the points v~ !(yf), the hypersuface M; is pinched by two fixed paraboloids
locally and uniformly. Thus, €2, contains a small ball whose radius has a uniform positive
lower bound. Move the origin to the center of the ball, this yields (6.3). The claim is
verified.

Proof of Theorem 2. We use the some sequence {M;} defined in (6.4) to construct f; in
(1.3). For any m =0,1,--- ,n—1, for any 0 <t < tg, 0,,(Wy,) € C*(S"). By (6.2), (6.6)
and Newton-MacLaurin inequality, there exists ¢ > 0 independent of ¢,

1
c S Jm(Wut) S .
c
Since Zk(kn,) = Z::’; (Wy,), there exists a > 0 independent of ¢, such that for any
1<l<k<n,
Ok 1
a< —(K < —.
UZ( Mt) =4

M satisfies equation
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ft, % € C°°(S") and the norms of || fi[|cs(sn) and H%HCB(Sn) under control independent
of 0 <t < tyg. That is, M; satisfies conditions in theorem. The previous analysis on M,
indicates that estimate (1.2) fails and the principal curvature of M; will blow up at some
points when t — tg. O
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