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Abstract

This report was compiled for the 2025 Winter term Directed Reading Program
at McGill University and is intended as an undergraduate-friendly introduction to
category theory. Algebra involves many abstract structures such as sets, groups,
and vector spaces. Category theory introduces a general math structure, category,
that encompasses all of the above and more. In fact, many familiar algebraic struc-
tures can be interpreted as categories. This paper discusses about basic concepts of
category theory, including objects, morphisms, functors and natural transformation,
developed with an emphasis on intuition and worked examples.
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1 Basic Concepts

Definition 1.1. A group is a non-empty set G with a binary operation ∗ : G×G→ G
satisfying:

1. Associativity: (a ∗ b) ∗ c = a ∗ (b ∗ c) for all a, b, c ∈ G.

2. Identity: There exists e ∈ G such that e ∗ a = a ∗ e = a for all a ∈ G.

3. Inverse: For every a ∈ G there exists a−1 ∈ G with a ∗ a−1 = a−1 ∗ a = e.

If ∗ is commutative, G is an abelian (or commutative) group.

Definition 1.2. Let G be a group. A non-empty subset H ⊆ G is a subgroup if the
following holds:

1. eG ∈ H

2. a, b ∈ H =⇒ a ∗ b ∈ H

3. a ∈ H =⇒ a−1 ∈ H

Clearly, every group is a subgroup of its own.

Definition 1.3. A ring R is a non-empty set equipped with two binary operations, called
“addition” and “multiplication”, satisfying:

1. Commutativity of addition: x+ y = y + x, ∀x, y ∈ R

2. Associativity of addition: (x+ y) + z = x+ (y + z), ∀x, y, z ∈ R

3. Neutral element for addition: there exists an elements 0 ∈ R such that 0 + x =
x, ∀x ∈ R

4. Inverse with respect to addition: ∀x ∈ R, ∃y ∈ R such that x+ y = 0

5. Associativity of multiplication: (xy)z = x(yz), ∀x, y, z ∈ R

6. Neutral element for multiplication: there exists an elements 1 ∈ R such that 1x =
x1 = x, ∀x ∈ R

7. Distributivity: z(x+ y) = zx+ zy, (x+ y)z = xz + yz, ∀x, y, z ∈ R

Definition 1.4. Note that the multiplication operation is not assumed to be commutative
in general. If xy = yx, ∀x, y ∈ R, then R is a commutative ring. If for every non-zero
x ∈ R there is an element y ∈ R such that xy = yx = 1, and also 0 ̸= 1 in R, we call R
a division ring. A commutative division ring is called a field.

Definition 1.5. Let R be a ring. A subset I ⊆ R is a (two-sided) ideal of R, denoted
as I ◁ R, if

1. 0 ∈ I

2. ∀ a, b ∈ I, a+ b ∈ I

3. ∀ r ∈ R, a ∈ I, ra, ar ∈ I

Thus I is an additive subgroup of R closed under multiplication by arbitrary ring elements
on both sides.
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Definition 1.6. Let R be a ring and let I ◁R be a two-sided ideal. A coset of I is any
subset of R of the form

a+ I := { a+ i | i ∈ I }, a ∈ R

Definition 1.7. Given a ring R and an ideal I ◁ R, the quotient ring R/I is the
collection of cosets

R/I = { a+ I : a ∈ R },

with addition and multiplication defined by

(a+ I) + (b+ I) = (a+ b) + I, (a+ I)(b+ I) = (ab) + I.

These operations are well defined precisely because I is an ideal and make R/I into a
ring with zero element 0 + I = I and identity element 1 + I.

Definition 1.8. A homomorphism is a map between two algebraic structures of the
same type, such as two groups, that preserves the operations of the structures.

1. A group homomorphism between groups G and H is a map φ : G → H such
that

φ(ab) = φ(a)φ(b), ∀ a, b ∈ G.

2. A ring homomorphism between rings R and S is a map ψ : R → S satisfying

• ψ(a+ b) = ψ(a) + ψ(b)

• ψ(a+ b) = ψ(a) + ψ(b)

• ψ(1R) = 1S

The kernel is ker(φ) = {g ∈ G : φ(g) = eH} (resp. ker(ψ) = {r ∈ R : ψ(r) = 0S}).

Definition 1.9 (Isomorphism). A bijective homomorphism is called an isomorphism.

Two algebraic structures R, S are isomorphic if there exists an isomorphism between
them, denoted as R ∼= S. Isomorphic structures are considered algebraically identical.

2 Categories

Definition 2.1. A category C consists of

• a collection of objects, denoted as X, Y, Z, ...

