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Abstract. We prove a constant rank theorem for the second fundamental form of the
convex level surfaces of solutions to equations F (D2u, Du, u, x) = 0 under a structural
condition introduced by Bianchini-Longinetti-Salani in [2] .

1. Introduction

A function u is called quasiconcave if its level set {x|u(x) > c} is convex for each
constant c. The convexity of level-sets of solutions for partial differential equations was
first studied by Gabriel [9] for harmonic function u in convex ring domains of the form

Ω = Ω0 \ Ω1, with boundary condition u|∂Ω0 = 0 and u|∂Ω1 = 1.(1.1)

Lewis [15] extended the results in [9] to p-harmonic functions. Caffarelli-Spruck treated
this problem for general inhomogeneous Laplace equation in [6] with the same bound-
ary condition (1.1) in connection to a free boundary problem. Kawhol [12] proposed an
approach of using quasi-concave envelop to study the level-set convexity of solutions to
PDEs. Colesanti-Salani [7] carried out this approach for a class of elliptic equations. The
technique was extended by Greco [10], Cuoghi-Salani [8] and Longinetti-Salani [16] for
equation of type

(1.2) F (D2u,Du, u, x) = 0

in convex ring under various structure conditions. General structure conditions on F in
equation (1.2) with Dirichlet condition (1.1) have been obtained in a recent paper [2]
by Bianchini-Longinetti-Salani. All these type of results are of macroscopic nature. A
different direction in the study of the convexity is the microscopic convexity principles.
The constant rank theorem for the second fundamental forms of level sets of solutions to
certain type of quasilinear equations was established by Korevaar [13], see also Xu [17] for
recent generalization of results in [13].

Our interest is the microscopic counterpart of Theorem 1.1 in [2] by Bianchini-Longinetti-
Salani. Let Ω be a domain in Rn, Sn denotes the space of real symmetric n× n matrices
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and Λ ⊂ Sn is an open set, and F = F (r, p, u, x) is a C2,1 function in Λ × Rn × R × Ω.
For each (θ, u) ∈ Sn−1 × R fixed, set

(1.3) ΓF =
{

(A, t, x) ∈ Λ× (0, +∞)× Ω : F (t−3A, t−1θ, u, x) > 0
}

.

We will assume that F satisfies the following conditions: there is γ0 > 0 and c0 ∈ R,

(1.4) Fαβ :=
(

∂F

∂rαβ
(r, p, u, x)

)
> 0, ∀ (r, p, u, x) ∈ Λ× Rn × (−γ0 + c0, γ0 + c0)× Ω,

and

(1.5) ΓF is locally convex for each (θ, u) ∈ Sn−1 × (−γ0 + c0, γ0 + c0).

Theorem 1.1. Suppose u ∈ C3,1(Ω) is a solution of fully nonlinear equation (1.2) such
that (D2u(x), Du(x), u(x)) ∈ Λ × Rn × (−γ0 + c0, γ0 + c0) for each x ∈ Ω. Suppose that,
F satisfies conditions (1.4) and (1.5), Du 6= 0 and the level sets {x ∈ Ω|u(x) > c} of u
is connected and locally convex for all c ∈ (−γ0 + c0, γ0 + c0) for some γ0 > 0. Then the
second fundamental form of level surfaces {x ∈ Ω|u(x) = c} has the same constant rank
for all c ∈ (−γ0 + c0, γ0 + c0).

Remark 1.2. The structural condition (1.5) is a localized version of a condition intro-
duced by Bianchini-Longinetti-Salani (condition (1.2) in [2]). Under that condition and a
weaker ellipticity condition, Bianchini-Longinetti-Salani proved (Theorem 1.1 in [2]) that
any solution u of equation (1.2) on convex ring Ω = Ω0 \ Ω1 with the Dirichlet boundary
condition (1.1) is quasiconcave, provided |Du| 6= 0. Theorem 1.1 implies the strict con-
vexity of the level-sets in Theorem 1.1 in [2]. Also, Theorem 1.1 may yield macroscopic
level-set convexity result if there is a homotopic path. As discussed in [2], condition (1.5)
is satisfied by a class of elliptic operators, including Laplace operator, p-Laplace operators
and Pucci’s operator.

The proof of Theorem 1.1 uses the techniques developed in Bian-Guan [1] for the con-
vexity of solutions of nonlinear partial differential equations. The convexity of level-sets
is much more involved due to the distinguished gradient direction of the set {u = c}. This
is also the main fact that the structural condition (1.5) is different from the structural
condition considered in [1].

