A CONSTANT RANK THEOREM FOR QUASICONCAVE SOLUTIONS
OF FULLY NONLINEAR PARTIAL DIFFERENTIAL EQUATIONS
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ABSTRACT. We prove a constant rank theorem for the second fundamental form of the
convex level surfaces of solutions to equations F (Dzu7 Du,u,z) = 0 under a structural
condition introduced by Bianchini-Longinetti-Salani in [2] .

1. INTRODUCTION

A function u is called quasiconcave if its level set {z|u(x) > ¢} is convex for each
constant c. The convexity of level-sets of solutions for partial differential equations was
first studied by Gabriel [9] for harmonic function v in convex ring domains of the form

(1.1) Q=Q0\ 2y, with boundary condition u|go, = 0 and u|sq, = 1.

Lewis [15] extended the results in [9] to p-harmonic functions. Caffarelli-Spruck treated
this problem for general inhomogeneous Laplace equation in [6] with the same bound-
ary condition (1.1) in connection to a free boundary problem. Kawhol [12] proposed an
approach of using quasi-concave envelop to study the level-set convexity of solutions to
PDEs. Colesanti-Salani [7] carried out this approach for a class of elliptic equations. The
technique was extended by Greco [10], Cuoghi-Salani [8] and Longinetti-Salani [16] for
equation of type

(1.2) F(D*u, Du,u,z) =0

in convex ring under various structure conditions. General structure conditions on F' in
equation (1.2) with Dirichlet condition (1.1) have been obtained in a recent paper [2]
by Bianchini-Longinetti-Salani. All these type of results are of macroscopic nature. A
different direction in the study of the convexity is the microscopic convexity principles.
The constant rank theorem for the second fundamental forms of level sets of solutions to
certain type of quasilinear equations was established by Korevaar [13], see also Xu [17] for
recent generalization of results in [13].

Our interest is the microscopic counterpart of Theorem 1.1 in [2] by Bianchini-Longinetti-
Salani. Let 2 be a domain in R”, 8" denotes the space of real symmetric n X n matrices
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and A C 8" is an open set, and F = F(r,p,u,z) is a C>! function in A x R” x R x €.
For each (6,u) € S"~ ! x R fixed, set

(1.3) Ip = {(A,t,a:) € A x (0,400) x Q: F(E3A, 1710, u,2) > o}.

We will assume that F' satisfies the following conditions: there is y9 > 0 and ¢y € R,

OF
(14) Faﬁ = <87’ (Tapvua l‘)> > 07 v (r,p,u,x) € A xR" x (_70 +co,v0 + CO) X Qa
af
and
(1.5) ['r is locally convex for each (6,u) € S*~1 x (=70 + o, 70 + o)-

Theorem 1.1. Suppose u € C>(Q) is a solution of fully nonlinear equation (1.2) such
that (D*u(x), Du(z),u(z)) € A x R™ x (=9 + co, 70 + co) for each x € Q. Suppose that,
F' satisfies conditions (1.4) and (1.5), Du # 0 and the level sets {x € Qu(x) > ¢} of u
is connected and locally convex for all ¢ € (—vo + co,Y0 + co) for some vy > 0. Then the
second fundamental form of level surfaces {x € Q|u(x) = ¢} has the same constant rank
for all ¢ € (=0 + co, Y0 + ¢o)-

Remark 1.2. The structural condition (1.5) is a localized version of a condition intro-
duced by Bianchini-Longinetti-Salani (condition (1.2) in [2]). Under that condition and a
weaker ellipticity condition, Bianchini-Longinetti-Salani proved (Theorem 1.1 in [2]) that
any solution u of equation (1.2) on convex ring 2 = Qg \ ©; with the Dirichlet boundary
condition (1.1) is quasiconcave, provided |Du| # 0. Theorem 1.1 implies the strict con-
vexity of the level-sets in Theorem 1.1 in [2]. Also, Theorem 1.1 may yield macroscopic
level-set convexity result if there is a homotopic path. As discussed in [2], condition (1.5)
is satisfied by a class of elliptic operators, including Laplace operator, p-Laplace operators
and Pucci’s operator.

The proof of Theorem 1.1 uses the techniques developed in Bian-Guan [1] for the con-
vexity of solutions of nonlinear partial differential equations. The convexity of level-sets
is much more involved due to the distinguished gradient direction of the set {u = ¢}. This
is also the main fact that the structural condition (1.5) is different from the structural
condition considered in [1].

