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One of the important connection between Monge-Ampére equations and differential
geometry is exhibited by the following simple fact: if M = {(z,u(z)) |z € QR C R"} is a
graph of a function u(z), the Gauss curvature of the (graph) surface k(z, u(z)) satisfies

det(D%u) = k(z, u(z))(1 + | Dul?) 5.

Historically, the study of MA is very much motivated by the following two problems:
Minkowski problem and Weyl problem. One is of prescribing (Gauss) curvature type, an-
other is of embedding type. The development of MA theory in PDE is closely related to
that of Fully Nonlinear Equations (elliptic). The main contributors are: Alexandrov, Lewy,
Nirenberg, Pogolerov, Cheng-Yau, Krylov, Caffarelli, Trudinger and others.

In these notes, we treat some geometrical and analytical problems related to Monge-
Ampére equations. Basically, we look Monge- Ampére type equations in two kinds of spaces:
(i), on S™; (ii), in bounded convex domains in R™. The problems in the case (i) are usually
connected to geometry, like Minkowski problem and reflection problem related to geometric
optics. While for the problems in case (ii), we consider Dirichlet problem and second
boundary value problem ( a problem arising from mass transport problem). The main
discussions are concerned with exsistence and regularity of the solutions to the problems.
Generally speeking, there are two ways to tackle the problems: one is via continuity mothed
which involving some appropriate a priori estimates, the other is weak solution theory. In
the first four sections, we employ continuity mothed to get classical solutions. We treat the
weak solution theory in the last section.

These notes were compiled from materials of four-week lectures given by author at
Morningside Mathematics Institute at Academy of Science in Beijing in May 1998. Due
to the limitation of the time, many important topics related to Monge-Ampére equations
were not covered. The most important missing is complex Monge-Ampére equations. And
some topics in real Monge-Ampefe equations originally intended to be included were also
left over. We hope to address these topics in other place. I would like take this opportunity
to thank S.T. Yau and L. Yang for the invitation and friends Liqun Zhang, Yuefeng Wang,
Youde Wang and others at the Institute for the warm hospitality. The notes would never
have been completed without forceful prodding by Weiyue Ding.



1 Minkowski Problem

Suppose M is a strongly convex (closed) hypersurface in R®*!. V z € M, there is a Gauss
map 7ips(z) (the unit outer normal at z): M — S™ is a diffeomorphism. If k(z) is the
Gauss curvature at ¢ € M, the function k(#};(y)) is a positive function on S™. The
Minkowski problem is: given a positive function f(y) on S, find a convex surface M, such

that k(737 () = f(v)-
If k(7y; (y)) = f(y), we have

LU / 7i-Z; =0 by Divergence Theorem.
st f(y)  Jm
Therefore, a necessary condition is:
Y —0 Vi=1,...,n+1. (1)
s~ f(y)

It turns out this is also sufficient.

Theorem 1 Suppose f € C*(S™), f(x) > 0,V z € S™, and f satisfies (1). Then, there
is a C3* (V 0 < a < 1) strongly convez surface M in R”"'l, such that k(fiy; (y)) = f(y)
Vye S™ And such M is unique up to rigidity Euclidean motions.

The above result is due to Nirenberg, Pogolerov for n = 2, and Cheng-Yau, Pogolerov for
general n > 2. For f continuous, Minkowski himself obtained weak solutions, Alexandrov
later deals with more general f and developed general theory of weak solutions. Here, we
will only concentrate on regular solutions. The uniqueness result follows from Minkowski
mixed volume inequalities, we will not deal with it here.

Supporting function H(z) of convex surfaces: Let M be a convex surface, we define
H(z)=a"Yz) -z, VzeS™

We extend H to R"t1{0} as a homogeneous function of degree one, i.e., H(z) = |z|H ( )
Ve R0} Ifye al(x), Hz) = 7 z;y;. We may also express H(z) =
SUPyem (Z?jll a:iy,-). H is a convex function. On the other if such H is given, we may
recover M from H:

H
Y = o , t=1,...,n+1,
o0x;
they are completely determined by their values on z; = —1, ¢ = 1,...,n+1 by homogeneity.
A straight forward computation yields:
1
det(Hij + H(SU) = ? on S" (2)

where H;; covariant derivatives with respect to ortho normal frames in X™. Our main goal
is to solve (2) for (Hij + H(Sij) > 0.



If fo =1, we know H = 1 is a solution. We set f; = (1 — t) fo + tf, and we consider

det(H + HO5;5) = % on S” (3)

for0<t<1.
If we can show that the solution set £ = {0 <t < 1| (3) is solvable} is open and closed,
we are at home, since [0, 1] is connected, for 0 € E (3).

Openness: Suppose for some g € [0,1]. (3) is solvable. We denote H be a solution of (3),
H € C3. We want to show 3 € > 0, such that if ||g — fy,llcrr < €, and [gn zig(x) = 0,
i=1,...,n+1, then 3 H € C* solve (2) for g (g in place of f). This will be done using
Implicit Function Theorem.

Let Ly be the linearized operator of

F(H) = det(Hij -+ H(Si]‘).

Set wyj = Hi; + Hdij, we have Ly(u) = Y; ; c(wiz)(ui; +udi;), where (c(w, 7)) is a cofactor
of (w;;). It’s easy to show Ly is self-adjoint. Since V § > 0 small, H =H+ 6z is a
supporting function of M which is a translation of M. So, H is also a solution of (2) (with
the same g). Since § is arbitrary. We conclude that Ly(z;) =0,Vi=1,2,...,n+ 1.

Fact: V u € C?, if § > 0 small, H + du is a supporting function of some convex surface.
Therefore [gn z;F'(H + du) = 0. Now,

0 arbitrary = z;Lg(u)=0, i=1,...,n+1.
Sn i

That is Range(Lyg)L Span{zi,...,Znt1} = Ker(L}) 2 Span{z1,...,Tnt1}.

Lemma 1 Ker(L}) = Span{zi,...,%nt1}. (Note that L}; = Ly.)

Assuming the Lemma, we get Ly : C>%(S") — S, surjective, where S dzgf {v €
CH*(S™) | [snmiv = 0}. By Implicit Function Theorem, F is invertible near H. This
gives the openness of the problem (3).

The following proof of the lemma is due to Cheng-Yau.

Proof of Lemma. Suppose u € Ker(L};) = Ker(Lg). Set Z =¥ i€ + u€py1, where
él,...,&, a orthonormal frame on S™ (local). We will show Z = const. This will give
u= Z;‘;Lll a;z; (since u = 7€ =22, 1= (21,...,Tns1) € S). Let w; be 1-forms
dual to e; ( =1,...,n). We have

n n
dZ = Z < (uij + ’U,(Sw)é;> wy.
j 1

j=1\i

=




Let X = S0 Hi& + Hepyr = dX = Y0 (0 (Hij + Hij)éi) wy. Set @ =X AZAdZ A
n—2
rmm— e,

dX A NdX.

dQ = dXANZANAZNAX N ANdAX + X ANAZANAZNAX N NdX

= Z[c(wij)(uij+u6ij)](é'1/\---/\é’n)®w1/\--'/\wn
ij
+ X ANdZANAZNAX A NdX

— XAdZANdZANAXA---NdX.

Since Lg(u) = 0. Integrate over S™, we get
0= / do= [ XndZndZndX n--ndX.

Let Vi = >i(uri + wdrs)e(wij), e; = Y v (Hij + Héij)€;. If necessary, we diagonalize
(H;j + Hd;j), we may assume V;;Vj; >0,V 4,j. Now

dZ = det(Hij + H(S,;j)_l Z V;jétj & w;

i
= /Sn (X, Eni) Y _(VisVis — VigVyi) det(Hij + Hy3) ™" =0
i
’O#Z‘/u—o-—_}z 1 j] ]z)
i#£]
= (ZV) =D VE| =D ViV <0
i i i#j

(X7€n+1> =H> Oa
we conclude that V;; = 0, V i,j < n. In turn, we get u;; +ud;; = 0= dZ = 0 == const. O

Closeness. To show the closeness, we want to establish a priori estimates for problem (3):
”H“CB,Q(Sn) S C

Since (Hy; + 0:5H) > 0, det® is concave, we only need to obtain I Hllcra(sny < C by
Evans-Krylov Theorem.

1. CP-estimates:

Cheng-Yau’s Lemma. Suppose M € C?, M C R™! strongly convez, and K be the
Gauss curvature of M. Let L,r be the extrinsic diameter and inner radius of M, then
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where ¢y, &, are constants that depend only on n.

Proof. Let p,q € M, the line segment joint p and ¢ has length L. We may assume 0 is in
the middle of the line segment. Let ¥ be a limit vector in the direction of this line. V z € S™.

H(z) = ZSIQ]}I\)/[(Z, z) > —;—L max (0, (y, z)).

multiply by % and integrate over S™, we get

0 o< 2L E) ([ mexto, an/K@)

Since

and

by the divergence theorem,

/M(n—l—l) =/MX'-J\7=/MH

(where M is the convex body bounded by M). By isoperimetric inequality,

n

Vil se ([ )7

=~ L<e </n %>% ( inf [ max(0, (y,m))/K(m)) -

yeS™ Jgn

As for a lower bound of 7, Cheng-Yau has an elementary (but highly nontrivial) proof. It
can also be deduced from John’s Lemma. Since we will need John’s Lemma in the discussion
of weak solution theory of Monge-Ampére equations. We now state (and prove):

John’s Lemma. Let M be a convex (bounded) body in R™, then there is an ellipsoid E,
(after a proper translation), % ECMCE.

Proof of John’s Lemma. Let E be an ellipsoid of smallest volume containing M. We
assume 0 be the center of E. We claim % E c M. By affine transform, we may assume



E = B;. Now, suppose dist(0M,0) = ) < % We may assume —A€, is the closest point of
OM to 0. Consider now the ellipsoid Es:

1
— 7P <1 (' = (z1,...,Tn_1)).

2 1
(1+4) [(‘”" -+ (1+6)1/2] i (1+6)7T

Vol(FEj5) = Vol(B1). 0F;5 intersect 8B at z, = 1, ' = 0 and where

=0,

(1+9) [(xn BRI C 1)] (1 —=zn)(1 +2n)

(1+6)1/2 (1+9)l/n-1

i.e., at where z,, = 1 and

(1+5)[(wn—1)+ 2 ] (1”"

(1+06)1/2 1+ 6)1/n-1 -
Develop in §, we get

n

0=

(wn + %) +0(8) = zp = %1 + O(6).

n—1

If § small enough, O(E;s + %é‘n) strictly contains 8M. So we may obtain a smaller ellipsoid
E which contains M. Contradiction. a

Now, back to the lower bond of r. Let E be an ellipsoid in R®*!, such that
1

——FECMCE.

(1+mn)
Let 0 < a1 € a3 £ --- < anp+1 be the principal axies of E. We have r > n+r1 a1, and
LG%rlai,izl,...,n-l—l. Since

1 n+41 _
(n n 1) ay...anp1 S VOI(M) < a1 ... @41 < (n+1)"FirL™

On the other hand, Vol(M) = n+_1 Jgn % > n2_fl (infyesn [gn max(0, (y,z))/k(z)) (by the
1st inequality in the Lemma). This yields

RQfl (yiensfn/n max (0, (y,w))/k(m)) < (n+1)"rLm

2L-(n—-1)
(n + 1)nt2 (

én ( / ] %) - (yiensﬁn [ max(o, (y,m))/k(w))n.

=>r inf /n max(0, (y,w))/k(:v))

yesn

Vv




Cl-estimates: by CC-estimates (Cheng-Yau’s Lemma), 0 < -i— < H < ¢ < co. Since
maxgn [VH| < maxgn(H? + |VHI2)% Let 2o € S™, maxge(H? + |VH|?) = H?%(x0) +
!VH(QJQ)P. At xg,
H,
HHi-i—ZHjHij:O:#(HU—{—H(Sij)' =0

J H,

since (H;j + Hd;;) invertible
=VH=0
at zg,
= rré%x(H2 +|VH?) < r%%XHQ = r%%x|VH| < r%%xH <c

C?-estimates: Since (H;; + Hd;;) > 0 we only need to get upper bound of Tr(H;;). Let
To € S™, such that Tr(H;;)(zo) = maxgn Tr(H;;). We may assume Tr(H;;)(zo) > 1, and
(H;j(zo)) diagonal at xg. At zg,

and

at xy,
0> w?(Tr(V2H))i; = w™(Tr(VZH))s
= w{A(Hy) + 2AH — 2nhy;}
wA(Hy) + 2(Te(VEH)) () w') — 2n? + 20H () w™).