The organization of the paper is as follows. In section 2, we list some useful formulas
for the second fundamental forms of level sets in terms of u,Du,D2u. Main technique
lemmas will be proved in section 3. The proof of Theorem 1.1 is given in section 4.

2. preliminaries

We recall some basic notation of differential geometry of hypersurfaces in Rn. For a
hypersurface Σ given by a graph in a domain in Rn−1,

xn = v(x′), x′ = (x1, x2, ..., xn−1) ∈ Rn−1,

one may express the first fundamental form as

gij = δij + vxivxj , ∀ i, j 6 n− 1.(2.1)
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The upward normal direction ~n and the second fundamental form II for a graph xn =
v(x′) are respectively given by

~n =
1√

1 + |∇x′v|2
(−v1,−v2, ...,−vn−1, 1),(2.2)

hij =
vxixj

W
, ∀ i, j 6 n− 1(2.3)

where W = (1 + |∇x′v|2)
1
2 .

Definition 2.1. The graph of function xn = v(x′) is convex with respect to the upward
normal

~n =
1√

1 + |∇x′v|2
(−v1,−v2, ...,−vn−1, 1)

if the second second fundamental form II := (hij) defined in (2.3) is nonnegative definite.

The principal curvature κ = (κ1, ..., κn−1) of the graph satisfies

det(hij − κgij) = 0.

Equivalently that κ satisfies
det(aij − κδij) = 0,

where aij is the symmetric Weingarten tensor defined as

{aij} = {gij} 1
2 {hij}{gij} 1

2 , ∀ i, j 6 n− 1

here {gij} is the inverse matrix to {gij}, and {gij} 1
2 is its positive square root. They are

given explicitly by

{gij} = {δij −
vxivxj

W 2
}, {gij} 1

2 = {δij −
vxivxj

W (1 + W )
}.(2.4)

The Weingarten tensor of the hypersurface can be expressed as (e.g., see [5]),

(2.5) ail =
n−1∑

j,k=1

1
W

(
vil −

vivjvjl

W (1 + W )
− vlvkvki

W (1 + W )
+

vivlvjvkvjk

W 2(1 + W )2
)
, ∀ i, l 6 n− 1.

Let Ω be a domain in Rn and u ∈ C2(Ω), such that |Du| 6= 0 in Ω. Denote the level
surface of u passing through the point xo ∈ Ω as

Σu(xo) := {x ∈ Ω|u(x) = u(xo)}.
We wish to express the Weingarten tensor of the level surface in terms of u, Du, D2u.

At x0, after proper rotation, we may assume Du = (u1, · · · , un) with un 6= 0. By
Implicity Function Theorem, the level set Σu(xo) can be locally represented as a graph

xn = v(x′), x′ = (x1, x2, ..., xn−1) ∈ Rn−1.

For u(x1, ..., xn−1, xn) ∈ C2(Ω), and the function v(x′) satisfies the following equation

(2.6) u(x1, x2, ..., xn−1, v(x1, x2, ..., xn−1)) = c.
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Differentiate equation (2.6),

ui + unvi = 0, vi = − ui

un
, W = (1 + |∇x′v|2)

1
2 =

|Du|
|un| .

It follows that the upward outer normal direction of the level sets is

~n =
|un|

|Du|un
(u1, u2, ..., un−1, un).(2.7)

Differentiating (2.6) one more time,

uij + uinvj + unjvi + unnvivj + unvij = 0.

In turn,

vij = − 1
un

3
[u2

nuij + unnuiuj − unujuin − unuiujn].(2.8)

The second fundamental form II of the level surface of function u with respect to the
upward normal direction (2.7) is

(2.9) hij = −|un|(u2
nuij + unnuiuj − unujuin − unuiujn)

|Du|u3
n

.

Note that expression (2.9) is valid locally near x0 ∈ Ω, independent of constant c in (2.6).

Definition 2.2. For a function u ∈ C2(Ω) with |Du| 6= 0 in Ω, for each y ∈ Ω, the level
surface

Σu(y) = {x ∈ Ω|u(x) = u(y)}
is called locally convex with respect to Du near x0 ∈ Σu(y) if there is a local coordinate
chart near x0 (probably after some rotation) such that un(x) > 0 and the second funda-
mental form hij defined in (2.9) is nonnegative definite near x0 with respect to the upward
normal direction ~n defined in (2.7) for x ∈ Σu(y) close to x0.