• a collection of morphisms, denoted as f, g, h, ...

such that:

• Each morphism is assigned to two objects as its domain and codomain (or source

and target), denoted as f : X → Y or graphically X
f→ Y , where X is domain

and Y is codomain of f .

• Each object X has an identity morphism idX : X → X
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• For any two morphisms f, g such that the codomain of f equal to the domain of
g, there exists a composite morphism g ◦ f(or gf) whose domain equal to the
domain of f and codomain equal to the codomain of g.

f : X −→ Y, g : Y −→ Z ⇝ g ◦ f : X −→ Z.

Then the structure satisfies the following axioms.
Axiom 2.1.

• Unitality: for each morphism f : X → Y , f ◦ 1X = f ◦ 1Y = f

• Associativity: for f : X → Y, g : Y → Z, h : Z → W , (f ◦ g) ◦ h = f ◦ (g ◦ h) and
we have hgf : X → W

Category is a very general structure that can be used to interpret many other structures
in algebra. Here are some examples.
Example 2.1. A preorder P is a set equipped with a binary relation such that:

• Reflexive: x ≤ x, ∀x ∈ P .

• Transitive: If x ≤ y and y ≤ z, then x ≤ z.

A partial order is a preorder that also satisfies:

• Antisymmetry: If x ≤ y and y ≤ x, then x = y.

We can consider a preorder P as a category C with objects being the elements of P and
for objects x, y, there exists a morphism f : x → y in C if and only if x ≤ y in P . Note
that for each such pair x, y, there is at most one morphism from x to y.

Two axioms can be easily verified. x ≤ x, so we have idx : x → x and if x ≤ y,
y ≤ z =⇒ x ≤ z by transitivity, then we have f : x→ y, g : y → z and g ◦ f : x→ z.

Now we introduce another useful construction about groups, which is also an example of
how to consider groups as categories.

Definition 2.2. Let G be a group. The delooping of G, denoted as BG defined as
follows:

• there is a signal object •

• for every element g ∈ G, there is a corresponding morphism g : • → •

We have identity corresponding to 1 ∈ G and composition corresponding to multiplication
operation of G, that is composition of morphisms g ◦ f is given by g · f .

Note that in the construction of delooping, we did not use the inverses of elements in
groups, that is, if we drop the inverse, we can still get a valid category. Here is an
example:
Example 2.2. A monoid is a set M equipped with:

• An identity element 1 ∈M

• An associative binary operation · :M ×M →M
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There is no inverse of elements in monoid, and we can still consider M as a category
using construction of its delooping. The category BG is stricter than the delooping of a
monoid, since all morphisms in BG are invertible, while monoids may have non-invertible
morphisms.

There are certain classifications within category theory. Within category theory, cate-
gories are sometimes classified as small or locally small, depending on the size of their
collections of objects and morphisms.

Definition 2.3.

• A category is small if the collection of its objects and the collection of morphisms
are sets.

• A category is locally small if the for any two objects A,B, the collection of mor-
phisms between them. The collection of objects may not be a set.

The reason we distinguish between small and locally small categories is that not all
collections can be treated as sets. A well-known example illustrating this limitation
is Russell’s Paradox: let R = {x | x /∈ x} be the set of all sets that do not contain
themselves—does R ∈ R hold? This contradiction motivated the development of more
rigorous foundations, such as Zermelo-Fraenkel set theory and type theory, though we
will not explore these in detail here.

3 Duality

Definition 3.1. The opposite category of a category C, denoted by Cop, is defined as
the category having the same objects as C, but with all morphisms reversed in direction.

If there is a morphism f : X → Y in C, then the corresponding morphism in Cop is
f op : Y → X. The identity and composition defined as follows:

• For each objects X, its identity is 1X
op in Cop.

• For composition, we define gop ◦ f op = (f ◦ g)op

The definition defines Cop if and only if C is a category. The process of inverting arrows
introduces a self-duality, which is a powerful property, for categories: a statement is true
in C if and only if the dual statement is true in Cop. The two statements may not look
the same.
Corollary 3.1. X, Y are isomorphic in C if and only if they are also isomorphic in Cop

4 Morphisms

It is nice to understand and reason about categories in directed graphs. We can consider
objects as vertices and morphisms between them as edges.
Example 4.1.

X Y

Z

f

h
g
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Definition 4.1. A graph commutes for each pair of two vertices, compositions formed
by paths among them are equal.

In the above example, f : X → Y , g : Y → Z and the graph commutes if and only if
g ◦ f = h.

Example 4.2.