1

We compute w”A(H;;). Apply A to det(wij)% = (%); and by concavity of det%, we get

w'A(Hg) = w9A(Hy) = w{A(wy) — 8;;AH}
> A (%) - (3 v') Te(v2H)
=0 > Tx(V’H) (Z wii) —2n? + A (%) +2nH (Z wii)

1

. . 1\=»
Zw“ > n(Hw”)% =n (E) >c>0
= Tr(V?H)lsy < ¢ = max|V*H| < c.
O

This will conclude the closeness of (3), and gives the solution for Minkowski problem.

Remark: In above proof, we in fact need H € C* for large k, since the final bounds depend
only on ||K||c2, so the Theorem holds for K € CY1(S™).



2 Alexanderov Problem

For n > 2, Let M™ be a finite convex, not necessarily smooth, hypersurface in Euclidean
space R"t! containing the origin. More precisely, M™ is the boundary of some convex do-
main in R™*! containing a neighborhood of the origin. We write M™ = {R(z) = p(z)z| z €
5™}, where p is a function from S™ to R*. Let v : M™ — S™ denote the generalized Gauss
map, namely, v(Y) is the set of outward unit normals to supporting hyperplanes of M™ at
Y. The integral Gaussian curvature of M™ is defined by

u(F) = [v(R(F))],

for all Borel set F C S™. It is clear that u is a nonnegative, completely additive function
on the Borel sets of S™. For any set F' C S™, let Cone(F) = {tX | X € F,t > 0} be the
cone generated by F. For any cone C C R*1 let C*={X e " | X - Y <0,VY € C}
be the dual cone. F* = (Cone(F))* N S™ is the dual angle.

Alexandrov problem is: for a given measure g on S™, find a convex surface M as a
graph over S™, such that the Gauss measure of M is the pull-back y by radial mapping.
The problem is similar to Minkowski problem. Alexandrov established the following result

(1711

Theorem 2 A necessary and sufficient condition for a nonnegative, completely additive
function p on the Borel sets of S™ to be the integral Gaussian curvature of some finite
convex hypersurface in Euclidean space R™*! containing the origin is:

(A1) p(S™) =187,

(A2) For every convez subset F of S™, u(F) < |S™| — |F™¥|.
Such hypersurface is unique up to a homothetic transformation.

When M™ is C?, it is clear that |[v(R(F))| = [ R(F) K, Where £ is the Gauss-Kronecker
curvature of M™. Therefore, there is similar differential geometric question for the problem
as in Minkowski problem case. When the density of u is a smooth positive function on S%,
the solution to the Alexandrov problem is smooth, see [?] and [?]. We will establish a C1!
regularity result for nonegative u. Of course when p is positive, higher regularity will follow
from Evans-Krylov theorem.

A priori C? estimates of solutions to the Alexandrov problem are studied in [?], where
a necessary and sufficient condition was given.

Let k be some nonnegative function defined on S™. We set

mm=ﬁm (4)

for all Borel sets F of S™. It is clear that u is a nonnegative, completely additive function
on the Borel sets of 5.

Theorem 3 (a) Let k € C11(S?%) be a nonnegative function, and p be given by 4. Suppose
that p satisfies (A1) and (A2), then there exists some Cb! finite conver surface M? having
u as its integral Gaussian curvature.




(b) Let k € C>(S3) be a nonnegative function, and p be given by 4. Suppose that i
satisfies (A1) and (A2), then there exists some CY' finite convexr surface M3 having p as
its integral Gaussian curvature.

Such hypersurface is unique up to a homothetic transformation.

For higher dimensions, we need some additional hypothesis to conclude the C*! regularity.
We introduce the following condition for n > 2.

Condition (I): k€ C%(S™) is nonnegative, and for some constant A > 0, satisfies that
() ARY®D) > — 4, on 5™,
(ii) |V(kY™D)| < 4, on 8™

It is clear that for nonnegative function ¥ € CV1(S™), part (i) of Condition (I) is
equivalent to

(n — D)k(z)Ak(z) — (n — 2)|VE(z)|? > —(n — 1)2Ak(z)>" /D vge s,
and part (ii) of Condition (I) is equivalent to
IVE(z)] < (n — 1) Ak(z)»2/0-1) vz e 57,

Theorem 4 For n > 2, let k satisfy Condition (I), and pu be given by 4. Suppose that p
satisfies (A1) and (A2), then there exists some C1'! finite convex surface M™ having p as its
integral Gaussian curvature. Such hypersurface is unique up to a homothetic transformation.

We also introduce another condition
Condition (II): k € C1'(S™) is nonnegative, and for some constant A > 0, satisfies that

2k(z)Ak(z) — 3|Vk(z)[> > —Ak(z)> /D vzesm

Theorem 5 For n > 2, let k € C**(S") (0 < a < 1) satisfy Condition (II), and p
be given by 4. Suppose that u satisfies (A1) and (A2), then there exists some Cb! finite
convez surface M™ having u as its integral Gaussian curvature. Such hypersurface is unique
up to a homothetic transformation.

The above theorems are the consequence of the following proposition.

Proposition 1 (a) Forn > 2, let k € C*%(S™)(0 < a < 1) satisfy Condition (I) and u, given
by 4, be the integral Gaussian curvature of M™ = {R(z) = p(z)|z € S™*}. Then

lollc2smy < C,

where C depends only on n,maxgn p/ mingr p,maxg~ |Vp|/ ming p, A, and maxgn k.
(b) Form > 2, let k satisfy Condition (II), then

lollce(sny < C,

where C depends only on n,maxgn p/ ming p, maxgn |Vp|/ ming» p, A, and maxgn k.




Let k be some nonnegative function on S”, and u(F') be given in 4. Let e1,---, e, be
some smooth local frame field on S™ and let V denote the covariant differentiation. Let
0i; =< e;j,e; > denote the metric on S™, ¢ denote its inverse, and ¢ = det(c;;). For
M™ = {R(z) = p(z)z | z € S™} to have y as its integral Gaussian curvature if and only if
p satisfies

det(p%0ij + 2VipVjp — pVijp) = kop™(p? + !Vp]2)(”+1)/2, S™. (5)
Set u =1/p, K = k(u? + |Vu|?)(**1)/2/y. Equation 5 is equivalent to
det(uoij + Viju) = oK. (6)

As we are looking for convex solutions, (uo;; + Viu) > 0 as a matrix. Let H(z) =
nu(z) + Au(z) > 0. A C%bounds of u will follow from an upper bound of H. Let P € S™
be a maximum point of H, i.e.

H(P) = max H(z).

reSn

It follows from Evans-Krylov theorem that p € C*%(S™). We choose an orthonormal frame
field ey, - -, en near P such that (V;u(P)) is diagonal (so will (uoi; + Viju) at P). Now
at P, we have

VgH =nVgu+ Vg(Au) =0, g=1,---,n, (7)
and
(Hpy) = (nVypu + VygAu) < 0. (8)
Throughout this section, we use notation u;; = V;V;u = Vj;u, and repeated upper and
lower indices denote summation over the indices. Set w;; = uoyj + Viju, (w¥) = (w;;)~L.
We may assume without loss of generality that

'LU11(P) < w22(P) <..-< wnn(P), wnn(P) > 1. (9)

Since (w;;) > 0, we know at P, -
w”H;; <0.

The foliowing formula for commuting covariant derivatives are elementary.
ViV = V;iVi +2V;; — 2Vy,
and

Vil = AV + 2A — 2nVy;. (10)

10




Using 8, 10, and o4; = d;5, wij(P) = wyi(P)di;, we have at at P that,
0 > win,-]- = ’wiiHi,; = nw“uii + w“VﬁAu ( )
= nw'uy; + w{AVu + 2Au — 2nu;} (12)
= —nwhuy + 2(3; w)Au + wAViu (13)
= —nwuy + 2, wh) Au + wh{A(uoy;) + Auy} — w(A(uoy;)) (14)
= —nwiiuii + (Zz wii)Au + wii(Awii) ( )
= —nw"(wy — uoy) + (; W (H — nu) + w”(Aw;) (16)
= —n? + (3; w) H + w”(Awy). (17)

We will compute w*(Aw;;). By the chain rule, we have
Vdet(w;;) = det(wij)wingwij, Vﬁwij = —w' wJVﬂwkl

Applying A to the equation det(w;;)/*~) = K 1/(n=1) " we obtain, by using the above
formula, that

wij(Awij) = w’k’w”{zﬁ Vwi;Vgwip} — ———w“w”‘{zﬂ Vgwi; V gwik }
+K"X{KAK - 2=2|VK|*}.

At P, w¥ = §;;w™, so we have

w(Awy) = whwi Zﬁ(ngij) - —1-w“w“{2ﬁ VwisVgwj;}
+EK{KAK — 222|VK[?).

It follows from 7 that >; Vgwy; = 0 at P for each 8. So for each fixed 8, we can put
{V,@wll,Vﬁwgg, - -,ngnn} into two groups {Vﬂ’lﬂii}ie] and {Vﬁ’lﬂjj}jej with TUJ =
{,2,---,n}, Ind =, [I| <n-1,|J| <n—-1,Vgwy > 0 for i € I, and Vgw;; <0 for
j € J. Now

wiwil(V gwi;)? — wwi{V gwi; V gw;;}
> (WA(Vawa)? - Zp{Tier v Vpwi + Tie s vV pwis}?
> (wA(Vawa)? — ;55 (Tie wVawi)? — 75 (i vV pwii)?
= {Sier (W2 (Vgwi)? — 27 (Tier w'Vswi)’}
HSies W) (Vgwa)? = 25 (Tics w'Vswi)2}
> 0.

In the last inequality above, we have used |I| <n—1,|J| < n—1, and the Cauchy-Schwarz
inequality. In turn, we have at P that

w“(Awu) Z K_

(18)

11




Putting 18 into 11, we obtain at P that

n

-2
1|VK|2} <0.

—n? NH + K2 {KAK —
n+(2i:w) + { —

Set g = (u? + |Vu|?)®+tD/2/y, we have K = kg. It follows that

K~2{KAK - 2=22|VK|?}

= k~H{kAk — 2=2|Vk|2} + 25k 1g7IVEVg + g7 2{gAg — 2=2|Vg|*}.

Using 7 and u;j(P) = 6;5us(P), we have at P that

(u2 + IVUIZ)(n—l)/Z
u

Vgg = (n+1) uggug + Co(u, u Vu),

U2+ vu2 n—1
IVg|2=(n+1)2( | 2|)

Z u%ﬁu% + C1(u,u™t, Vi) (Viw),
8

ghg = (n+1)8HY 02 4 V) T+ (n - 1) 3wl
+Ca(u, u™t, Vu)(Viw),

(20)
(21)

(22)

(23)

(24)
(25)

here and in the following, C;(u,u™!, Vu) denotes some quantity depending on u,u™}, Vu,
and Cj(u,u™!, Vu)(V2?w) denotes some quantity linear in V2w with coefficients depending

on u,u"! andVu.

We first assume that k satisfies Condition (II). Using the Cauchy-Schwartz inequality,

we have

2 n+1
_2 g1t ) <
a1k 9 IVE-Vils 5oy n—1

Putting this into 20, and by 23, 24 and Condition (II), we have

k2| VE|* + g % Vgl%.

K~2{KAK - 2=2|VK|*}
k2{kAk — 3|VE[*} + g72{gAg — 735IV9I*}
—-%k—l/("_l) — Cs(u,u™t, Vu)H.

VAR AV

Back to 19, we have

(S wH)H — 2k — Cy(u,u™, Va)H < .

Due to 9, we have wnn(P) > H/n. It follows that
Zwii > E?z—ll w > n_l]_.(nz;—llwii)l/(n—l)
i

= L (w/K)Y @D > L (1)1 (0=1) f1/n1) =1/ (1),

12




Therefore

1
n—1"n

A

which yields

1(1

n—1mn

H{
We conclude from the above that
H(P) < Cs(u,u™!, Vu, k, A).

This gives an upper bound for maxgn H.
When k satisfies Condition (I), it follows from 22 that

2
n—1

—[Vh- Vgl < —=— Akt Cyfu,u”, V) B

Putting the above into 20, using the above, 23, 24 and Condition (I), we have

K2{KAK - 2=3|VK|*}
k=2 {kAk — 2=2|Vk[?} — 2 Aok~ Y/ ("D Cs(u, v, Vu)H
+97{9Ag - 22|V}
> — ALl — 2 Ak VD Cg(u,ut, Vu)H — Cr(u,u™?, Vu) H.

v

Putting 28 into 19, we obtain (using H(P) > 1) that

> w*H - Calu,u, Vu, Ay, A)k™ YV H — Cy(u,w™, Vu)H <0,

namely,
Zw” < Cg(u,u™t, Vu, Ay, Ag)k‘l/("_l) + Cy(u,u™t, Vu).