Remark 2.3. If {x ∈ Ω|u(x) > c} is locally convex, then the second fundamental form
of Σc is nonnegative definite with respect to Du by Definition 2.2. For any x0 ∈ Ω, if
un(x0) = |Du(x0)| and the level set {x ∈ Ω|u(x) = u(x0)} is locally convex near x0, then
(2.9) implies that the matrix (uij(x0)) is nonpositive definite.

From (2.5) and (2.9),

(2.10) aij =
n−1∑

k,l=1

(hij − uiulhjl

W (1 + W )u2
n

− ujulhil

W (1 + W )u2
n

+
uiujukulhkl

W 2(1 + W )2u4
n

).

With the above notation, at the point x where un(x) = |∇u(x)| > 0, ui(x) = 0, aij,k is
commutative. That is, they satisfy the Codazzi property aij,k = aik,j , ∀i, j, k 6 n− 1.
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3. Estimates

Since Theorem 1.1 is of local feature, we may assume level surface Σc = {x ∈ Ω|u(x) =
c} is connected for each c ∈ (c0−γ0, c0+γ0). Let l(x) be the rank of the second fundamental
form of Σu(x) at x. Denote

(3.1) l = inf
x∈Ω

l(x).

Since the values of l(x) are in Z, there is x0 ∈ Ω such that l(x0) = l. We will concentrate
in a neighborhood of some point x0 ∈ Ω such that l(x0) = l. We may assume l 6 n − 2.
We will assume u ∈ C3,1(Ω), un > 0 and the level surface Σc is convex with respect to
normal Du for each c in a small neighborhood of u(x0) in the rest of the paper.

Let O be a small open neighborhood of x0 such that for each x ∈ O, there are l
”good” eigenvalues of (aij) which are bounded below by a positive constant, and the other
n−1− l ”bad” eigenvalues of (aij) are very small. Denote G the index set of these ”good”
eigenvalues and B the index set of ”bad” eigenvalues. For each x ∈ O fixed, we may
express (aij) in a form of (2.10), by choosing e1, · · · , en−1, en such that

|Du|(x) = un(x) > 0 and the matrix (uij), i, j = 1, .., n− 1 is diagonal at x.(3.2)

From (2.10), the matrix (aij), i, j = 1, .., n − 1 is also diagonal at x, and without loss of
generality we may assume a11 6 a22 6 ... 6 an−1,n−1. There is a positive constant Co > 0
such that

an−1,n−1 > an−2,n−2 > ... > an−l,n−l > Co, ∀x ∈ O,

G = {n− l, n− l + 1, ..., n− 1}, B = {1, 2, ..., n− l − 1}.
If there is no confusion, we also denote

B = {a11, ..., an−l−1,n−l−1} and G = {an−l,n−l, ..., an−1,n−1}.(3.3)

Note that for any δ > 0, we may choose O small enough such that ajj(x) < δ for all j ∈ B
and x ∈ O. For two functions f, h in O, we write h = O(f) if |h(x)| 6 Cf(x) for x ∈ O
with positive constant C under control.

For each c close to u(x0), let a = (aij) be the symmetric Weingarten tensor of Σc. Set

p(a) = σl+1(aij), q(a) =

{
σl+2(aij)
σl+1(aij)

, if σl+1(aij) > 0
0, otherwise.

(3.4)

Theorem 1.1 is equivalent to say p(a) ≡ 0 (defined in (3.4) ) in O. For general fully
nonlinear equation (1.2), as in the case for the convexity of solutions in [1], there are some
technical difficulties to deal with p(a) alone. A key idea introduced in [1] is to use some
crucial concavity properties of function q defined in (3.4). Set

(3.5) φ(a) = p(a) + q(a)

where p and q as in (3.4). Theorem 1.1 is equivalent to say φ(a) ≡ 0.
To get around p = 0, for ε > 0 sufficiently small, consider

(3.6) φε(a) = φ(aε),

where aε = a + εI. Denote Gε = {aii + ε, i ∈ G}, Bε = {aii + ε, i ∈ B}.
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To simplify the notation, we will drop subindex ε with the understanding that all the
estimates will be independent of ε. In this setting, if O small enough, there is C > 0
independent of ε such that

(3.7) φ(a(z)) > Cε, σ1(B(z)) > Cε, for all z ∈ O.