The organization of the paper is as follows. In section 2, we list some useful formulas
for the second fundamental forms of level sets in terms of u, Du, D?>u. Main technique
lemmas will be proved in section 3. The proof of Theorem 1.1 is given in section 4.

2. PRELIMINARIES

We recall some basic notation of differential geometry of hypersurfaces in R™. For a
hypersurface ¥ given by a graph in a domain in R* !,

z, =v(x), 2 = (z1,22, ..., n_1) € R" L,
one may express the first fundamental form as

(2.1) gij = Oij + VgV, Vi, j<n—1
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The upward normal direction 77 and the second fundamental form I1 for a graph x,, =
v(z') are respectively given by

1
2.2 . — TR D)
(22) P w1 1)
’Ui ; ..
(2.3) hij = %, Vi, g<n—1

where W = (1 + |V0|?)2.

Definition 2.1. The graph of function z,, = v(z’) is convezr with respect to the upward

normal
1

m(—mv —U2, ..., =Un—1, 1)
x/

if the second second fundamental form I1 := (h;;) defined in (2.3) is nonnegative definite.

n=

The principal curvature kK = (K1, ..., kn—1) of the graph satisfies
det(hij — /{gij) =0.
Equivalently that x satisfies
det(aij — Héij) = 0,

where a;; is the symmetric Weingarten tensor defined as
.. l .. l . .
{aij} = {9"}2{hij}H{g"}2, Vij<n-1

here {g"/} is the inverse matrix to {g;;}, and {gij}% is its positive square root. They are
given explicitly by
7 Vg, Vx; iy L Vg,V
24 Y ={0ij — =5+ Y12 ={0jj — =}
(2.4) 19"} {U we b 19"} {w W(l—i—W)}
The Weingarten tensor of the hypersurface can be expressed as (e.g., see [5]),

n—1

1 VUV VUL VL V; V]V VLV .
25) ay = 7(@,_ G0l _ §OkY5 ) Vil<n—1.
(25) au j;lw VLTI W) WA+ W) W2+ )2 LEST

Let Q be a domain in R” and u € C?(2), such that |[Du| # 0 in Q. Denote the level
surface of u passing through the point z, € ) as

ul@o) .= {x e Qu(x) = u(z,)}.

We wish to express the Weingarten tensor of the level surface in terms of u, Du, Du.
At xg, after proper rotation, we may assume Du = (ui,---,u,) with u, # 0. By
Implicity Function Theorem, the level set ©%(*e) can be locally represented as a graph

T, =v(z'), 2 = (z1, 22, ..., 1) € RV,
For u(z1, ..., Tn_1,Tn) € C?(£2), and the function v(z') satisfies the following equation

(2.6) w(xy, 2, ooy Tp—1,0(1, 22, .., Tn_1)) = C.



4 BAOJUN BIAN, PENGFEI GUAN, XI-NAN MA, AND LU XU

Differentiate equation (2.6),

U; 1
ui+unvi:07 Ui:_iv W:(1-|-|Vx/v|2)§ =7 -
It follows that the upward outer normal direction of the level sets is

|un]
| Dy,

(2.7) = (U1, U2y oey Up—1, Up,)-

Differentiating (2.6) one more time,
Ujj + UinVj + UnjV; + UnpViVj + Upvi; = 0.
In turn,

1
2
(2.8) v = 3 [UpUij + UnnUiUj — UpUjUin — UpUiljp).
n

The second fundamental form II of the level surface of function w with respect to the

upward normal direction (2.7) is

B |un|(u721uzj + UnnUitj — UpUjlin — UnUiUjp)
|Dulu?

(2.9) hij =

Note that expression (2.9) is valid locally near g € €2, independent of constant ¢ in (2.6).

Definition 2.2. For a function u € C%(Q) with |Du| # 0 in Q, for each y € Q, the level
surface

S = {z € Qu(z) = u(y)}

is called locally convex with respect to Du near zo € ") if there is a local coordinate
chart near xy (probably after some rotation) such that w,(x) > 0 and the second funda-
mental form h;; defined in (2.9) is nonnegative definite near zo with respect to the upward
normal direction 7 defined in (2.7) for z € L% close to .