By 26, we conclude

HY™1) < Co(u, u™t, Vu, A1, Ag) + Cyi (u,u™t, V) (071,

This provides an upper bound for maxgn H. We have thus proved the proposition.

For the discussion of Condition (I), we refer to section 4.
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3 A Reflection Problem Related to MA

Let M be a strongly convex (bounded) surface in R™*!, suppose 0 is inside of M. For
YV z € 8™, we issue a ray of light from 0, the light will reflect at M in the direction of
y=T(z) =x—2 <z, v >+, where 7 is the unit normal of M at the reflection point.
Therefore, we may view 7" as a mapping from S™ — S™. This is a diffeomorphism. S.T.
Yau asked what information can we get from 7T'. The question can be proceeded as follows:
We write M as a graph of S : M = {p(z)z | z € S™}. Suppose f(z) be the density of the
light in the direction of z € S™, and g(y) be the density of the reflected light at y. If we
assume there is no loss of energy, we have [ f(z) = [p(g) 9(y) V Borel E € S™. If M is

smooth, f(z) = g(T(z))(Jr(z)), ie., Jpr(z) = 7% The Jacobi of T' can be calculated

g(T(x

using the formula T'(z) = — 2 < &,y > v (where v = y(p(z)z). p the graph function):

det(Aiju + (u — n)eij) f(z)

E = 2
JT(-'L') " det(eij) 9(93, u(x)’ Au(x)) (3 )
where u = %, n = (|Vu|? + u?)/2u. If M is smooth, ¥ zo € M, there is a unique paraboloid
F ={z-9¢(z) | £ € S™} which is tangent at zg, with focus point at 0 and reflection direction
y, where
c
PY(E)=——, €S, z#y.
Ty

In fact, M must be inside of F'. Note that, if v = %, {Aijv+ (v —n)e;;} =0, i.e, and the
lights reflect in the direction of y.

Admissible surface: Suppose M is a convex surface (no smoothness assumption), o is
inside of M. We say M is an admissible surface of reflection, if V 2 € M, there is a
paraboloid F' which is tangent at x, focused at o, and M is on one side of F. (F is called a
supporting paraboloid at x.)

Remark: If M is closed, M must be inside of each such paraboloid. If M is not smooth,
at some point x € M, there may be many supporting paraboloids.

For any admissible surface, we define T'(z) to be the collection of all reflect directions
of supporting paraboloids at p(z)z. T is a multi-valued mapping (we may compare T with
the gradient mapping in Alexandrov sense for MA.)

For (8™, f), (8™, 9) with [¢n f = [gn g. We want to find an admissible reflection surface
M, s.t.

/f:/ g Y ECS" E Borel

E T(E)

(We assume f, g are positive measures.) Note that, if M is a solution, AM is also a solution
for any A > 0.

Theorem 6 If f and g are positive functions on S™, f,g € CY1(S") and fgu f = [ng.
Then, there is a unique (up to a dilation) reflection surface M C R, with M € C%%
VOi<a<l.
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Like in the previous section (Minkowski problem), we will employ continuity method to
prove the theorem.

We write M = {p(z)z | ¢ € S”}. We normalize [g. f = 1.
Closeness:

CP-estimates: We may assume infyecgn p(z) = 1 (after a dilation if necessary). Since
f,g € LY(S™), 3 ro > 0, such that V y € 8™,

/ g< / g<2 g
B"O (y) n B21r—1'0 (y)

[ oorsf 5o f.
Bro (y) ™ B27\'—7‘0 (y)

Lemma 2 There is a constant c(rg), such that sup,cgn p(z) < c(ro).

Proof. Suppose [¢. p(z) = p(zp), we may assume zg = —€n41. Let p(z) = mffw—oy be a
supporting paraboloid at zgp(zg). Since g is the minimum point (to 0), the paraboloid is
tangent at zg (with M), we get yo = €,+1. Again, since p(zg) = 1, we have ¢y = 2.

VéE>O0,Vpe MnN{zpt1 <&} let p(z) = ﬂm be a supporting paraboloid of M
at p. f 3p € MN{zpnt1 < ¢}, such that y(p) & Bry(ent1), then the constant ¢; is bounded
by ¢(ro,€). In turn, M is bounded by the two paraboloid g, 1.

Suppose this is not the case, that is, V &> 0,V p € M N {znt1 < €}, y(p) € Bry(enta).
If ¢ large enough, T'(z) € Byy(ent+1), V x € Sgro(ewl). Now

197 fyen? 125 [l =30
5 [ gz g= 5 =3 .
2 Jsn Bry(ent1) T(S™~Brg (ent1)) S"—Brylents)  2Jsn7 2Jsn
Contradiction. End the proof of Lemma 2. We obtain a L*° bound for M.

C'-estimates: Since M is convex, (p;; + pe;;) is positive definite. By CO estimate p is
bounded below and above, the same argument as in the proof of C! estimates in Minkowski
problem yields the boundnedss of [Vp|.

C?-estimates:

Lemma 3 Let A > 0, A € C%(S™), Q) = {zx € S™ | A > 0}. Suppose f,g € C*(Qy) (i.e.,
”f”cg('ﬁ)‘) < Chy, ||g||Cg(-Q-A) < C1) and u € C4(Q)), u satisfies equation (32). Then, 3¢ >0
(depends only on ||A||c2, c1 and cz) such that

IV2u(z)| < ¢/Az), Y ze€Qy.
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Proof. Let H(z) = tr(ui(x)), (wi;) = (Viju + (u — n)ei;).
Set

E(z) = Mz)h(z).

We only need to obtain an upper bound of E. Let E(xp) = maxzeq, E(z), zg € Q.
We may assume
H(zg) > 1+ csup(u —1n),
Sn

and (ui;j(xo0)) diagonal. At zo,
VE =0, and {V?E} <0,

—\i
A

= H; =

, and

/\Hij < - (Aij -2

0 Z )\winij = )\wii(Au)ii

M A (ui) + 2Au — 2nuy)

- )\{w“A(uu +2H( Zw”) — 2nwhw; + 2n{u — Zw )}
= Aw®A(uy) + AO(1 + H( Zw”

3=

Apply A to det%(wij) =7 [Eé‘% det(eij)] def K(z,u,Vu). At xo, by the concavity

of det%,
w”A(uu) = z.jA(’Ll/ij) = ij{A(wij) - A[(u - 77)6'51]}
w9 A(wij) Zw” An+ 0 HZw
AK + An(Y_ w™) + O(H Y w*)

Vv

4

w* ()\” -2 -A-/\L\-> H > MK + A0 w™) + A0(H Y w®).
While, at zq

1 1
An = =3 ud+~Vu-V(Au) + AH
n - uu—l— Vu-V(Au) + A(H)
1 Vi Vu

= —S - H = =2+ O(H)

> TH?-¢ ( l‘:)\l + 1) H (smce 1> C > 0 by Cl-estimates).
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And

AK = K, V(Au)+ > Kpp,Vui- Vuj + O(H)
ij
—c(H l-v/\il)H — cH?
i)
A

v

H> > MNeH?() " w") — cAH? — cA\(H @)H(Z w').

= — ’wij (Aij -2
Since

A VAR ;i
—wJ()\ij—Z )‘J H) < c 32 H(Zw )
VA2 y VA y
c —|—~X—|— H(Z w) + cAH? + c\(H lTl)H(Z w™)

< cH(z w) + cAH?  (therefore |[VA|2 < c)).

= XeH?(>_w®)

IN

We estimate 3" w®: At zg, we may assume w™ < w1l <. < wll)

n—1 n—1
Yot > Yt > - ([ w)T
i

1

_ M wt o K
= (01 )™= (1) o
1 1 oy —Le
n-— —H n—1
= (n-1) 2(”—1)%
Kn—l Kn—l
1
1,1 H»1
= (n-1)(=)"T——
n Kn—l

(therefore w11 < -+ < wpy and Y wy; = H.) Insert it into previous inequality,
H<c¢/A e, E<cat .

O

With the C? boundedness and positivity of f and g by Evans-Krylov Theorem, we
obtain ||p|lcs.e < ¢a, VO < a < 1.

Openness: Set F(u) = g(Ty(z)) det(z%g;((z;;')e”).

Let fo(z) = g(—z), fi(z) = tf(z) + (t — 1)fo(z), v = 1 is a solution of (32) for fo,
g. Suppose for some to (32) is solvable (should be (32);, if there is no confusion, we still
write (32)), and u is a solution ¥V v € C?(S"), - +15v is admissible if § small enough. If

F(u + 0v) = hs, we must have

h5=/ F(u+5v):/ g=1=/ ho.
Ssn Ssn Ssn Sn
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(Remember we normalize [¢n g = f¢n f = 1.) If L, is a linearized operator of F at u, we
get

/nL (v)de = hm 15 L. (hs(@) = hofe)) = . (33)

We want to show L, is surjective to S = {h | fgn h = 0}. By Implicit Function Theorem,
F, is invertible near f; € S. L, is surjective < Ker(L?) = {0} in S. In any local coordinate

chart, we can express
Zau 5U+Zb )0 +c(z

Though a;j,b; depends on the choice of the chart, c(x) is globally defined.

Claim: c(z) =0.
If the claim is true, since S™ is compact, by maximum principle, Ker(L}) = Span{1}.
Restricted to S, Ker(L}) = {0} in S. So L, is surjective to S, and F is invertible.

Proof of the claim: For any smooth function v, we have

/ v(@)e(z) = / v(@)L3(1 / L) 1= [ Lo)=0.
sn
Since we have shown [g. Ly, (v) = 0V v € C?(S™) in (33). Finally,

Uniqueness: We assume [pg > 0V open E C S", E # (. Suppose we have two solutions
M7y, M. Let p; and p, be the corresponding graph functions respectively. Suppose p;/ps #
constant. Dilating if necessary, we may assume §; = {’;—;— > 1} and Oy = {;‘:—; < 1} are both
nonempty.

Fact: T,, (1) D Tp, (1) (similarly T, (1) C T, (Q2)).

Proof. Since V y € T),(€), the family of paraboloids {¢. = =g T € S™} with focus
point at 0 will touch p; first before touching ps at T~ (y) € Q. Let G = {z|p1(z), p2(z) are both different

Lemma 4 T, (z) =T,,(z) V& € G. Of course, it is easy to deduce from the lemma p1 = p2
since G is dense in S™.

Proof. Suppose 3 zo, T),(x0) # Tp,(x0), we may suppose p1(zo) = pa2(zo) and ; =

{zlpr/p2 > 1} # 0. Let yo € T,,(z0), Py = T—(og%7 De the supporting paraboloid of

p2 at xg. Since T, (zo) # Tpy(xo), I ¢y, = m%?ﬂ’ a small perturbation of 1y, such
that 9, is a supportlng paraboloid of p; at some point z. & ;. 9, cuts off a cap from

Pl = Ye € TPl (Ql)m ' Ye & TPz(Ql) But

Lo fo= Lo fy o=
Tor(01) ¢ Tpy () Ty ()\Tpp (1)
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therefore, T}, (1)\T),(€21) # @ and open. Contradiction to the assumption [pg >0V E
open, (E # 0).

Remark: If 4, are two domains in S™, f,g are positive functions on ; and 0y re-
spectively, and [ f = [q, 9. We may consider the following problem: Find M, such that
Ta: = and [pf= Jrg) 9V E C 4, E Borel. If we extend f and g to S™

@) = { flz) ze

0 otherwise

and

_ () z€Q
g(w)—{g :

otherwise

Our C° estimate still holds for f,g (we only need f,g € L(S™) there). So, M is auto-
matically C%!. In general M fail to be C1!. But, if know that T'(€;) C Q2, the localized
C?-estimates in Lemma 2 gives M € C3%(Q) if f € C*(Q1), g € C?(Q).
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4 Monge-Ampére Equations: Homegeneous Dirichlet Prob-
lem

We consider the following Dirichlet problem for Monge-Ampére equations:

det(uij) = f QCR”?
ulan = ¢
o0 e C¥, ge 3L,

The fundamental result in elliptic case is due to Krylov, Caffarelli-Nirenberg-Spruck, they
proved:
f>0 feC?’=>3uel®, V0<a<l.

To handle the problem, again, we employ continuity method. we assume (2 strongly convex,
0N e 3 0=z € R"|p(z) > 0}, p defining function of . We may assume p € C¥1,
IVpllag =1, and — (%{;—J) () > CI, for some C >0,V z € Q.

We also assume g € C31(0QQ).
For the openness, take c large, set

v=—cp+g
, we have (v;;) > 0,
det(vij) = fo > 0,

vlan = g.