In what follows, we will use i, j, · · · as indices run from 1 to n−1 and α, β, · · · as indices
run from 1 to n. Denote

pα =
∂p

∂xα
, pαβ =

∂2p

∂xα∂xβ
, Fαβ =

∂F

∂uαβ
, 1 6 α, β 6 n,

and set

(3.8) Hφ =
∑

i,j∈B

|∇aij |+ φ.

Lemma 3.1. For any fixed x ∈ O, with the coordinate chart chosen as in (3.2) and (3.3),

(3.9) pα = σl(G)
∑

j∈B

ajj,α + O(Hφ)

and
n∑

α,β=1

Fαβpαβ 6 −u−3
n σl(G)

∑

j∈B

[
n∑

α,β=1

Fαβuαβjju
2
n − 6

n∑

α,β=1

Fαβuαβjunjun

+ 6
n∑

α,β=1

Fαβuαβu2
nj ] + O(Hφ).(3.10)

Proof of Lemma: For each fixed point x ∈ O, in a coordinate system as in (3.2),

−ujj

un
= ajj = O(Hφ), ∀j ∈ B; pα == σl(G)

∑

j∈B

ajj,α + O(Hφ).(3.11)

By (3.11),

pαβ = σl(G)[
∑

j∈B

ajj,αβ − 2
∑

i∈G,j∈B

aij,αaij,β

aii
] + O(Hφ).(3.12)

We now need to figure in the distinguished gradient direction Du in the symmetric
tensor (aij). Since uk = 0 at x for k = 1, · · · , n− 1, from (2.10),

unuijα = −u2
naij,α + unjuiα + uniujα + unαuij , ∀ i, j 6 n− 1,(3.13)

and for each j ∈ B,

u3
najj,αβ = 2unujαunjβ + 2unujβunjα + 2ununjuαβj − u2

nuαβjj − 2unαunjujβ

−2unβunjujα − 2unnujαujβ + O(Hφ).
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Hence, for j ∈ B,

n∑

α,β=1

Fαβajj,αβ =
n∑

α,β=1

Fαβ

u3
n

[−u2
nuαβjj − 4unαunjujβ + 4unujαunjβ(3.14)

+2ununjuαβj − 2unnujαujβ ] + O(Hφ).

Using the fact that
∑n

α=1 Fαnunα = (
∑n

α,β=1−
∑n−1

β=1

∑n
α=1)F

αβuαβ , ∀j ∈ B,

n∑

α,β=1

Fαβunαujβ = unj(
n∑

α,β=1

−
n−1∑

β=1

n∑

α=1

)Fαβuαβ + O(Hφ),

n∑

α,β=1

Fαβujαunjβ = unj(
n∑

α,β=1

−
n−1∑

α=1

n∑

β=1

)Fαβuαβj + O(Hφ),

and

−2unn

n∑

α,β=1

Fαβujαujβ = −2unnFnnu2
nj + O(Hφ)

= −2u2
nj

n∑

α,β=1

Fαβuαβ + 4u2
nj

n−1∑

α=1

Fαnunα + 2u2
nj

n−1∑

α,β=1

Fαβuαβ + O(Hφ).

Put above to (3.14),

∑

j∈B

n∑

α,β=1

Fαβu3
najj,αβ

= −u2
n

∑

j∈B

n∑

α,β=1

Fαβuαβjj + 6un

∑

j∈B

unj

n∑

α,β=1

Fαβuαβj

−6
∑

j∈B

u2
nj

n∑

α,β=1

Fαβuαβ − 4un

∑

j∈B

unj

n−1∑

α=1

n∑

β=1

Fαβuαβj

+8
∑

j∈B

u2
nj

n−1∑

α=1

Fαnunα + 6
∑

j∈B

u2
nj

n−1∑

α,β=1

Fαβuαβ + O(Hφ).(3.15)
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By (3.13), for j ∈ B,

un

n−1∑

α=1

n∑

β=1

Fαβuαβj = un

n∑

α=1

(∑

i∈B

Fαiuijα +
∑

i∈G

Fαiuijα

)

=
n∑

α=1

∑

i∈G

Fαi(−u2
naij,α + uiαujn + ujαuin)

+
n∑

α=1

∑

i∈B

Fαi(uiαujn + ujαuin) + O(Hφ)