Remark 2.3. If {x € QJu(x) > c} is locally convex, then the second fundamental form
of 3¢ is nonnegative definite with respect to Du by Definition 2.2. For any zg € €, if
un(z0) = |Du(zg)| and the level set {z € Q|u(x) = u(zp)} is locally convex near xg, then
(2.9) implies that the matrix (u;j(xo)) is nonpositive definite.

From (2.5) and (2.9),

n—1
uiulhﬂ ujulhil uiujukulhkl
2.10 T hij — — .
A0 = 2 G WO W )
With the above notation, at the point x where u,(z) = |Vu(x)| > 0, u;(x) = 0, a;j is
commutative. That is, they satisfy the Codazzi property a;; i = aixj, Vi, j,k <n — 1.
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3. ESTIMATES

Since Theorem 1.1 is of local feature, we may assume level surface X¢ = {z € Q|u(x) =
c} is connected for each ¢ € (co—70, co+70). Let I(z) be the rank of the second fundamental
form of ¥*(*) at x. Denote

(3.1) l= IlIélgl(ﬂf)

Since the values of [(x) are in Z, there is zy € Q such that [(z¢) = I. We will concentrate
in a neighborhood of some point zy € Q such that [(z¢) = . We may assume | < n — 2.
We will assume u € C3Y(Q), u, > 0 and the level surface X is convex with respect to
normal Du for each ¢ in a small neighborhood of u(xy) in the rest of the paper.

Let O be a small open neighborhood of zg such that for each x € O, there are [
”good” eigenvalues of (a;;) which are bounded below by a positive constant, and the other
n—1—1"bad” eigenvalues of (a;;) are very small. Denote G the index set of these ”good”
eigenvalues and B the index set of ”"bad” eigenvalues. For each z € O fixed, we may
express (a;;) in a form of (2.10), by choosing eq,--- ,e,—1, e, such that

(3.2)  |Du|(z) = un(x) > 0 and the matriz (u;;),i,j = 1,..,n — 1 is diagonal at x.
From (2.10), the matrix (a;;),?,j = 1,..,n — 1 is also diagonal at z, and without loss of

generality we may assume a1 < a2 < ... < ap—1,n—1. There is a positive constant C, > 0
such that

ap—1n—1 Z0p-2n-2 2 . 2 Ap—in—1 > Co,Vx € O,
G={n-Ul,n—Il+1,..n—1}, B={1,2,...,n—1—1}.
If there is no confusion, we also denote
(3.3) B ={a11,...;an1-1n-1-1} and G = {an_1;n—15 Gn-1,n-1}-

Note that for any 6 > 0, we may choose O small enough such that a;;(z) < d for all j € B
and € O. For two functions f,h in O, we write h = O(f) if |h(z)| < Cf(z) for x € O
with positive constant C under control.

For each ¢ close to u(zg), let a = (a;j) be the symmetric Weingarten tensor of 3¢. Set

oa(ay) .
(34) p(a) — Ul+1(aij)7 q(a) — JHl(aij)v Zf 0'l+1(‘a1]) >0
0, otherwise.

Theorem 1.1 is equivalent to say p(a) = 0 (defined in (3.4) ) in O. For general fully
nonlinear equation (1.2), as in the case for the convexity of solutions in [1], there are some
technical difficulties to deal with p(a) alone. A key idea introduced in [1] is to use some
crucial concavity properties of function ¢ defined in (3.4). Set

(3.5) ¢(a) = p(a) + q(a)
where p and ¢ as in (3.4). Theorem 1.1 is equivalent to say ¢(a) = 0.
To get around p = 0, for € > 0 sufficiently small, consider

(3.6) ¢e(a) = ¢(ac),
where a. = a + ¢I. Denote G. = {a;; +¢,i € G}, B: = {ai; +¢,i € B}.
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To simplify the notation, we will drop subindex € with the understanding that all the
estimates will be independent of €. In this setting, if O small enough, there is C' > 0
independent of € such that

(3.7) ¢(a(z)) = Ce, o01(B(2)) = Ce, forallze O.