Let fr =tf + (1 —t)fo, i = .
Consider M (u) = log det(us;). The linearized operator of M at u is

L, (w) = Z uw;j,

Lu(w) =h, Q

is solvable, this give the openness of the problem.
vlgn =0

since (ui5) > 0 = {

Closeness:

CP-est: u convex maxqu = maxan u = maxan g < C. For the lower bound of u, we first
state

Comparison lemma: u,v det(u;;) = fi, det(vi;) = f2 and ulpq = vlsq, if fo > fi =
v(z) <ulz)Vzell

Proof. w = v — u, det(vy;) — det(uy;) = f2 — f1 > 0. 3, ; A¥(x)wy;, (A¥9(z)) > 0. Max.
principle maxq w — maxgg w = maxgn(v — u) < 0. ; |
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Since u is convex, maxgn u = mMaxsq U, SO
u<maxg < C.
(719}
With ¢ large enough, let v=—cp+g = v(z) <ulz) V€,

= inf > —co.
)2 e

C'-est. Since u is convex, maxq |Vul is attained on dQ. maxsq |Vu| < maxaq |u,| +
maxgq |Tu|, where T is taken to all the unit tangential vectors. Since T'u = T'g on 92, we
only need to control u,. For v = —cp + g, ¢ large enough, we have w =v —u <0, w =0,

= wylan >0

sv,—-ul0=>y Ly L.

To estimate u, from below we again make use of the convexity. Consider any point
on 8. We may suppose it is the origin and that thez,-axis is interior normal to 0§2. Let
y € 0N be the point where the positive z,-axis exists from §2. By convexity and our previous
estimate (from above),

—uu(0) = un(0) < un(y) < 2[Vo(y)l.

Now we turn into C?%-estimates.

Since we will deal with degenerate case late on, we state a general lemma here.

Lemma 5 u € C4, suppose f > 0, fﬁé—1 s pseudo-subharmonic, i.e., Afn_i—l(z) > —A,
VzeQ,inQ forz near 00 = C(A, diam(Q)), such that supg |V2u| < C + supyq |V2ul.

Proof. Let H(z) = Au(z), define

G(z) = H(z)e* (34)

where

“ T 50@n? + Ddiam?(Q) (35)

By the convexity of u, it is sufficient to obtain an upper bound for G. Let p € Q, G(p) =
maxq G(z). If p € 09, the Lemma is trivial. We may assume p € §2 and 0 € 2. Then at p,
VG =0, and V2G < 0. That is, at p

Hg = —azgH, B=12,....,n (36)



and
(Hyj) < (a2xl:c] — ady)H (37)
At p, making an orthonormal linear transformation if necessary, we may assume (u;;) is

diagonal, and uj1 < uga < -+ < upy. Since (ug;) is positive definite at p, by (37)

L(H)=4"H;; < <au a::nj—aZu”>

< —a(l - a diam?(Q)) Zu“H : (38)
i=1
By the chain rule,
oud g
B uu (39)
We have
l)2 (det(u”)ﬁ)
1 g .
= T det(ui]-)ﬁ {u”D2uij u”“Dwku”DuZ —u' u]DuUDwk} (40)
n— _
Since det(uw) = fn1 1 and
o fp)_ 1 oLl 2 (;__1 2
D(f )= 5 s {0t - (1- 25 ) IDsi) (a)
We get the identity
1
~2 2, (1__1 2
2% - (1- =) IprP}
= {uijD2uij + 1 T ulkuiijkDuij - uikuﬁDuiijk} . (42)
Summing up,
- 1
s {sas-(1- —) Vs
n-1
- { n — 1 Zquu”uﬁgkum] Z Uikueju/giju’ggk} . (43)
p=1
Using the fact that (u%) is diagonal at p,
1
r{sar-(1-7=5) o}
1 "o
={L(H)+— Z u il ugiug; — Z u”u“uzﬁj . (44)
n- ﬂ 1 B=1
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For each fixed 3, we wish to compute ﬁ Uu* u”u[g”u[gu —ut u”u
ugis > 0}, Jg = {1 < i < n|ugy; <0} We divide into two cases:

(@) Hgl <n—1, [Jgl <n—1

(i) IguJg={L,2,...,}, one of Ig, Jg is empty.

LetIg—-{l<z<n|

In case (i)
1 22
—3 u"uugugi; — uiiuj]u 8ij < (Z u"uﬁ;u> - Z(u”u/jii)z
i=1
2 2
< —1 Z u’ u,@n Z u' uﬂu - Z u U,Bu Z(u U,Bu
n icly i€Jg icly icJs
< 0, since [Ig| <n—-1, |[Jg|<n—-1. (45)
In case (ii), we may assume Jg = ¢. That is at p, ug;; > 0,1 =1,2,...,n. By (36),
ug11 + ugge + -+ + Ugnn = —axgH,
lugis| < —axgH . (46)

We deduce

1
L 1 g
2
] u*uMugiugj; — u' u”uﬁZJ < —7 (u""Uﬁnn + Z u"ugi

i=1

2
= 1 (U™ gy )? + 1 iu“u il - i(uiiu )2+
n—1 Bnn n—1 s Bii Bii n—

2 n
) _ Z(uiiuﬂii)2

i=1
n—1

nn i
1 U UBnn Zu UBis

i=1 i=1
2 n—1 3
< —— " ; uHugy
202 o
< unn|m|2H2 Z utt
20z2|:v|2
< H u’L’L
- (n — Dupn ;
211042]:1:|2
< H I
- n—1 Z u
2 noo
< nl o? diam?(Q)H ; u® (47)
(since H = 3 Ui, Unn = Un—1:n—1 = * -+ > u11). Put (45) and (47) into (44),
2 { fA } <{L(H)+ 2n” o? diam?(Q) iu“’H : (48)
B n-1 i=1
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In view of (38), we have at p

n —

i |Vf|2} < —afl — (2n? + 1)a diam?(Q)} (i uii> H. (49)

i=1

2 {ras-

n —

While at p

‘e n- 1 .
u > u®

i=1
) n—1 3 n—1
> (n—-1) (H u”)
i=1
n—1 i 711—_1
_ (=)
(unm) 7T
1 L
= (n-1f77T uia’
-1
> L= e Ee (50)
nn—1

Insert (50) into (49), we get at p, by Condition (C’),

-1 1 o4 1 -2
2= ol - 2n? + 1o diam?(Q)}H 5T < fE { fAf—Z - |Vf|2}
nn—1 —_
A
< —. (51)
n—1
Since a = L we get the desired estimate. The proof of the lemma is
2(2n2+1)diam”(Q)

complete. a

Second derivative est. We may write u = g + op near 0). V p € 9€), we want to
estimate |V2u(p)|. We may assume p =0 and p;(0) =0V i < n —1, p,(0) = 1 near p =0,
u=g+0p = un(0) = gn(0) + 0(0) = |0(0)| < c. Hence, u;;(0) = 9i;(0) + 0(0)pi;(0),
6j <n—1= |ug(0)] < e(, llulcr, llglc), 4,5 <n—L.

Lemma 6 If [V(fﬁ(m))l < A near dist(z,0Q) < 6.

= |uin(0)] < c(2, 4, llglles, | flloo, 9)-

Proof. V¢ > 0, set S = {z € Ulp(z) > 0,2, < €} U nbhd of 0, near 0,

n—1

p(z) =Ty + Z Qi T + O('.’E|3)
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For T, = aa; - ﬁ: = % = T tangential on 8Q, T — a(p) = 0. Now, we want to construct

a barrier function (to control uin(0)). w = +Ty(u — g) — Bzy, + Blz|?.
Claim: J ¢ > 0, B,B (depends on A,Q’ ”f“LOH “'U,Hcl), such that maXges, W = ’LU(O) =0.
Proof. L = u”(z)0,,0z;, at Ta: logdet(ui;) = log f.

Taf Pa Po
L(Tyu) = =24 ¥ Ui — ud Uni + u¥ U;
(Tau) 7 (pn) j (pn)] i (pn)m i
T.f

= T 2(2_:) ”( )U“n
= Lw(z) > B(X"u®) — A g (" ut + 1), V dist(z, 09) < 4.
Pick 0 < £ < 4, such that 2z, — |Z"_1 a;jzi¢;] > 0 and 22| < 1 in S.. We decompose
S, = Sl U 82, where S = S, N{Au>1}, $?2 =S5.Nn{Au < 1}.

1. Lw > 0 in S} if B large.

2. For B >> B, if maxg, w = w(zo) = %o € 6S: by (1) zo & SL. If zg € S2% = wp(zo) =
0 (interior pt)

=0 = wp(xg) = tUan F Z—a Upn F (Z—a)nun —-B+ 23:2B

n

FYon = Z_a Gnn £ (P_a)ngn

n K

UYaa — U 3 3
|uan_'z—:'unn| S ¥+UnnS§AU<2
=>w|335<0=>n}gaxw—w(0)=>wn(0)

= [(Tawn(0)] S c = |um(0)| < ¢, i<n—1.
To estimate u,,, we want to control lower bound of u;;, 1 = 1,..
k1 0
coordinates at 0 (zn fixed) (—pi;(0)) = , ki principal curvatures of 952
0 kn—l
at 0. If necessary, add change ¢ — g + cp. We may assume (gi;) < 0 in €2, therefore,
ui; (0) = gi5(0) = 0(0)pi;(0), %, <n —1.

,n — 1. Pick at principal

—[un(0) — gn(0)]k1 0 (u = g)n1
Viy —V?g = 0 .
0 —[Un(O) - gn(o)]kn—-l
(’LL - g)nl (U - g)nn

therefore u — g convex in Q. |(u — g)n| > supq ju — g|/diam(f2).
If f is positive, ||ul| crm S ¢ by Krylov-Evans Theorem. In conclusion, we have proved.
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Theorem 7 Let Q be a strongly conver bounded domain in R™, 0Q € C*!. Suppose
f € CHY(Q), f positive, then the Dirichlet problem (homogeneous)

{ det(D%u) = f in (%)

ulag =0

has an unique C*1 convex solution u. If 0Q € C>1, thenu € C>*(Q) V0 < a < 1 and
”U”cm(ﬁ) <e

Since the a priori C?-boundedness of u is independent of infycq f(z), if f T is pseudo-

subharmonic in §2 and f T s Liptshitz near Q. We can find solution u, for (x) with f,
in place of f, taking the limit, we get

1
Theorem 8  as in the previous theorem, suppose f > 0 in 2, f»-1 pseudo-subharmonic

n €, and f AT Liptshitz near OS2, then the Dirichlet problem (homogeneous) for degenerate
MA:

det(D?u) = f inQ
ulag =0

has an unique C11(Q) convez solution u, with ||ul 51, @ Se

Remark 1: Theorem 3 is due to Krylov, Caffarelli-Nirenberg-Spruck. Theolrem 4 is due
to Caffarelli-Kohn-Nirenberg-Spruck under the stronger assumption that f» € CH1(Q).
Theorem 2 in the present form is due to P. Guan.

Remark 2. There is a corresponding version of Theorem 2 for prescribing Gauss curvature
equation

det(D?u) = K(z,u(z))(1 + |Du[2)* 3 in Q
ulan = 0.

If K satisfies the conditions: [ K < wn, Klsn = O (these are necessary), and K =
pseudo-subharmonic in 2, K = Liptshitz near 89, then u € C'(Q).

The following are some discussions about pseudosubharmonicity of f T, If 0 ¢ 09,
the function f(z) = |z|* V a > 0 is pseudo-subharmonic. The condition for n = 2 is quite
clear. For n = 3, if f € C3!(R3), f > 0, then f is pseudo-subharmonic. This follows from
the next lemma:

Lemma 7 If f € C¥(R), f >0, then

-1z -APP VoeR
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Proof. Suppose | f||¢s1(r) < M for some M. V zo € R,
1
0<f@) < flao)+ Fzo)(e —20) + L (5 — o)’

fl//(xo)
3!
= (a+bt+ct2)(A+Bt+Ct2) (t =z — o).

+ (z — 20)® + M(x — x0)*

with a,b,¢, A, B,C € R. If the quadratic polynomy a + bt + ct? changes sign at some where,
then A + Bt + Ct? will also changes sign at the same place, in this case (a + bt + ct?)(4 +
Bt + Ct?) = (a + Bt + 7t2)? therefore a? = f(20), 208 = f'(z0), 22y + B2 = f"(z0)/2,
Y| < M = f(z0)f"(zo) — & |F'(z0)|? = 4oy = 4f(z0)>/?y < ——4M%f3/2(a:0). If none
of the above two quadratic polynomials change sing, we may assume a + bt + ct? > 0,
A+ Bt+Ct? > 0, = b* < 4ac, B2 < 4AC. By the relations aA = f(x0), aB + Ab = f'(z0),
bB + aC + Ac = L5

F(zo)f" (@) ~ 5(F'(0))® = 2aA(BB +aC + Ac) - 7(a*B* + AP + 204bB)

2
= aAbB + 2a*(AC — B?/4) + 2A%(ac — b*/4)
> aAbB > —4aAVaAcC
= —4f(20)**VcC = —4M f3/*(z).