= −u2
n

n∑

α=1

∑

i∈G

Fαiaij,α + unj

∑

i∈G

F iiuii + 2unj(
n−1∑

i=1

Fniuni) + O(Hφ).(3.16)

(3.15) and (3.16) yield that, ∀j ∈ B,
n∑

α,β=1

Fαβu3
najj,αβ = −u2

n

n∑

α,β=1

Fαβuαβjj + 6ununj

n∑

α,β=1

Fαβuαβj − 6u2
nj

n∑

α,β=1

Fαβuαβ

+4u2
nunj

n∑

α=1

∑

i∈G

Fαiaij,α + 2u2
nj

∑

i∈G

F iiuii + O(Hφ).(3.17)

From (3.17), ∀j ∈ B,
n∑

α,β=1

Fαβ [ajj,αβ − 2
∑

i∈G

aij,αaij,β

aii
](3.18)

= −u−3
n

[ n∑

α,β=1

Fαβu2
nuαβjj − 6un

n∑

α,β=1

Fαβujnuαβj

+6u2
jn

n∑

α,β=1

Fαβuαβ

]
− 2

∑

i∈G

1
aii

n∑

α,β=1

Fαβaij,αaij,β

+4u−1
n unj

n∑

α=1

∑

i∈G

Fαiaij,α + 2u−3
n u2

nj

∑

i∈G

F iiuii + O(Hφ).

Claim: ∀i, j, −1
aii

n∑

α,β=1

Fαβaij,αaij,β +
2unj

un

n∑

α=1

Fαiaij,α +
u2

njF
iiuii

u3
n

6 0.

Assuming the Claim, by (3.12)
∑n

α,β=1 Fαβpαβ

σl(G)
6 −u−3

n

∑

j∈B

n∑

α,β=1

[Fαβu2
nujjαβ − 6unFαβujnujαβ(3.19)

+6u2
jnFαβuαβ ] + O(Hφ).
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We need to check the Claim. It is equivalent to the following inequality,

n∑

α,β=1

Fαβaij,αaij,β − 2u−1
n unjaii

n∑

α=1

Fαiaij,α + u−2
n u2

njF
iia2

ii > 0.(3.20)

We may assume i = 1 and j is fixed. Set X0 = u−1
n a11ujn and Xα = a1j,α for 1 6 α 6 n,

(3.20) follows from the fact that (n + 1)× (n + 1) matrix




F 11 −F 11 −F 12 · · · −F 1n

−F 11 F 11 F 12 · · · F 1n

−F 21 F 21 F 22 · · · F 2n

· · ·
−Fn1 Fn1 Fn2 · · · Fnn




is semi-positive definitive. ¤

Lemma 3.2. q ∈ C1,1(O) and for any fixed x ∈ O, with the coordinate chosen as in (3.2)
and (3.3),

(3.21) qα =
∂q

∂xα
=

∑

j∈B

σ2
1(B|j)− σ2(B|j)

σ2
1(B)

ajj,α + O(Hφ),

and

n∑

α,β=1

Fαβqαβ

= −u−3
n

∑

j∈B

σ2
1(B|j)− σ2(B|j)

σ2
1(B)

n∑

α,β=1

[
Fαβuαβjju

2
n − 6Fαβuαβjujnun + 6Fαβuαβu2

jn

]

− 1
σ3

1(B)

n∑

α,β=1

∑

i∈B

Fαβ [σ1(B)aii,α − aii

∑

j∈B

ajj,α][σ1(B)aii,β − aii

∑

j∈B

ajj,β]

− 1
σ1(B)

n∑

α,β=1

∑

i 6=j∈B

Fαβaij,αaij,β + O(Hφ).(3.22)

Proof: The fact q ∈ C1,1(O) follows Corollary 2.2 in [1]. Though it was stated for
nonnegative matrix function W = (uij) with u ∈ C3,1, the proof works for any nonnegative
matrix function W ∈ C1,1.
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Identity (3.21) follows directly from Lemma 2.4 in [1]. Again, by Lemma 2.4 in [1],

qαβ =
∑

j∈B

σ2
1(B|j)− σ2(B|j)

σ2
1(B)

[
ajj,αβ − 2

∑

i∈G

aij,αaij,β

aii

]

− 1
σ3

1(B)