In what follows, we will use 4, j, - - - as indices run from 1 ton—1 and «, 3, - - - as indices
run from 1 to n. Denote
dp 0%p o _ OF

Pa = 8%’ Po = aa:a(‘)xg’ N 8uag7

I<ao,B<n
and set

(3.8) Ho= > |Vay|+¢.
1,jEB
Lemma 3.1. For any fived x € O, with the coordinate chart chosen as in (3.2) and (3.3),
(3.9) Pa = 01(G) Z Qjj.a t O(H¢)
JjEB
and

n n n
Y Fag < —u?0i(G)Y 1Y FPuagjjus —6 > FPuggjunun,

a,f=1 jE€EB a,p=1 a,f=1

(3.10) + 6 FPuugul]+ O(Hy).
a,B=1

Proof of Lemma: For each fixed point x € O, in a coordinate system as in (3.2),

(311) = =aj; = O(Hy),¥j € B; Pa == 01(G) Y ajja + O(Hy).
n jeB
By (3.11),
(3.12) Pap = 01(G Za]] af — 2 Z ] aaz]ﬁ |+ O(Hy).
JjeEB i€G,jEB

We now need to figure in the distinguished gradient direction Dwu in the symmetric
tensor (a;j). Since up, =0 at x for k=1,--- ,n — 1, from (2.10),

(313) UnUijo = _U%aij,oc + UnjlUia + Unilljo + Unallij, Vi, j<n-—1,
and for each j € B,

uiajj,a/@ = 2UpUjalnjg + 2UnUjgUnja + 2UnlnjUagj — uiuagjj — 2UnpaUnjUjs
—2un5unjuja — 2unnujaujﬂ + O(H¢)
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Hence, for j € B,

n

n
FoB
(3.14) Z Faﬁajj,a,g = Z F[—Uiuaﬂjj - 4unaunjuj5 + 4unujaunj5
a?/B:]‘ a7ﬂ:]‘ n

+2UnUnjUagj — 2UnnUjatjg] + O(Hy).

[e%

Using the fact that >0 F"upe = (3_7, 521 — Zg;% n_ ) F*Pu,s, Vi € B,

n n n—1 n

> FPupaujs = uni( Y =Y ) Fugs 4+ O(Hy),
a,B=1 a,f=1 p=la=1

n n n—1 n
> FPujaunis = tni( > =D VFPuag; + O(Hy),
a,B=1 a,f=1 a=1p=1

and

n
—2Unn Z Faﬁujauj/g = —2unnF”nu,2w~ + O(Hy)

a,B=1
n n—1 n—1
a,B=1 a=1 a,B=1

Put above to (3.14),

n
SN Fulagiag

JjEB a,f=1
n n
= —uiz Z F“ﬁuagjj—i—GunZunj Z Fo‘ﬁuaﬁj
JEB a,f=1 JEB a,B=1
n n—1 n
O3 3 P Yy 3 3
jEB a,B=1 JjEB a=1p=1
n—1 n—1

(3.15) 8> upi > FMupa + 6> ud; > FPuqgs + O(Hy).

jeB a=1 jEB a,p=1
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By (3.13), for j € B,

n—1 n
Unp, Z ZF UaBj = Un Z <Z Fo"uwa + ZF Uzyoz)

a=1p=1 a=1 “ieB ieG
Z Z FO~u2aij o + UinUjn + UjaUin)
a=11ieG
n .
+ Z Z Fal(uiaujn + u]'aum) + O(H(p)
a=1ieB
(3.16) = —ui Z Z Fmaij@ + Un; Z F%u;; + 2unj(z qum‘) + O(H¢)
a=1ieG icG i=1
(3.15) and (3.16) yield that, Vj € B,
n n n
Z FoBy3 n@jjiaB = —u? Z Faﬂua/gjj + 6upuy; Z Faﬁuagj — 6uij Z Faﬁuaﬁ
75 1 Oé,ﬁ:]. 0576:1 Oé7ﬂ:1
n
(3.17) FAudun; Y Y FYi50 + 2up; Y Flug + O(Hy).
a=1ieG i€G

From (3.17), Vj € B,

n

Wir s
3.18 F()éﬁ . _ 1j,aij, 3
(3.18) > FPlajsap =2 =
a,B=1 i€G
n n
= —u;3[ Z FPu2ung5 — 6un Z FP%j 055
7ﬁ_1 ,ﬂ_l
6 ZF‘“ﬁu /5}—22 ZF aij,a0ij 3
a,f=1 i€G a,5=1

+4u Unj Z Z Fmaw o+ 2u_3 2 Flla; + O(Hy).