O

For general n, if f = f*' + ...+ f*, witha; >n—1and f; € cHt = fﬁ pseudo-
subharmonic.
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5 Monge-Ampére Equations: General Dirichlet Problem

The following theorem is due to Caffarelli-Nirenberg-Spruck and Krylov.

Theorem 9 If Q is strongly convex, 8Q € C31, f positive f,€ CH1(Q), g € C>1(9Q) the
following problem

det(D?u) = f

uldl =g

has an unique solution u € C>*(Q), with ||u||03,a(§) <C.

One may ask if 8Q € C%1, g € C*1(89Q), can we conclude u € C?>}(Q). In general,
this is not true, 3 f > 0, f € CYH1(Q), 8Q € C>L, g € C?1(9Q), N strongly convex, but
u & CL1(Q). Nevertheless, if 90 € C3, g € C3, the u € C»1(Q). This improved result is
due to X.J. Wong.

Lemma 8 Suppose (Q is strongly convez, f € CH1(Q), positive, g € C3(89), then ||u||01,1(-§) <
C.

Note once we have ||u]| 11, < C, by Krylov-Evans Theorem, [ullgeng) < C.

Proof of Lemma. We have proved maxq |V?u| < C(H maxsg |V2u|), and |u.-| < C on
0, |urm| < C on 09 for T tangential to 02. We only need to control up,. V zo € 0Q, we
may take zg = 0 near zg, 0§ is expressed as:

/

1
o = 5 [2]"+ cubicof @' +o(|2'["), a'=(z1,...,2n-1)

Uij = gij + (gn — un)dij at 0
uw(0) = w(0)=0 Vi<n-1, ondQ
®

1
u=¢ = =Agzz;+ cubicof &’ +o(|z'|?), (Ai;) diagonal.

2
We wish to show uy > 609 >0,V i<n-—1 Wemay take i =1. Let 4 = u — A11Z,, On
0.

@ = Agzd+---+ A, 122+ Azl + Z Ay Ta®sTy + o(|2']?)
a+pB+v>3

IA

- 1
Az} + 5 |8 + ol ),
where & = (z9,...,Zn-1). Set
D=1z < 7 V3, |E| < 06%4, |z, — 8] < 59
d, o small to be chosen = D C €.
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We want to show that

—

() < = M|X|*+ 0(6%?) on 8D. (%)

no

By convexity, we only need to prove () on 8D N {z1 = :l:% v/8}. We may assume A > 0.
Let
t={z1=t, §=0, z, = —K6"?A}, K >1 to be determined.

Vp=(r1,%2,) €EDN{z1 = :i: V6}, let p* (a:l , &%, 2Z) denote the two intersection
points of 02 with the line p + £. Such that 7 < 931 Then we have

—4K§Y? — o(6Y?) < a7 < —K&/% +0(8Y?)
: 812 <zt <46Y? +0(5Y/?), and

zf -z, > % 812 4 0(8Y%)  if K >> 1 large.

These give us the following estimates for 4 at p~, p™:

ipm) < —AK35 4 o(5%?) +% M3

i(pt) < 6446%2 +0(6°?) + 1 M|&[?
- .'E+ —x7
= i(p) < AT ypT) + 2L y(p*)
3’1 -z 1 -z
<

5 S MIX? + o(6¥)

(K large). Now, we construct a barrier function: w = k6*/?z} + M(S_%l.’lln — 812+ M|%|? -
L 52§32 with k = 2~"M'~" min f(z).

w satisfies: det(D?w) = min f

on 6&2,
: K 3/2 M 3/2 2 3/2} 1 253/2
> —_— —_ —_ =
’LU(x) m1n{6 ) y ) ,MO' 0 ) o)

with suitable choices of 0,0 = w(z) > 4(z) on D.
= w>din D= i(0,8) <w(0,0) = —-;- o6%/?
= d,(0) < —% adt/2,

On the other hand, 5%2% (a(z', p(z"))) = 0 at 0,

N - - 1
= Uil + UnpPH = 0= U11(0) = u11(0) = —-un(O)pu(O) > 5 0'2(51/2.
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O

Finally, we consider the C1'*(Q) regularity of degenerate M A with general boundary
value.

Theorem 10 Let ) be a strongly convex domain in R™ with 0Q € C31, g € C3>1(8Q), and
let f be a non-negative function in Q such that fY/("=1 e CLY(Q), then there is an unique
convez solution u € CH1(Q) of the Dirichlet problem

det(D%u) = f in Q
ulon = g

Consequently, any generalized solution of the above problem in C°(Q) must belong to C1(Q).
And

||U||cl,1(§) <C
where C depends only on Q, ||g]|cs.1, ||f5%T|lC1,1.

Remark. Above result was obtained by Krylov under assumption that f T e CH1(Q). The
result in the present form is due to P. Guan—N. Trudinger-X.J. Wang. Examples show that
the above result (with exponent —7;—1_—1—) is optimal.

Proof of Theorem. (We assume f > 0, but our estimates will be independent of infg f.)
We already have
m3x|D2u| < C’(HI%?ZX|D2UI), and |ur,] < C,

|urn| < C for T tangential at 9. To control up,, we estimate lower bounds of wurr. V
zo € 0S), we may assume g = 0, and (u;j)n—1,n—1 diagonal at 0. Now, assume f = h™1,
h >0, h € CHHQ). We state

Lemma 9 H?;ll uii(0) > 0 f(0) (vo constant depending only on Q, |\glia1, ||hl1,1-)
Lemma 10 ||u;(0)] < Cov/uii(0) (Co depending only on Q, |lgllcs.r, [|klcui.)

Assuming the lemmas, we have

n—1

IA

n—1
(n — 1)00 H Uii(O) + f(O)
=1

S um(®) € (=10 + L < (1= 1)Co+

i1 ui(0) 0
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The Theorem is proved. a
We now turn to the proofs of the lemmas. First, we normalize the boundary near 0.
1 /2 : ! N4
= p(z) = 3 |z'|* + cubic of 2" + O(|z'|*).

By subtracting a linear function, we may assume Vu(0) = 0, infqu(z) = u(0) = 0, and
u;;(0)=0,i#4,i<n-1,j<n-1

9(<, p(z)) = wa + R(a") + O(|z'|*)
by =u;(0)>0,i=1,...,n—-1, 0<b <by<-+ <bpy, (b1 £C)
Fact: If u = g = ax?+ Bz} + Ry(x1) on 0, @ > 0 and |Rs| < Alz1]?, then |8] < (1+A4)V/e.
Proof. Since u > 0 at 11 = ++/a.
Now, we provide of Lemma 9.

Proof We make a transformation X — Y = T(X), where ¥; = M;X;, ¢ = 1,...,n,

="M o vy = MPU(X), we b
Mn—M:%. et V() = (X), we have
2 rs det Yn In n 2
det(DYV) = f(¥) = f san) M) M
n i=1
Q = T(Q), near 0, I is expressed:
-1
_ M, b
Yo=p(Y') = Zdzyz +O(yB)), di=75=7 <1,
and |D $p| < |DEp| < C for k = 3,4. Also, on 01,
~0 ! 1n_1” 2 /
Viy)=3aly) = 3 Z biy; + R(y') + 4th orders (52)
i=1
where b; = %; b;=1. And
|Dy.d(y)| = M4|D 9(@)| < C.

The 4th orders in (52) are bounded, by Fact, Coeff. of R in (52) are uniformly bounded
(ie., independent of M;). Therefore, €2, § € C>! with norms independent of M;. Let

31



w={yeQlyn<1,|ys| <1,i=1,...,n— 1} by convexity of V, V = § < C on 6w N 0 =
V<CinCV.

Claim: sup{f(y)|ly € w} < C. If the claim is true, C > f(y) = f(yi/ms)/ [1°t b So,
Lemma 9 follows.

Proof of the Claim.

210 - & (e () (i)
20/ ()

< (C and

n—1

1
If ¢ = n, therefore ’32-; T

1 1

n—1 n-1 1 n—1 n-1
i i
= (5= (7)) < @

—_ 1
If : < n — 1, therefore f"_1I ect(Q), f>0=> |DTf71%T| < C -1 for 7 tangential. =

- =

\ 0

i ﬁi_l(y)‘ - Cfﬁ/ M; (f[lb)_

1
1 n—1 2(n—1
= Cfm/ M; I:Hbjjl
J

Since M V(12 0y) > MPT V2 by > My = 1

- )%ﬂ—i (y)} <O Vi<n-1.

Therefore, if sup,, f — 0o = infy, f — oo. If sup,, f is very large, inf f very large a standard
barrier argument gives inf,, v < 0 contradiction. This proves the claim, so Lemma 9. As
for Lemma 10, we first prove:

Sublemma: Letting v be inner normal to 92, 7 be a tangent vector, V z € 99, if |z| <
$v/bn—1, then |uy-(z)| < Cy/ba_1 (Note, n = 2, Lemma 10 follows).
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Proof.
Let M = ﬁ, z — y=T(z) with

y/ — \/Mw/
Yn = Mzy,.
Set v(y) = M?u(z), we have

det(D2v) = f € M1 {(T7H(y)), Q=T(Q)

89 can be expressed:
i =3 W) +O(yP)
On 8Q: .
o(y) =) = 5 3 biw? + R+ O(y'1),
;

where 5,- = ﬁi—l <1.

As before, we can show 952, ¢ € C3! (with norms independent of M). Similarly, for

w = {yeQy, <1}
supf C.

IA

This gives |vy(y)| < C for y € 082 (y, <

8=

)
A~ 1
= IDUISCmBQﬁ{yngi}

= |Dv|§Cin(~Zﬂ{yn§%}

therefore, o0 uniformly convex in y, < %,
the mixed derivative bounds in homogeneous case, we get |vsz| < C on ann {yn < %} =
luyr| < C. 0

using the same argument as in the proof for

Now, we prove Lemma 10. For ¢ = 1,---,n — 1, let us denote by 7, = 7(x) the
tangential direction of 0N at x € 0, which lies in the two dimensional plane parallel to
the z; and z, axes and passes through the point . Our induction hypothesis is that for

somek=1,---,n—2andi=k+1,---,n—1, there exists a constant §; > 0, depending on
Q,|pls,1 and |f]1,1, such that for = € 6Q, with |z| < 6;/b;, we have the estimates
Iu’YTj(‘T)l < C\/’IZ’VJ = 1a"'a7:7 (53)
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where C is a constant depending on €, |p|31 and |f|1,1. When k£ = n — 2, (53) is exactly
Sublemma with 6,1 = % We shall prove that there exists a constant g, also depending
on £, |¢|s 1, and | f]1,1, such that for z € 89, with |z| < 0x+/bg, we have

|tiyr; (2)] < CVbE, Vi =1, -+, k, (54)

where C is a constant depending on Q, |¢|3; and |f~|1,1. The Lemma then follows from
Sublemma and (54) by induction.
To prove (54), we introduce the dilation, z — y = T(z), defined by

inMiCL'i, i——-l,--',n,

whereM; =M, fori=1,---,k;and M; = /b;M, fori =k +1,---,n—1; with M, = M
where M = 31;. We may suppose that by < %bk+1, otherwise (54) follows immediately from
(53). Let v(y) = M2u(z). Then v satisfies

det(Dyv) = g(y) =: f(j\%)M?"/ ﬁ M?

i=1
in 1 = T'(?). Near the origin A is represented by

n—1

i =B) = 3 3 di? + O(y'P), (55)

i=1
where d; = 1, for ¢ < k, and d; = %‘j, for i > k + 1. After the transformation we have,
N 1 n—1 B .
v(y) = @) =5 3 bl + RW)+ Oy, v=(,p)) €%, (56)
i=1

where gi =1, t2>k,and Zi = b%’ i < k. As above we see that near the origin, both ¢

and 89 are C3! smooth and their C*-norms are independent of M.
Let N
w:‘{yeQ | y’n<ﬁ21 ly1| </87 'L:k—i—l):n_l})

where 8 will be chosen small such that the third and high order terms in (55) and (56) do
no harm to the following estimation. As before we may assume w is small and, by (55), w
is bounded independently of M. By the convexity of v we have,

v<C inuw.
Similar to the proof of Lemma 9 we have

sup{g(y); y€w} <C.
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To prove (54) it is crucial to establish a bound for the normal derivative of v near the
origin. The main difficulty is that we cannot control the convexity of 99 near the origin.
We construct a lower barrier v* by setting

N o 1
v'(y) = 5" + 5 Kyn — Ky,
where o > 0 small and K > 1 large will be chosen so that

det(D*v*) = o™ 1K > sup g(y).