∑

i∈B

[
σ1(B)aii,α − aii

∑

j∈B

ajj,α

][
σ1(B)aii,β − aii

∑

j∈B

ajj,β

]

− 1
σ1(B)

∑

i6=j∈B

aij,αaij,β + O(Hφ).(3.23)

The lemma now follows from (3.18) and the Claim in the proof of Lemma 3.1. ¤

4. a strong maximum principle

We start this section with a discussion on the structure condition imposed in Theorem
1.1. For any function F (r,Du, u, x), write Fαβ = ∂F

∂rαβ
, F ul = ∂F

∂ul
, · · · as derivatives of F

with respect to corresponding arguments. For ΓF defined in (1.3), denote

T ΓF = {V = ((Xαβ), Y, (Zi)) ∈ Sn × R× Rn :< V,∇(A,t,x)F (t−3A, t−1θ, u, x) >= 0}.

Lemma 4.1. If F satisfies condition (1.5), then

Q(V, V ) = Fαβ,rsXαβXrs + 2Fαβ,ulθlXαβY + 2Fαβ,xkXαβZk

+F ul,usθlθsY
2 + 2F ul,xkθlY Zk + F xi,xjZiZj + 2tF ulθlY

2

+6tFαβXαβY − 6t−1FαβAαβY 2

6 0,(4.1)

for every

(Xαβ, Y, (Zi)) = ((t−3X̃αβ−3t−4AαβỸ ),−t−2Ỹ , (Zi)),with Ṽ = ((X̃αβ), Ỹ , (Zi)) ∈ T ΓF ,

where Fαβ,rs, Fαβ,ul , etc. are evaluated at (t−3A, t−1θ, u, x), and the Einstein summation
convention is used.

Proof: Denote F̃ (A, t, x) = F (t−3A, t−1θ, u, x), condition (1.5) implies that F̃ (A, t, x)
is locally convex with respect to the normal ∇F̃ . That is, for each tangential vector
Ṽ = ((X̃ij), Ỹ , (Z̃i)):

F̃αβ,rsX̃αβX̃rs + 2F̃αβ,tX̃αβỸ + 2F̃αβ,xkX̃αβZ̃k

+F̃ t,tỸ 2 + 2F̃ t,xk Ỹ Z̃k + F̃ xi,xj Z̃iZ̃j

6 0.(4.2)
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At (A, t, x),

F̃αβ = t−3Fαβ, F̃αβ,rs = t−6Fαβ,rs, F̃αβ,xk = t−3Fαβ,xk , F̃ xi,xj = F xi,xj ,

F̃αβ,t = −3t−4Fαβ − 3t−7Fαβ,rsArs − t−5Fαβ,ulθl,

F̃ t = −3t−4FαβAαβ − t−2F ulθl, F̃ t,xk = −3t−4Fαβ,xkAαβ − t−2F ul,xkθl,

F̃ t,t =
12FαβAαβ

t5
+

9Fαβ,rsAαβArs

t8
+

6Fαβ,ulAαβθl

t6
+

2F ulθl

t3
+

F ul,usθsθl

t4
.

(4.2) is equivalent to

t−6Fαβ,rsX̃αβX̃rs − 2
[
3t−4Fαβ + 3t−7Fαβ,rsArs + t−5Fαβ,ulθl

]
X̃αβỸ

+2t−3Fαβ,xkX̃αβZ̃k − 2
[
3t−4Fαβ,xkAαβ + t−2F ul,xkθl

]
Ỹ Z̃k + F xi,xj Z̃iZ̃j

+
[
12t−5FαβAαβ + 9t−8Fαβ,rsAαβArs

+6t−6Fαβ,ulAαβθl + 2t−3F ulθl + t−4F ul,usθlθs

]
Ỹ 2

6 0.(4.3)

The left side of (4.3) can be written as

t−8Fαβ,rs
(
X̃αβX̃rst

2 − 6tX̃αβArsỸ + 9AαβArsỸ
2
)

(4.4)