We can also represent the opposite category(right) in graphs

X X

Y Y

Z Z

f

g

fop

gop

By duality, the graph in C commutes if an only if the dual graph in Cop commutes.

4.1 Isomorphism

Definition 4.2. An isomorphism is a morphism f : X → Y such that there exists a
morphism g : Y → X and gf = 1X , fg = 1Y .

The composition of isomorphisms is an isomorphism. An isomorphism has a two-sided
inverse.

Besides the isomorphism, we also have some other kinds of homomorphisms. An endo-
morphism is a morphism whose domain is its codomain and an automorphism is a
morphism that is both an endomorphism and an isomorphism. Check the graph 1.
Example 4.3.

• Isomorphisms in Set are bijections.

• Isomorphisms in Group,Ring are bijective homomorphisms.

Definition 4.3. A groupoid is a category in which every morphism is an isomorphism.

Example 4.4.

• Every group is a groupoid. Delooping of a group is a category, in which the inverses
are given by inverse elements in the group and composition is group multiplication,
with one object.

• (Database theory) Let objects be entities (e.g. people), and morphisms be equiva-
lence relations such as “is same as”. If all morphisms are invertible (mutual recog-
nition), the data forms a groupoid.

A groupoid is a natural generalization of both equivalence relations and groups. It not
only tells us whether two objects are equivalent, but also records how they are equiva-
lent—retaining the structure of invertible transformations between them.
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Figure 1: Venn Diagram of Homomorphisms. Image by AbelDrinkingCoffee, via Wiki-
media Commons. Licensed under CC BY-SA 4.0

4.2 Monomorphism & epimorphism

Definition 4.4. Let f : X → Y be a morphism,

• f is a monomorphism (or mono for short) if for any pair of morphisms g, h :
Z → X, the equality f ◦ g = f ◦ h implies g = h. Graphically, the following graph
commutes,

Z X Y
h

g
f

• f is an epimorphism (or epi for short) if for any pair of morphisms g, h : Y → Z,
the equality g◦f = h◦f implies g = h. Graphically, the following graph commutes,

X Y Z
f

g

h

Note that if f is a monomorphism or an epimorphism in C, then f is an epimorphism or
a monomorphism in Cop respectively.

Example 4.5.

• In Set, monomorphisms are injective maps and epimorphisms are surjective maps.

• In Group, monomorphisms are injective group homomorphisms.

• In a preorder, every morphism is a monomorphism since there is at most one mor-
phism between each two objects.

Proposition 4.1. Every isomorphism is both a monomorphism and an epimorphism, but
the converse is not necessarily true.

The forward direction is straightforward to understand and prove. Now, let us consider
a counterexample to show that the converse does not necessarily hold.
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Example 4.6. In the category of unital rings, the canonical inclusion

i : Z ↪→ Q

of the integers into the rational numbers is an epimorphism.

Proof. Every rational number can be written as the product of an integer and the mul-
tiplicative inverse of another integer:

a

b
= a · b−1 ∈ Q, with a, b ∈ Z, b ̸= 0.

Since unital ring homomorphisms preserve multiplicative inverses, for any such homo-
morphism f , we have:

f
(a
b

)
= f(a) · (f(b))−1 .

Now, suppose f, g : Q → R are two parallel unital ring homomorphisms into some unital
ring R, and they agree on the image of Z ⊆ Q, i.e.,

f ◦ i = g ◦ i.

Then for any a
b
∈ Q, we compute:

f
(a
b

)
= f(a) · f(b)−1 = g(a) · g(b)−1 = g

(a
b

)
,

so f = g. Hence, i is an epimorphism.

Thus we have i which is both mono and epi but not isomorphism.

4.3 split mono and epi

Definition 4.5.

Let f : X → Y be a morphism,

• Left inverse or retraction of f is a map r : Y → X such that r ◦ f = 1X .

• Right inverse or section of f is a map s : Y → X such that f ◦ s = 1Y .

The maps s and r express the object X as a retract of the object Y .

Sometimes we need to distinguish left and right sided inverse, and thus we have split
monomorphism and split epimorphism.

Definition 4.6.

Let f be a morphism,

• If f admits a left inverse, then f is a split monomorphism and the left inverse is
its splitting.

Graphically, the following graph commutes, where r is the left inverse of f :
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X Y

X

f

1X
r

• If f admits a right inverse, then f is a split epimorphism and the right inverse
is its splitting.

Graphically, the following graph commutes, where s is the right inverse of f :

Y X

Y

f

1Y
s

Every isomorphism is a split monomorphism and a split epimorphism since isomorphism
requires a two-sided inverse. Every split monomorphism and split epimorphism is a mono
and an epi, respectively.