We claim v* < v on dw (with appropriate choice of 8,0 and K). For later application
we will prove the stronger inequality

v* < lv on dw. (57)

Do

To prove (57) we first consider the piece 8yw := 8w N Q. For y € d1w we have, by (56),
1 (S 113 1. 2 ~12
=-2-Zl i +O(ly'*) 2 2151 - Clgl (58)

provided S is small, where § = (y1, - - ~,yk), and ¥ = (Yg4+1,- " - Yn—1). By (55) we have

v'(y) < 2|y P — 5Ky, < 5 21y - —I<2|:L/l2 (59)

Hence (57) holds on diw. On 8ew := 8w N {yn = B2} we have v > 0. For ¢ > 0 small and
K > 1 large, we have v* < —1K?p32, so that (57) also holds on dyw.

Finally we consider the piece 03w := Ow N {|y;| = B, forsomei =k+1,---,n—1}.
We only consider the piece 5w = dwN{y,—1 = B} since other pieces of dsw can be handled
in the same way. First we prove that

1
w(5) 2 36 on B N {y < c06%) (60)
provided g¢ is small enough. If 95w C {y, > €003%}, we have nothing to prove, so we may
suppose d4w N {yn < €0B?} # 0. To prove (60) we first fix a point p = (§,P,pn) € Fjw,
where p = (p1,--+,pk) # 0, P = (Prs1,**»Pn—1), Pn < €00%. For § > 0, sufficiently small,

we then fix a further point p* = (0,p,pn + d) so that the straight line through p and p*
meets J3w in a point P satisfying

1 * _— % —
Slp=pI<[pP-pI<IP-pl (61)
In view of the convexity of €} and the representation (55), we may accomplish (61) by taking
§ = [Vgp(0,p)| 1] < O(I8)
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and J sufficiently small. Now let p° = (0, 7, 5(0, §)) be the projection of p* on 8. We claim
lus(0°)| < C, (62)

where 7 is the unit inner normal at p°. Indeed, for any y = (0,7, 5(0,%)) € NN By, ,,(0),
with 641 as given in (53), we have, (for z € T-1(y)),

@il = s/ Mi] < Beabi/b}?, i=k+ 10 n -1,
Hence by (53),
n—-1 Lo
15@) S 1 (0) +C 3 sup{lai] - fuye, (@) [l < Ousabe/b%} < O,
i=k+1
and since u(0) = 0, we obtain

|Vu(z)| < Chratz = T (y).

By the definition of T,
[0y ()] = Mlug, (2)] < CMby = C.

Noticing that v = @ € C3 on 89, we obtain (61). From (61) and the convexity of v, we
have

v(p*) 2 v(p°) — Clp}, — pal, (63)
while, from (56),
1 n—1
op’) =5 > I+ 0",
i=k+1

and

n—1 E
oB) = 5 3 BlBP + O(p®) = v(s") + 3 Y- Blpil + ()
i=1

=1

Noticing that p2_; = 3, we have v(p°) > %Bz -0(B% > %,82 if B8 is small enough. Since
d; =1 in (55) when 7 < k, we see that

k
3 bilpil? < C(B, — 3| + B%) < C(B, + B°).

=1

Hence we may first fix 8 small and then choose g small so that B, < 2604? and

op) < o),
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whence by (63), v(p*) > 36%. Hence by (61) and the convexity of v, we have

op) 2 3u(p") — 20(F) > o(0") 2 4P

and (60) is proved.
From (60) we have

1
v(y) > §ﬂ2 — Cy, on O4w,
where C depends on 3 and €g. On the other hand,

v*(y) < Co — K?yn.

Hence v* < %v on 4w if ¢ is small and K large enough. This completes the proof of

inequality (57).

The next step in our proof is to adapt the barrier v* to obtain a normal derivative bound
near the origin. For any point yo € 01w, let £ = (&1,--+,&) = A(y — o) be an orthogonal
basis at yo so that &, coincides with the inner normal, where A is some orthogonal matrix.
We now set

vx () = P+ SKE — K20+ ),

where o > 0 small and K > 1 large, & = (&1, ,§n_1) ¢ is a linear function such that
|€(&) — v(y)| = o(|¢]) as & — 0. Since both ¢ and a0 are C3! smooth near the origin,
arguing as above and by virtue of (57)) we see that v* < v on dw if |yo| and o (> 0) are
sufficiently small and K > 1 is sufficiently large. By the comparison principle it follows
that v*(y) < v(y) on w. We therefore obtain, by the convexity of v,

ox(w)| < C, Vy e &

if y is near the origin. By choosing a new B we can then ensure the above estimate holds
for all y € 01w = Ow N OS}, subsequently, from the convexity of v,

|Dv| < C  in w.
We can now complete the proof of the Lemma by standard arguments. Let
Lw =19 Wi,
where {v"/} denotes the inverse of the Hessian D%y, and T = (T, -+, T}), where
T, = 0; + (YiOn — yn0s), i=1,---,k.
Applying the operator T to both sides of the equation

F(D%) := log det(D*v) = log g,
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we obtain
L(Tv) =T(logg),

where L = v%9;0;. Setting
w(y) = £T(v — §)(y) + Blyl?,
we have, since d; = 1 for ¢ < k in (55),
lw(y)| < Ca(lyl* + ya)ondw. (64)
Similar to the proof of Lemma9 we have
Vg2 D(y)l < G,

so that
Vgl < CglPr=2/20=1)(y).
Hence
Lw 2 BYv* - C(g7/2n) 4 3o (65)
> $BY v — Cg/2nD) (66)
> 3Bg~t/" — g2l > 0. (67)
(68)

provided B is large enough. Now set

W(y) = A(W* —v — yn) +w(y),

where A > 1 is a sufficient large constant to be chosen later. By (57) and the concavity of
F, we have
L(v* —v) > F(D*v*) — F(D%) > 0.

Consequently
Lw >0,

which implies the function w attains the maximum on the boundary of w.
We claim @(y) < 0 on dw for sufficiently large A. This is because by (60) and (64),

5(4) < O/ P + 1) — 2 A0(W) + 10).

Using (55) and (56), we then choose A large enough so that w(y) < 0 on Ow.
Noticing that @(0) = 0, we have therefore %1’6(0) < 0. Namely, |vin(0)] < C, ¢ =

1,---,k. Similarly we have lv,;—;z(y)| <C,i=1,--,k for y € 8w N OQ near the origin,
where 7; is a tangential direction of A8} at y which lies in the plane parallel to the y; and
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yn axes and passes through the point y. Pulling back to the z-coordinates we obtain the
desired estimate. d

We note that for degenerate Monge-Ampére Equations, C1'! regularity is the best that
can be expected. This is readily seen by letting B = B1(0) in R?,

u(z,y) = max{(z? - )*, (- "I

u is C¥ at 8B1(0), det(D?u) = 0 in B1(0).

The following example indicates that even if u € C%%, f >0, f € C* (or C¥), u may
not be necessary in C3. u(z) = |z|2*%, we have det(D?u) = Cy|z[2, C, > 0, but we have
only u € C%%. In this case f has the best possible degeneracy (i.e. f;;(0) = I). One may
wish to know when we have higher regularity of u (better than C1!). In the two dimensional
case, this is possible provided that: (i) f is of finite type near {f = 0}; (ii) Hessian matrix
D2y has at least one positive eigenvalue. The proof of the result depends on some tools in
micro-local analysis, we won’t deal with here. There is no such analogue result for n > 3
to date.
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6 Mass Transport Problem — A second boundary value prob-
lem for MA

Suppose 2, 2* are two domains in R®, f and g are two probability measures on 2 and Q*
respectively. We want to find a map T : @ — Q*. T preserves the measures: [ f = fT( B) 9>
V E C 2, E Borel, such that it minimizes the cost function '

/ IT(z) — z|%, (among the measure-preserving class).
Q

A Theorem of Rockafeller tells us, if such minimization T exists, T' is a convex potential,
i.e., T = Du, for some convex function in 2.
If u is C?, we readily see that

det(D%u) = f(z)/g(Duw), z € Q.

The above problem was first solved by Y. Brinier, he obtained a (unique) weak solution
(in general, his weak solution is not the weak solution in Alexandrov sense for MA). In
the case n = 2, Q, Q* are strongly convex, Delano proved the classical solvability of the
problem (the existence of regular solutions). Caffarelli obtained C1** interior regularity (if
Q* is convex (1992)), C1 global regularity (if both 2, Q* are convex, 1992), and G2
global regularity (if both , Q* are strictly convex, 1996). The problem was studied by
Pogolerov in n = 2.

Here, we will prove global C%¢ regularity of the solution to the problem under the
assumption that both Q, Q* are strongly convex. The proof is due to J. Urban (1997). In
an interesting article, J. Wolfson considers n = 2, f = g = 1. He obtained C* regularity
of the solution under the assumption mingg, k + mingn, ¥ > Co > 0. His approach is in
the direction of sympletic geometry. It’s important to understand what is the geometric
obstruction for the regularity of the problem.

Now, we try to put the problem in PDE setting: We want to find T' = Du, such that,
Du : Q@ — Q* diffeomorphism, and [ f = fVu(E) g, VE C Q. Let h be the defining
function of Q*, normalizing it as: Q* = {p € R™|h(p) > 0}, |Dh|sn = 1. We may assume
~(hp;p;) = CI >0V p € Q* (therefore Q* is strongly convex). Therefore, the problem is
equivalent to the following PDE (second boundary value problem):

2.\ — = :
det(D*u) = ?(%226 in Q (69)
h(Du) =0 on 9.
We may consider a little more general model:
det(D%w) = (f(2)/g(Dw)e™, O -
h(Du) =0, oQl.

Theorem 11 [f0< 2, < f<C< o0, in Q0<% <g<C<ooinQ*, and f,g € C*
(Jof = Jor9). If both Q and Q* are strongly convez. OS2, OQ* € C>1, then there is (a
unique, up to a constant) convex solution u of equation (69), u € C>*(Q) N C?*(Q) V
O<axl.
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Theorem 11 can be deduced from the following:

Proposition 2 There is constant ¢,C (Q,Q*, f,g, as in Theorem 11)V 0 < e < 1. Equa-
tion (70) has a unique solution u., such that maxq |D?u.| < C, and |hy(Duc) - v| > ¢ > 0
on O where v the normal at OQ. (c,C are independent of €).

Proof of Theorem 11. |Du,| is bounded and we know [, f = [5 g = [ € f. Therefore,
ue must change sign somewhere in Q, ie., 3 g € Q. u(xo) = 0 = Iulew(ﬁ) < C.
(|Due| bounded). By Proposition, the problem is elliptic (uniformly) and oblique. So
[|uell cra@) < C by Liberman-Trudinger Theorem, C independent of €. Let € — 0, we get
Uu. O

The rest will be devoted to the proof of the proposition.

Proof-Step 1. The obliqueness (v inner normal): Let x = > hp, (Du)v,. We want to
show x > C > 0. Let H(z) = h{Du(z)). V 7 tangential to 02, H = 0 and 2,

D;H = hp Diru=0on 0f and
D,H = hy Dgu>0on )

DiH = hy Dgu=(D,H)y (71)
we have
X = by v = (DyH)u" > 0, (72)
where -
u” = u ;.
From 71
hp; hp; Diju = xDy H, (73)
80
X = \/ bl v;vjupehp, Ry, (which is symmetric). (74)

Let zg € 01, such that mingg x = x (o).

We may assume v(xg) = €y, €1,...,€En—1 tangential at zp, we may also assume v ex-
tended into Q2 such that —[Dgvg] > CI on 6.

Consider V = x+ Ah(Du), A is a constant to be chosen. (Note that xg is still a minimum
point of V on 9Q2). We have

D;V(zo)=0, j=1,...,n—1

Assertion: D,V (zg) > —C.
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f

ne:

Claim: LV = u¥D;;V —Gp,D;V < C ¥ u in Q (where G(z, z,p) = log (e%* f(z)/9(p))))-

If the claim is true, we construct a barrier function w = V — e B + 1, where p is a

defining function of 2.
We have (therefore, —(p;;) > ¢*I > 0).