−2t−6Fαβ,ulθl

[
tX̃αβ − 3AαβỸ

]
Ỹ + 2t−4Fαβ,xk

[
tX̃αβ − 3AαβỸ

]
Z̃k

+t−4F ul,usθlθsỸ
2 − 2t−2F ul,xkθlỸ Z̃k

+F xi,xj Z̃iZ̃j + 2t−3F ulθlỸ
2 − 6t−5Fαβ

[
tX̃αβ − 3AαβỸ

]
Ỹ − 6t−5FαβAαβỸ 2

= Fαβ,rsXαβXrs + 2Fαβ,ulθlXαβY + 2Fαβ,xkXαβZk

+F ul,usθlθsY
2 + 2F ul,xkθlY Zk + F xi,xjZiZj + 2tF ulθlY

2

+6tFαβXαβY − 6t−1FαβAαβY 2

where Xαβ = t−4
[
tX̃αβ − 3AαβỸ

]
, Y = −t−2Ỹ , and Zi = Z̃i. (4.1) follows from (4.3)

and (4.4). ¤

Theorem 1.1 is a direct consequence of the following proposition and the strong maxi-
mum principle.

Proposition 4.2. Suppose F, u satisfying assumptions in Theorem 1.1. If l = l(x0) (l
defined in (3.1)) for some point x0 ∈ Ω, then there exist a neighborhood O of x0 and a
positive constant C independent of φ (defined in (3.5)), such that

(4.5)
n∑

α,β=1

Fαβφαβ(x) 6 C(φ(x) + |∇φ(x)|), ∀ x ∈ O.



12 BAOJUN BIAN, PENGFEI GUAN, XI-NAN MA, AND LU XU

Proof of Proposition 4.2. Let u ∈ C3,1(Ω) be a solution of equation (1.2) and
(uij) ∈ Sn. Suppose l(x0) = l for some x0 ∈ Ω. We work on a small open neighborhood O
of x0. We may assume l 6 n− 2. Lemma 3.2 implies φ ∈ C1,1(O), φ(x) > 0, φ(x0) = 0.
For ε > 0 sufficient small, let φε defined as in (3.5) and (3.6). For each fixed x, choose
a local coordinate chart e1, · · · , en−1, en so that (3.2) and (3.3) are satisfied. We want to
establish differential inequality (4.5) for φε defined in (3.6) with constant C independent
of ε. In what follows, we will omit the subindex ε with the understanding that all the
estimates are independent of ε.

By Lemma 3.1 and Lemma 3.2

n∑

α,β=1

Fαβφαβ =
n∑

α,β=1

Fαβ(pαβ + qαβ)

6 −u−3
n

∑

j∈B

[
σl(G) +

σ2
1(B|j)− σ2(B|j)

σ2
1(B)

] [ n∑

α,β=1

Fαβu2
nujjαβ

−6un

n∑

α,β=1

Fαβujnujαβ + 6u2
jn

n∑

α,β=1

Fαβuαβ

]

− 1
σ3

1(B)

n∑

α,β=1

∑

i∈B

Fαβ[σ1(B)aii,α − aii

∑

j∈B

ajj,α][σ1(B)aii,β − aii

∑

j∈B

ajj,β]

− 1
σ1(B)

n∑

α,β=1

∑

i6=j,i,j∈B

Fαβaij,αaij,β + O(Hφ).(4.6)

For each j ∈ B, differentiating equation (1.2) in ej direction at x,

(4.7)
n∑

α,β=1

Fαβuαβj + F unujn + F ujujj + F xj = 0,

n∑

α,β=1

Fαβuαβjj

= −
n∑

α,β,r,s=1

Fαβ,rsuαβjursj − 2
n∑

α,β,l=1

Fαβ,uluαβjulj − 2
n∑

α,β=1

Fαβ,uujαβuj

−2
n∑

α,β=1

Fαβ,xjuαβj −
n∑

l,s=1

F ul,usuljusj − 2
n∑

l=1

F ul,uuljuj

−2
n∑

l=1

F ul,xjulj − F u,uu2
j − 2F u,xjuj − F xj ,xj −

n∑

l=1

F ululjj − F uujj .(4.8)
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It follows from (3.13) that, at x

n∑

α,β=1

Fαβuαβjj = −
n∑

α,β,r,s=1

Fαβ,rsuαβjursj − 2
n∑

α,β=1

Fαβ,unujαβunj

−2
n∑

α,β=1

Fαβ,xjuαβj − F un,unu2
jn − 2F un,xjujn

−F xj ,xj − 2
F un

un
u2

jn + O(Hφ).(4.9)

Since uαβjj = ujjαβ , (4.6) and (4.9) yield

Fαβφαβ

=
∑

j∈B

u−3
n

[
σl(G) +

σ2
1(B|j)− σ2(B|j)

σ2
1(B)