a=1ied z‘eG
2 u?  Fii,
Claim: Vi,j, — Z FPa;; alij g+ un] ZFo"al]a—FmiB“ <
Qi a,B=1 a=1 Un
Assuming the Claim, by (3.12)
> g1 FPag - =
(3.19) aﬁal(G) o<yt Z Z [FPu2ujjap — 6unFPujnujas

j€EB a,f=1
+6u§nFaﬁuag} + O(Hyp).
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We need to check the Claim. It is equivalent to the following inequality,

n n
(3.20) Z Faﬂaij7aaijﬂ - 2u;1unjaii Z Fmaij7a + U;2U?LJF”(L?Z< > 0.
a,B=1 a=1

We may assume ¢ = 1 and j is fixed. Set Xy = u;lauuj«n and X, = a1 for 1 <o <n,
(3.20) follows from the fact that (n + 1) x (n + 1) matrix

Fll _Fll _F12 . _Fln
_Fll Fll F12 . Fln
_F21 F21 F22 . F2n
_'}';w;zl Fnl Fn2 . Fnn
is semi-positive definitive. O

Lemma 3.2. ¢ € CY1(O) and for any fived x € O, with the coordinate chosen as in (3.2)
and (3.3),

9q oi(B|j) — o2(Blj)
21 = 3 B Bli) o oty
(3 ) q e, = O'%(B) Qjj, ( ¢)

and

n
Z FaﬁQaﬁ

a,f=1
_ 02(Blj) — 02(Blj) —
= —un3 Z i ‘])2(B)2( 5) Z [Fo‘ﬂuaﬁjjui — 6F“5ua5jujnun + 6Faﬁua5u§n
jeB 1 o,f=1
1 n
1) Z ZFQB[UI(B)aii,a — Z ajjalo1(B)aig — ai; Z ajj,6]
TI\P)  p=1ieB jeB jeB
1 n
(3.22) T (B) > Y Fa0ai5 + O(Hy).
TP B=1itjeB

Proof: The fact ¢ € CH1(O) follows Corollary 2.2 in [1]. Though it was stated for
nonnegative matrix function W = (u;;) with u € C®1, the proof works for any nonnegative
matrix function W € CHL.
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Identity (3.21) follows directly from Lemma 2.4 in [1]. Again, by Lemma 2.4 in [1],

0?(Blj) — o2(B|j Qii i
Gos =3 1(Blj) — oo |J)[ajj,a5—2z lJ,a”wﬂ]

jeB of(B) jeq i
1
“ 5B Z [Ul(B)aii,a — aj Z ajj,a} [01(3)%,;3 — aj Z ajjﬁ}
1 i€eB jeB jeB

1

(3.23) ~5 Z aij.aaijp + O(Hg).
i#jEB

The lemma now follows from (3.18) and the Claim in the proof of Lemma 3.1. O

4. A STRONG MAXIMUM PRINCIPLE

We start this section with a discussion on the structure condition imposed in Theorem

1.1. For any function F(r, Du,u,z), write F® = %,FW = %’ -+ as derivatives of F'

with respect to corresponding arguments. For I'p defined in (1.3), denote
TTp ={V = ((Xap),Y,(Z)) € S" x Rx R" :< V,V (4, F(t °A,t710,u,2) >=0}.
Lemma 4.1. If F satisfies condition (1.5), then
QV,V) = FPriX, 5X,s+ 2F00, X 5V + 2FP" X 57,
+FUY 0,0, Y2 + 2F R Zy + F5% 7,75 + 2tF 10,y

+6tFP X 5V — 6t FP A5V

(4.1) 0,

N

for every
(Xop, Yy (Z) = (13 Xap =3t A0gY), —t72Y (Z)), with V = ((Xap),Y, (%)) € TTF,

where FoPrs Fabu ete. are evaluated at (t3A,t710,u, ), and the Einstein summation
convention s used.