Lw < CXu® — C*BXu™ — B%u" p;p; — BGp,p;

in Q. Pick B large, Lw < 0 in § (since at the point Yu* >> 1, the second term dominates
others, if Yu¥ < M, = (u® > CI, the 2nd and 3rd terms together will dominate 1st
and 4th terms: Gp,p; < aLﬁ|GP|2 + afp? = mingw = mingqw = w(zo) = wWa(zo) > 0

= DnV(CL‘()) > ——Bpn(il:()) = —B. ]
Now to the claim: we compute

D)V = hpkpgDZi'UVk + th Dy, + Ahpkdkiu,
Di;V' = hpypppm Utitimgulk + hpyp UijeVi + Bpkp, we; Djvk
+ hpkpeuej + D;vy, + hkaijI/k + Ahpkpeukiuij + Ahpkuijk.

Making use of the fact u¥u;j; = Gg, + gouk + Gpuik. Acting u* on D;;V, gp, on D;V,
we get

uijDijV — gp; DiV
< hppgpm Utm + Abp p,uke + C(HA) + Cou®

< 0 if A large (therefore Su® > (det(u;) +>C> 0.)

< Cxu®.
O
Back to the obliqueness:
D;V(zo) =0,j <n-—1.
= hpnp,tt; + hp Dok + Ahp up; = 0 at xo (75)
D,V (zy) > —-C.
= Rp,poUtn + hp, Dok + Ahp upyn > —C. (76)

Multiply hyp; to 75, hp, to 76, sum up:

Aukfhpk hpe 2 'Chpn - (D kW)hpk hpe - th hpnpeukf
> —Chy, — (Drve)hpy hp,
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(since hp,ug; =0, j <n—1, hp ugn = 0 at zo).
Note at zg, X = hp,. We may assume Chy, < % — (Dyve)hp, hp,, this yields:

Ukthphpe > C > 06 Unp 2 C>0.

Similarly, we also have u”*(xz9) > C > 0, since by Legendre transform: u* (p) = zDu(x) —
u(z), P = Du(z), det(D?u*) = 1/ f(Du*, Epy - Dyu* — u*,p), Du*(Q*) = Q (with v and Dh
exchanged, and note that ?TZ: = z;, %;—j = u¥(z)). Therefore, x(zo) > C > 0.

Step 2: |D?*u| < C.

Let 8 = hp(Du) the oblique direction (as a vector field). Let M = maxgq|D%ul.
We already have some information: D,gu = 0 on 9%, Dygu 2> 0 on 09, and M <
C(H maxgq | D?ul).

Lemma 11 V § > 0, ugg < C(d) + 6M, on OfL.
Proof. Let H = h(Du), D;H = hp, Dpru, DijH = hp,p,uikUje + Rp, Uijk-

uijDin = hpep Ukt + hpy (Gmk + Gup + Gpiuik:)
—C(H|D?u|) > —(C(6) + 6M)Tu™

v

(therefore Tu® > C |D2u|n_£—1, this is a useful fact for us).
We may apply similar barrier argument as before to get Dygu < A(C(d) + 0M) on 09
= Dggu < A(C(8) + 6M), since v =z + 7, and & 2> Co > 0, Dgu is bounded.
O

Let max Diru(z) = Dyyru(zo). We may assume 7 = ey, and ej,...,en—1 tangen-
x,T

|r|=1ta51§ent
S
tial at 2o = 0, e, inner normal. We may assume u11(0) > 1 (otherwise, noting to prove).
We calculate: (for 7 = 7(e1), the projection of €1 to tangent directions at o).
2

n vy
—— Drgu+ ——— Dpgu
g T

[r[Pu11(0) + (C(8) + dM)vs

therefore 7(e1) = e; — v1v — % BT, where g =p-(B-vv

Dy = Dru+2

IA

2 2 By
= |T(€1)| 51-1—01/1 '—21/1‘,6.—1/
=  Dpu<[l1+Cv?+2,BT/(B-v)|un(0) + (C(6) + 6M)si.
Therefore,
def u11 2V1ﬂ%1
W =
111(0) B-v
C(é)—l—éM] 9 [~ 6M] 2
< 1+ |1C+ ———F <1+ |C(0) +
- [ u11(0) "= (9) u11(0) Y1
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on 0.

Again, we compute as before
U DyiW — Gy, Dyw > —(C(8) + SM)(Su™)
in 2. A standard barrier argument yields
wp(0) > C(6) + 6M.
So Dagw(0) > C(d) + M
= (Dpu11)(0) < (c(8) + 6M)(D11u(0).
Finally, differentiate h(Du) = 0 twice in €7 direction, evaluate at 0.
Dguy1 + hp,p,u1xtt1e + k1Dygu =0
(k1 normal curvature if 92 in € direction at 0).

= —hpypettiktine < [C(d) + 0M]uq; at 0.
=  u11(0) < C(0) + oM
= M<LCQA+C()+6M),

pick § small enough, M < C.
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7 Weak Solution Theory

Pogolerov’s example: z = (', z,), u(z', z,) = |2’|* f(z,), using polar coordinates in ’,
at ' = (z,0,...,0)

ala = 1)|z/|*72f 0 ale!|*71f!
a—2
D.2’U, — ’0. a|$| . f 8
Oé|117l|a_1fl 0 |wllafll

det(D%u) = o™(a — 1)a'["* 72 D(a - 1) "~ (f)?)f72
Let na —2(n—1)=0.a=2-2 (n>2).
1

f satisfies: (a—1)f" 1 f" = (f)* "2 = a(a—1)

First ode: (1 - 2)f" = BUEL™ f(0) =1, £(0) =

=  f”">0if f is defined = f convex .
=  u(z’,z,) well defined in a strip —a < z, < a.

Restrict u|p,, p < a, let glap, = ulgp, smooth g to C*g.,suchthat g —e <g<g.+¢
find a classical solution u: = u: +€ > u > u. — €.

2
ug CHPifp > 1—E=>u¢01’1.
Caffarelli’s example: u(z',z,) = |2/| + |2/|*f(zn), @ = &, n > 3, f(t) =1+ 2
Definition of a weak solution.

(i) Alexandrov sense, u convex det Du = du.

Consider the mapping Du, where Du(xg) is defined as multivalued mapping, Du(zo) =
{ all slopes of all “tangent” supporting planes to u at zg}.

det(D?%u) = du,
if |Du(E)| =du(E), VE C Q.
(ii) Viscosity: ¥V v € C?, det(D?v) > (<)du = u — v can’t have local min. (max.).
It can be shown that (i) and (ii) are equivalent.

In most of the cases we will treat du = fdz, 0 < A < f < A < oo. But, we will also
consider du, with following Doubling Property: Let S be a section of the group of U,
ie., S = {zu(z) — £(z) < O for some ¢ linear function} then u(S) < Cu(3 S). (making
origin as the center of mass of ).
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Lemma 12 Let u be a (weak, convex) solution of det(us;) = dp in Q, u = 0 on 09
and By C Q* C Bpgr with center of mass at 0. Suppose that for some 0 < J§, A < 1,
w(AQ) > 6u(QY) > 0. Then

lu(z)| < Cd*(z,0%), ligfu| ~ Cu%(ﬂ) (C, « dependent on 4§, A, R).

Proof. Alexandrov estimates |u(z)|" < Cd(z,dQ)u(2), on AQ, (1 — A)|Vu(z)| < |u(z)] <
linfou|. = p(AQ) = vol(ImageVu(AQ)) < (1 — A)™"|infq u|™.

Basic Theorem: Let u be a locally Liptshitz convex (weak) solution of det(u;;) = dp.
Assume that u satisfies doubling property. Then if ¢, is a supporting linear function to u
at zg, we have

(i) {u= s} = {zo}

oree
(i) {u = £z, } has no external points in the §2.

Proof. We may assume £;, = 0 (by considering n — £;,). {u = 0} is the set we have to
deal with. If {u = 0} has an extremal point in = 3 half space. Say {z, > 0}, if {zn, >
0}N{u =0} = Ky, Ko CC R and § # {z, = 0}N{u = 0} # Ko, K. = {u < ezp}N{z, > 0},
K. — Ky, f(z) = z,. Let 29 € Ky, such that fo(zo) = maxg, f(z), K. convex. T, affine
transform. TK, = K*. By C K* C B,,. Let ue = u — . u(z) = (det To)¥™u (T, ().
We focus on 2§ = T.(zp). We have

u(eh) _ welw) __ —eat 1
infgxuf  infgx, ue —emaxg, T, ~ 2

( K. = Ky, if € small z, = maxg, Zp). Also, by lemma, infg, uf < —Cu%(K;") <
—C,u%(Bl) = u¥(z§) < —Cuw(Bu)/2. Let m = {z, = 0}, m = {zp, = 20}. 7§ = {&n =
supg. y = z%¢}. The ratio

d(my,m§) _ 2h° — 2

d(m1, 7r§) B 1’9{5

is invariant under T;. Since n}, w3 are parallel, opposite supporting planes

=  2<d(n],m3) < 2n

Oe _ .0

z Ty e—0
n €300

= d(n3,m3) < 2n e
Ty

= d(z3,0K}) <d(rmj,73) =0
By lemma 12 |uX(z})| < Cd*(zj, 0K7) — 0. Contradiction.

Remark: If ug as in previous theorem. If ux — u unif. in compact subsets = then the
same conclusion holds for w.
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Lemma 13 Let u be a solution of det(ui;) du in Q. Suppose: (a)u =1 0n 09, B1C C 2 C
Bn, (b) infou = u(zg) =0, (c) du satisfies doubling property (u(Q) ~ 1 by Lemma 1). Let
ha be the cone generated by xg and level surface u = a. i.e., ho(z — o) is homogeneous of
degree 1 and ho(x—10) = o, ¥V 2 € {u = a} = 3§ < 1 such that hy3(z—x0) < 6h1(z—20).

Proof. Suppose 3 ug such that sup,,, h—iﬁ%? > 1 — yg. From Lemma 1 {u; = %}
and {ug = 1} stay unif. away from each other = 3 0 < C; < C; such that Ci|z — zo| <
hija(z ~ o) < ha(z — o) < Clz — xo| unif. for k. We have picked a subeqn such that
{zo} = {ur = 0} remains fixed, O = {ux < 1} conv. to @ = {u < 1}, up = u unif.
in compact subset of ). = graph of u has a segment starting at xg. zo extreme pt.
Contradiction.

Theorem 12 Let u be a solution of det(D?u) = du, du satisfies “doubling property”,
ulgg =0, B1 C Q C B,. Let 29 € Q, u(xo) = infqu(z). Then u is CH* at z9, o and C1*
norm depending only on du.

Proof. We normalize the level surface u = 2% by affine transform Tj. Since doubling
property is invariant under affine transform. By Lemma 2, hy-x < ¥*h; after iteration k
times, with 0 < v < 1. Since u € C%!, hy(z) < C|z|. Let @ > 0, such that 27% =+, then

hax(2) < C27MPlal < 27%, it fa] < Z (2790,

Since u < hg-x(x) if Hy—k(z) < 27, we get u(z) < 27% if |z| < L 27%(1=%), This allows us

to estimate the slope s of supporting planes at any point 4—10— 9-k(l-a) < 4 < 2—16" 9—k(1-0)

by

1 2—k(1—a) _ —k
ISI S /U’(C]'- U(y) S - 2 S 202—1611
& 9—k(l—a) _ Y ol 2—k(l-a)
< Clyl™=.

O

Lemma 14 Suppose u is a weak solution of det(D?u) du in Q, ulsgg =0, By C Q C By, du
satisfies doubling property. Then, ¥V € > 0, 3 6o > 0, such that if 0 < § < &g, d(z,00) > ¢,
¢ is a supporting plane of u at xg, then {{ +§ > u} CC Q.

Proof. Ifnot, 3 Q, uk, zo k, dug, such that By C Qi C By, det(D?uy) = dug, dist(zox, Q%) >
g but {fuy, + % > ug} N D # 0. Passing to a subsequence, we get {€z, > u}dQ # 0.
Therefore {€;, = u} = {lz, > u}, zo € {fouu}. {fp = u} is nontrivial, since u # 0.
Therefore, {€o = up} has at least one extreme point in . Contradiction.

Corollary 1 If det(D?u) = du in , u|aq = 0, du satisfies doubling property, thenV Q' CC
Q,30>0,uecC®), (lullcragy < C, where C depending only on du and dist($Y', 692).
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Proof. Be Lemma 14, S5 = {u < £+ 4§} cC Q. We can apply Theorem 1, if we can control
the eccentricity of S5. We have

Lemma 15 If Ss = {u<{+6} CCQ, if EC Ss CnE (E an ellipsoid), if A1,...,\n the
principal azes of E then \; > o2,

Proof. Let T : E — By. Let T(S5) = Q, we have B; C Q C B, Let

M S AN
= ) LY

we have det(D?@) = dii. i|sq = 0. Since di is the same as du (just change the variables)
by Lemma 9. infg @ ~ —1. infg,u = —§ = (det T)?/™ ~ § = vol(S5) ~ detT ~ §*/2
E C S5 C hE = X\ > 6"/, o

When z; is strictly convex.