] 



[ n∑

α,β,r,s=1

Fαβ,rsuαβjursj

+2
n∑

α,β=1

Fαβ,unujαβujn + 2
n∑

α,β=1

Fαβ,xjujαβ

+F un,unu2
jn + 2F un,xjujn + F xj ,xj + 2

F un

un
u2

jn

]
u2

n

+ 6
n∑

α,β=1

Fαβujαβujnun − 6
n∑

α,β=1

Fαβuαβu2
jn





− 1
σ3

1(B)

n∑

α,β=1

∑

i∈B

Fαβ[σ1(B)aii,α − aii

∑

j∈B

ajj,α][σ1(B)aii,β − aii

∑

j∈B

ajj,β]

− 1
σ1(B)

n∑

α,β=1

∑

i6=j,i,j∈B

Fαβaij,αaij,β + O(Hφ).(4.10)

For each j ∈ B, set

Sj =
[ n∑

α,β,r,s=1

Fαβ,rsujαβursj + 2
n∑

α,β=1

Fαβ,unujαβujn + 2
n∑

α,β=1

Fαβ,xjujαβ

+ F un,unu2
jn + 2F un,xjujn + F xj ,xj + 2

F un

un
u2

jn

]
u2

n

+ 6
n∑

α,β=1

Fαβujαβujnun − 6
n∑

α,β=1

Fαβuαβu2
jn(4.11)
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and

Xnn = unnjun +
F uj

Fnn
ujjun;

Xαβ = uαβjun, ∀(α, β) 6= (n, n);
Y = ujnun, and Zi = δijun.(4.12)

In the coordinate system (3.2),

(D2u(x), Du(x), u(x), x) = (D2u, (0, ..., 0, |Du(x)|), u, x) = (t−3A, t−1θ, u, x).

Accordingly, the components of Ṽ defined in Lemma 4.1 are

X̃nn =
unnj

un
2
− 3unnujn

u3
n

+
F ujujj

Fnnu2
n

;

X̃αβ =
uαβj

un
2
− 3uαβujn

u3
n

, ∀(α, β) 6= (n, n);

Ỹ = −ujn

un
, Z̃i = δijun.

At (t−3A, t−1θ, u, x),

∇(A,t,x)F = ((Fαβu3
n),−3

n∑

α,β=1

Fαβuαβun − F unu2
n, (F xi)).

By (4.7),

< Ṽ ,∇(A,t,x)F >

un

= u2
n

n∑

αβ=1

Fαβ(
uαβj

un
2
− 3uαβujn

u3
n

) + F ujujj +
ujn

un
(3

n∑

α,β=1

Fαβuαβ + F unun) + F xj

= 0

That is Ṽ ∈ T ΓF . It follows from Lemma 4.1 and the fact ujj = O(φ) for j ∈ B,

(4.13) Sj 6 C(φ).

Condition (1.4) implies

(4.14) (Fαβ) > δ0I, for some δ0 > 0, and ∀x ∈ O.

Set
Viα = σ1(B)aii,α − aii

∑

j∈B

ajj,α.

Combine (4.14), (4.13) and (4.10),

Fαβφαβ 6 C(φ +
∑

i,j∈B

|∇aij |)− δ0[

∑n
i6=j∈B,α=1 a2

ijα

σ1(B)
+

∑n
i∈B,α=1 V 2

iα

σ3
1(B)

].(4.15)



CONVEXITY OF LEVEL SETS 15

By Lemma 3.3 in [1], for each M > 1, for any M > |γi| > 1
M , there is a constant C

depending only on n and M such that, ∀α,

(4.16)
∑

i,j∈B

|aijα| 6 C(1 +
1
δ2
0

)(σ1(B) + |
∑

i∈B

γiaiiα|) +
δ0

2
[

∑
i6=j∈B |aijα|2

σ1(B)
+

∑
i∈B V 2

iα

σ3
1(B)

].

Set

γj = σl(G) +
σ2

1(B|j)− σ2(B|j)
σ2

1(B)
,∀j ∈ B,

the Newton-MacLaurine inequality implies

σl(G) + 1 > γj > σl(G), ∀j ∈ B.

We conclude from Lemma 3.1, Lemma 3.2 and (4.16) that
∑

i,j∈B |∇aij | is controlled by
the rest terms on the right hand side in (4.15) together with φ + |∇φ|. The proof is
complete. ¤
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