Proof: Denote F(A,t,z) = F(t 3A,t0,u, ), condition (1.5) implies that F(A,t,z)
is locally convex with respect to the normal VF. That is, for each tangential vector

V = ((X).Y.(Z):
FoBrs %, %, 1 2FO0 KV + 25 %, 7
LMY L oFtn T G, 4 PR 7,7,

(4.2) <0.
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At (A, t, x),
FoB _y3paB  paBrs _4—6paBrs  pofar _ 43 paBar PTiT; _ [Tt
ﬁo‘@t — _3t—4,Faﬁ _ 3t_7Fa6’TSATS _7 t_5F0‘5’“19l, 7 ’
Ft= —3t4F°P A s — t72Fugy, Ftor = _3¢—4FoBas A gy — =2 puseg,
ot _ 12F“ﬁAa5 n 9F045,7"5Aa6147.s N 6Fozﬂ,ulAa69l N 2Fug, N Ful,usesel'
o t8 16 3 4
(4.2) is equivalent to

1 OFoBs X X, — 2 [3f4Faﬂ 3t TROBTS AL t*5Faﬂvuze,} XogY
ot 3B X 5 7, — 2 [3t‘4Fa/8’mkAag + t_QF“l’xkel} Y7 + F*%i 7,7,
+ [12t_5F°‘5Aag O BFOBTS A s A,
6t FOBU A g0y 4 2B FUE, 4 ¢ s 0193] Y2
43)  <o.
The left side of (4.3) can be written as
(4.4)  t8pedrs ()?aﬁ)?,.sﬂ — 6tX 0 ArY + 9AaﬁAm}72)
_oy~0 paBuig, [tf(a@ _ 3Aaﬁﬂ Y + 2t~ 4 Fosan [t)?aﬁ — 3Aa@ﬂ 7
AR g,0. Y2 — 242 FUTRGY 7,
FF L+ AT Y — 6P (1K — 34057 |V = 6170 R 4,57
= FOPTSX 65X, 4+ 2FPMNG, X\ gY + 2FOPTRX 5 7

+FU 0,072 + 2FY TR0 7y, + FU% 7,75 + 2t FU0,Y
+6LFP X, gY — 6t FP A, 572

where Xo5 = t4 t)?aﬁ - 3Aa/31~/ Y = —t72Y, and Z; = Z;. (4.1) follows from (4.3)
and (4.4). O

Theorem 1.1 is a direct consequence of the following proposition and the strong maxi-
mum principle.

Proposition 4.2. Suppose F,u satisfying assumptions in Theorem 1.1. If I = [(xg) (I
defined in (3.1)) for some point z¢ € €2, then there exist a neighborhood O of =y and a
positive constant C' independent of ¢ (defined in (3.5)), such that

n

(4.5) D F%as(z) < C(¢(x) + [Vo(z)]), ¥z € O,
a,B=1
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Proof of Proposition 4.2. Let u € C*'(Q2) be a solution of equation (1.2) and
(uij) € S™. Suppose l(zg) = [ for some zg € 2. We work on a small open neighborhood O
of x9. We may assume [ < n — 2. Lemma 3.2 implies ¢ € C11(0), ¢(x) =0, ¢(xg) = 0.
For € > 0 sufficient small, let ¢, defined as in (3.5) and (3.6). For each fixed x, choose
a local coordinate chart ey, -+, e,—1, €, so that (3.2) and (3.3) are satisfied. We want to
establish differential inequality (4.5) for ¢. defined in (3.6) with constant C' independent
of . In what follows, we will omit the subindex e with the understanding that all the
estimates are independent of €.

By Lemma 3.1 and Lemma 3.2

n n
Y FPap= ) F*(pap+ dop)

Oé,ﬁ:]. O‘vﬂzl

_ 0?(B|j) — 02(Blj =~
< —up?) [oz(G)Jr i |])2 Bz( U)} [ > Fulujjas
jEB 01( ) a,B=1

n n
—6uy, Z Faﬁujnujag+6u]2~n Z F“ﬁua/g}

a,f=1 a,pf=1
1 n
~53) 3D FPou(B)aia —ai Y ajiallo1(B)aig —ai Y aj; )
71 a,B=1ieB jeB jeB
1 n
4.6 — FBa; waii g+ O(Hg).
(4.6) o1(B) Z Z aij,atijp + O(Hg)

a,8=1i#ji,jeB

For each j € B, differentiating equation (1.2) in e; direction at z,

n
(4.7) > Fuqg; + F'ujy + FUuj; + F% =0,
a,B=1

n
> FPuqg;