Lemma 16 Let u be a convex weak solution of det(D?u) = du, 2, u|gq = f, (continuous).
dy satisfies DBP. Let T'(f) be the convex envelope of f in Q, i.e., I'(f) = supy<s on sn -
If u(zo) < T(f)(zo), then u is strictly convex, i.e., if Ly, is a support plane of u at xo,
diam{u < £y + p} < o(p) where o(p) = 0, p = 0, o depends only on the modulus of
continuity of f, T'(f)(xo) — u(zo) and du.

Proof. If not, 3 ug, up — uo is compact subsets of & = {up = £p = 0} is not a point.
{uo — £o = 0} has not extreme point = wug(zo) = I'(fo)(xo). (z & 0o, therefore f inf.
cont. u — I'(f) — 0 as x — 0.

Corollary 2 0 < A < det(D%u) < A < oo. If uloq is C*P, =« is strictly convex.
u e Cche,

Proof. We only need to show V zg € Q, u(zo) < ['(f)(z0). If not, after subtracting £, we
may assume that (a) u > 0; (b) u = 0 on a segment T1Z3 with 1 = toen, T2 = toe, on 0€1;
(c) T(Etoen + z*) < Clz*|'** a < u < T = u(Ltoe, +z*) < C|z* |1+ for ttge, +z € .
From convexity = for z, with ttge, + x € Q = u(ftoe, + z) < Clz|He.

We construct upper barrier for u that becomes zero at origin that will be a contradiction.

B(t,z) = EA?Z [a"‘th + %W] = det(D?B) < det(D).

Let’s compare u and B on [|t| < t/2, |z| < ¢ for |z| = &, B > %152, u < cpelt® =

B>uifa= '611\;11’ M large (independent of £) on the top u > Ce'**, B > a® ity =

n—1)(1l—a
0D ()2 = u < Be. .

Corollary 3 If det(D?u) = du, du satisfies doubling property and u|ga = 0. Then u is
strictly convex.
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Proof. Since if {u(x) = ['(0)(z)} N Q # 0 it is nontrivial = {u = £,} has an extreme point
in Q. Contradiction.

Corollary 4 Let M be a convex set in R™. Assume that the Gauss curvature of OM (in
Alezandrov sense) satisfies doubling property, then, OM is strictly convez, and OM € cle,

Proof. It’s enough to show locally that any supporting plane to O0M touches OM only at
point (with estimate).

Claim: If ¢ is a supporting plane to &M, v is the inner unit normal, 3 § (depending only
on du), such that £ + dv separates a portion of M that projecting in the v direction.

Proof of the claim. If not, 3 M} — M, such that 8M N{ is nontrivial. If zg € OM NY, we
can always locally project M = 1z can’t be an extremal point to M N£ by main Theorem
= OM N{ is unbounded. Contradiction. a

The following corollary shows Pogolerov’s example in some sense is the extreme case:
We now turn on to C>® regularity. First, we state Pogolerov’s Theorem:

Theorem 13 Let 0 <r < R < 00, B, C Q) C Bpg, §2 convezx (no smooth assumption on 0
and § is not necessary strongly convex!). Then

det(D*u)=1 inQ
u=0 on 082

has a unique convez solution u € C®(Q). Ve > 0 let Qe = {u < —€} we have, V k > 2,
0 < a<1|ullgran)) < C, where C depending only on €,n,k,a, 7, R.

Proof. By Evans-Krylov Theorem, we only need to show ||ul|gk.eq)) < C. (Note: u(z) >
—Cd3 (z,00) by a standard barrier argument). We have |Vulg,, < C. After proper

scaling, we may assume maxgq |u] <1 ( maxq |u| ~1). Set h = |u — %|(D2u)e%|D“|2, where

D unit vector field. Let hp, (z0) = max pi=y h = 2o € Q2 (b = 0 on 9 /y). We may
.'EEQE/Q

assume zg = 0, D; = % u11(0) is the max of D?u(0) = u1;(0) =0V j > 2. After rotating

T9,...,Tn. We may assume (u;;(0)) is diagonal at 0. Let L = Eml@Dii = L(h) >0 at 0,

and Vh(0) =0

1 101 ) w1 2
= —L(u11) — Bi— |—(w11s)*| +waL(u1) + 5;—= + =Lu — £;—~ <0
u11 uiy Lug i U Ui

therefore L(u) = n, L(u1) = 0, L(u11) = T eud;,/ urkuee.

_L(u1k£)2 -y _}_.@4..2.2%24.2..2%

=02 Eké 175
U1l UkkUee U1 Uii Usis U Uig

- y
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2
1 ulkl n u

=X
kfl u— 11 ugrlygy

U
Thereforehizo=>0=%%+u1u1i+%=’;—111n'+’—‘1f, 1>2

2 2
U114 U; 1 UUI114
=>ui=—u———z=>—’=—< - .
u11 Ui Uii u11

1l

2 1k¢
. Uy
. —%
For i # 1, oix155 can be absorbed by azziun Y

2 2 2
n o u n u 2n  u
Sup<—+—+=—+—"L<—+—1

uoown Jul w7 e un

= u;(0) < C = h(0) <C = |D*u| < C.
]

Lemma 17 IfB1 CQ C Bp, 1 —¢ < f < 1+¢, det(D?u) = f ulag = 0. Suppose w be the
solution of det(D*w) =1 w|aq = 0. Then:

Q+e)fw<u<(l—grw.
Proof. Comparison Lemma.

Lemma 18 Ifdet(D%u) = f,0< f < Co < o0 in Q C B,(0) ulag = 0. If mingu = u(0) =
—1, then 3 r depending only on n and Cy such that B-(0) C Q.

Proof. If re, is the closest point of 8Q to 0. Consider barrier A = C(4n)?h (f—;, m),
1 ,
where h = —z3 (1 - Jm_2|_2_> O

Lemma 19 Suppose 1 —¢ < f < 14 ¢ (e small) det(D?*u) = f in Q, By C Q C By,.
Let u(zo) be the minimum point of u. Then 3 po > 0 such that if 0 < p < po. If S, =
{z|u(z) < p(zo)+p}, 0S, C Ns(OF) where E = {E(i"a_ii?u)2 =1},0<C; <o < Cy < 00,
N =1,v= pl/2, 8 = C(v3/% + €1/2). (N5 mean §-neighbourhood). Furthermore, if 8§ is
a o-neighbourhood of B, then |a; — 2| < Co*/3. (The constants C1,C2,C in the lemma are
universal).

Proof. Let w be a solution as in Pogolerov’s Theorem. Since w € C*! in Ba.(z0) (r is
4

the constant in Lemma 18), £ small, u small. S,(w) = {w = minw + p} C By (o). Taylor
development for w yields that the lemma is true for w (at w(Z) = minw) with § = Cy%/2.
Now, by Lemma 17 |u — w| < ce =

Sp—ce(w) C Su(u) C Sppee(w).
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The first conclusion of the lemma follows.
If 99 is in o-neighbourhood of Bj, we have (by comparison lemma)

2

Li §w§1+ca+2%.

l—~co+X

0o |8,

Since w € C*1, interpolation yields:

1
|Di]”w - 5613]'!31/2 < 00'1/3.
O

Theorem 14 Let Q be a bounded convex domain in R™. Suppose det(D*u) = f in Q, f
positive in Q, f € C*(), ulpn =0. ThenV QU CCQ, u e C?((Y), and

lullcza@y < C,
where C' depending only on f, dist(,00).

Proof. V zp € ', we know that u is strictly convex at z¢ and 3 do > 0 (8o depending on f
and dist(2',00)). dist({u < £, + 6o}, 00) > M?—I’B—QZ. Since f is C*, by Lemma 16, we
may pick dp such that |f(z) — f(zo)] < (“2—0)3/2, Vz € S5, ={u < s + o}, where pg is the
constant in Lemma 19. We may also assume f(zy) = 1. Now we normalize S5, using John’s
Lemma. After the normalization, we may assume (still denote u for its normalization, since
we want avoid too many notations).

(77)

det(D%u) = f, B; C Q C By,
ulon =0

If—1] < (M2Q)3/2, and f € C*(f1) (C* norm of f may change, depending on dy, but &y is
fixed from now on).

So, we need to show u is C** at u(zg) = mingu (with norm controlled). We may
assume zo = 0 (Lemma 18).

We will show by induction that V k € Z*, v B <p=po, 3 Ey = {2°Crz = 1},
(Ck) > 0, such that det(Cy) = o |Ck = Crgal < cp/12, 98,k C Ngk(M%Ek), where
0 = Cui_k, k = 1 follows directly from Lemma 19. Suppose we have above for k. We
consider u* = ﬁ;U(uk/QTk_l(a:)) where Ty, : E, — B, 5. Let Q% = T;.S . By kth hypothesis
Q* is in Cp,fa/ 4 neighborhood of ]? va» by Lemma 19, 8S,(u*) is in é-neighborhood of
vE, where E = {E(%’:)2 =1} 0§ = 1, v = 4%, 6§ = (32 + £¥2) ~ cu¥/4, and
l&; — 2| < Cpk/1? geale back, let Exi = Tk_lE' = TE), where T : E — B s, we get the
desired property.

Claim: Let Py(z) = X*CyX, then
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() |Pr(z) — u(m)|B“k/2 < C’pk(l"'a'), (o = min(g, %))
(i) |Ck — Chs1| < Cub/1?

Proof of the Claim: (ii) has already been proved. As for (i) since S ~ ,u,%Ek (Eg is
unif. elliptic) . Since f is C* = |f(z) — 1| < C(u¥/?)* = C,u%g, Vze S, On 6(p,§Ek),
lu(z) — Py(z)| < 6 ~ ,ugf. Comparison Lemma (applied to ux = El,;u(ukﬁTk_l(m))). We

get |[u(z) — Pe(z)| < Cmax(pith) < Cpukl+e), g

By the claim, P, — P, P is a quadratic polynomial. Now, V |z| ~ p/? we have
o0
u(z) — P()| < |u(z) — Pe()| + Y |Pi() — Pesa(z)|
k=L

< Ous+e) 4 |z1> Y " |Cx — Cr1l
k=t

< Custe)  (|z] ~ uf?).
= uwelC sued@) =z>ue @)

Since &’ > 0, and f € C°. 0

Corollary 5 Let M be a conver set in R™. Assume that the Gauss curvature of OM is
positive (bounded below and above) and is C* for some o > 0, then M € C?*.

Proof. We already have proved &M is strictly convex (with estimate). O

Corollary 6 If f is a positive C* function on S™, [¢n Efl =0,i=1,...,n+1. Then, there
is a C*® conver surface M in R™, such that f(z) = k(i) (z)), where k is the Gauss
curvature of M.

Proof. By Minkowski-Alexandrov, M exists (weak). Weak solution theory applies. O

Theorem 15 (Jurgen, Calabi, Pogolerov) . Let u be a global (viscosity) solution of
det(D?u) = 1. Normalize it so that u > 0, u(0) = 0. Then, u(z) = S a;z?, a; > 0,

[Ty (ai/2) = 1.

Proof. Step 1. wu(z) > 0V |z] > 0. If not, {u(z) = 0} contains an infinite line.
{u(z) < 1} must contain an open cylinder (around the line). So it contain ellipsoids FE,

with V(E) = M — co. E = {2% =1}. Let P = 1+ MY/*[£ — 1], Plog = 1, det(DP) = 1
but P(0) < 0. O
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Step 2. 'y = {w < A} ~ B,i/2. Therefore u is strictly convex C** at 0. ({u = 1} is
bounded, convex). If we normalize it, we may assume D?u(0) = £1d. Let T(Py) =T} ~ By
(ie., B C T} C By). T can be taken diagonal. u*(z) = —(qul,)aﬁu(Tw), minu* ~ 1,

and osc(u) = X = (det )%™ ~ X\ = Id ~ D*u*(0) = Tz((lgz;)(zo}g = (g;"%tg", if we write

2
T:[“1 0}#[“1” 0 ]w[d:>ui~)\1/2.

0 up 0 uZ/A

Step 3. V0 < a < 1, [Diule = 0 (Even: “U*||C(2],3a < C(0,n) ||D2u*||CQ(B(1/2n)) <
1/3n

C(0,n). Therefore T is basically a dilation,

Cn)
D%ul|¢ce <
| D%ul|c ®, 3, S ar2
A = 00 = ||D%ul|ga =0 = D*u = Id/2.
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