057521
n n n
= — Z Fa’g’rsuaﬁjursj -2 Z Fa’g’uluaﬁjulj -2 Z Faﬁ’uujaguj
a,B,r,s=1 a,B,l=1 a,B=1
n n n
-2 Z FOBTig 5 — Z FUots g — ZZF“““uzjuj
a,B=1 l,s=1 =1

n n
(4.8) —2) Py — Pl — 2F Sy — FR =y F My — Flug;.
=1 =1
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It follows from (3.13) that, at x

n n n
Yo FPluagy = = Y Fuggiung —2 Y FOugagun,
a’ﬂzl CZ,,B,T',SII avﬁzl
n
-2 Z Fa’g’xjua,gj — Fu"’u"u?n — QFU"’Iju]'n
a,f=1
T j,T 5 Fn 2
(4.9) — R - 2%+ O(Hy).
n
Since uagjj; = Ujjas, (4.6) and (4.9) yield
F*ag
2 . . n
_ o7(B|j) — o2(Blj
= Zun3 [Uz(G) + i( |0')2(B) (Bl7) [ Z Faﬂ’rsuaﬁjursj
JEB 1 a,B,r,s=1

n n
+2 ) P ujapu, +2 ) FPiu
a,B=1 a,f=1
Un,
u

F
F Rty R 4 2R Ty, + PR 42

2 ]U%
Unp,

in

n n
+6 Z Faﬁujaguj'nun —6 Z Fo‘ﬁuagujzn

a,f=1 a,f=1
1 n
) > Y Fo1(B)aiia — ai Y ajjallon(B)aiig —ai Y aji4)
1 a,8=11i€B jEB jeB
1

Z Z Faﬁaijjaaij,g + O(H¢)

a,B=1 i?éj,i,jEB

(4.10) =118

For each j € B, set

n n n
Sj = [ D Fujagurs; +2 Y FO ujaguin +2 ) FPujag
a7ﬁ77‘75:1 O‘7ﬁ:1 avﬁzl
| o Fw
£ F, 2 4 PO 42— ud, |
n

n n
(4.11) + 6 ) FPujgujnu, —6 Y F*Puggul,
a,B=1 a,f=1
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and
Fi
Xnn = Unnjun + Wujjun;
onﬁ = uaﬁjunav(a75) 7& (na TL);
(412) Y = UjnUn, and Zl = 5Z]un

In the coordinate system (3.2),
(D?u(x), Du(), u(x),z) = (Du, (0, .0, |Du(z)), u,z) = (t-*A, 6, u, 2).

Accordingly, the components of V defined in Lemma 4.1 are

W
Unnj _ 3u7mujn F J’U,jj‘

Up 2 ul Frny2’
~ UaBj  SUasU;j
onﬂ == ua 2] - 23 ]n7v(a7/6) 7é (n7n)7
n n
Y = —ﬂ, Z,L = 5Z]un
Un,

At (t73A, 710, u, x),
Ve F = (F7), =3 3 F P uagun = F'u, (F7))
a,ﬁ:l
By (4.7),
< ‘77 v(A,t,z)}? >

Un

n n
= w2 Y pes(tel  ZUeSny 4 iy 4 03N Fugs + FUouy) + FY

Up? ul Uy,
af=1 a,B=1
= 0
That is V € TTp. It follows from Lemma 4.1 and the fact uj; = O(¢) for j € B,
(4.13) S; < C(¢).
Condition (1.4) implies
(4.14) (FB) > oI,  for some & > 0, and Yz € O.

Set
Via = 01(B)tiia — aii Z Ajjo-
jEB
Combine (4.14), (4.13) and (4.10),
Z?;AjeB,a:l azzja Z?GB,a:l V{i]
o1(B) af(B)

(4.15) FPgos < C(6+ Y |Vai|) — do
i,jEB
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By Lemma 3.3 in [1], for each M > 1, for any M > |v;| > 47, there is a constant C
depending only on n and M such that, Va,

(4

Set

1 o Zz‘;éjeB|aija|2 ics Via
16) Z laijal < C(1+ 55)(01(B) +\Z%az’z’a!) + 51 o(B) T o3(B) ]
i,j€B 0 icB 1
2 . .
oi(Blj) — o2(Blj) .
_ B
v = o1(G) + 2(B) ,Vj € B,

the Newton-MacLaurine inequality implies

(@) +12 7 > a(G), VjeB.

We conclude from Lemma 3.1, Lemma 3.2 and (4.16) that >, ;5 [Va;| is controlled by
the rest terms on the right hand side in (4.15) together with ¢ 4+ |V¢|. The proof is
complete. O
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