Example 4.7.

• In Set, every injective and surjective map has a left and right inverse respectively,
and thus every mono and epi is a split monomorphism and epimorphism respec-
tively.

• inclusion Z ↪→ R is a monomorphism in Group, but not a split mono.

Proposition 4.2. Let f : X → Y be a morphism in a category. If f is an epimorphism
and also a split monomorphism, then f is an isomorphism. Dually, if f is a monomor-
phism and also a split epimorphism, then f is an isomorphism.

This explains why, in the category Set, a function is invertible precisely when it is both
injective and surjective: such functions are not only monomorphisms and epimorphisms,
but also split. However, this is not the general case.

5 Functoriality

Definition 5.1. Let C and D be categories. The functor F : C → D consist the
following data:

• An object Fc ∈ D, for each object c ∈ C

• A morphism Ff : Fc→ Fc′ ∈ D, for each morphism f : c→ c′ ∈ C

such that the following axioms hold:
Axiom 5.1.

• Unitality: for each object c ∈ C, F (1c) = 1Fc

• Compositionality: for each composable pair f, g ∈ C, Fg ◦ Ff = F (g ◦ f)

Graphically, we have the following graph, where X, Y, Z are objects in C and
FX,FY, FZ are objects in D:
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X Y Z

FY

FX FZ

f g

FgFf

F (g◦f)

The functor consists of a mapping preserving the structure of categories of objects and
morphisms.

Example 5.1. Let (X,≤) and (Y,≤) be partially ordered sets viewed as categories. A
monotonic function F : X → Y such that x ≤ x′ ⇒ F (x) ≤ F (x′) defines a functor
F : (X,≤) → (Y,≤). Since there is at most one morphism between any two objects in a
poset category, unitality and compositionality hold trivially.

Similarly, for equivalence relations (X,∼) and (Y,∼), a function F : X → Y such that
x ∼ x′ ⇒ F (x) ∼ F (x′) defines a functor F : (X,∼) → (Y,∼). Note that x ̸∼ x′ does
not prevent F (x) ∼ F (x′). In the target category, there may be more relations than in
the source category.

Example 5.2. Let (X,∼) be a set with an equivalence relation, and X/ ∼ be the
quotient set. Define a category with objects the equivalence classes [x] and only identity
morphisms. The quotient map F : X → X/ ∼, mapping x 7→ [x], induces a functor
F : (X,∼) → X/ ∼.

Identity morphisms are preserved: F (1x) = 1[x]. There are no nontrivial morphisms, so
composition is trivially preserved.

Example 5.3.

• Let G and H be groups. A group homomorphism f : G → H induces a functor
F : BG→ BH, where BG is the one-object category.

f(1G) = 1H ensures identities are preserved. f(g1g2) = f(g1)f(g2) ensures compo-
sition is preserved.

• LetM and N be monoids. A monoid homomorphism f :M → N induces a functor
F : BM → BN , in the same way as for groups.

Example 5.4. Let G be a group and Vect be the category of vector spaces over a
fixed field. A linear representation R : G → GL(V ), the group of all invertible linear
transformations of V , corresponds to a functor R : BG→ Vect.

R(•) = V , a vector space. For each g ∈ G, R(g) : V → V is a linear isomorphism. Since
gg−1 = e⇒ R(g)R(g−1) = R(e) = idV , each R(g) is an isomorphism.

Example 5.5. The power set functor is a functor P : Set → Set defined as follows:

• On objects: for a set X, define P (X) := {S ⊆ X}, the power set of X.
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• On morphisms: for a function f : X → Y , define Pf : P (X) → P (Y ) by

(Pf)(S) := {y ∈ Y | y = f(x) for some x ∈ S}.

This defines a functor since P (idX) = 1P (X) and P (g◦f) = P (g)◦P (f) for all composable
functions f, g.

Example 5.6. A forgetful functor drops some structure while preserving the under-
lying set:

• U : Group → Set, mapping a group to its underlying set and a homomorphism f
to the same function f .

• V,E : Graph → Set, mapping graphs to their vertex and edge sets.

• F : Ring → Ab, mapping rings to their additive groups.

• Inclusion functor I : Ab → Group, which forgets commutativity.

Example 5.7 (Graphs as presheaves). Let Par be the category with two objects V,E
and two parallel arrows s, t : E → V :

V E
s

t

A presheaf on Par, that is, a functor F : Parop → Set, consists of:

• Two sets: FV (vertices) and FE (edges);

• Two functions: F (s), F (t) : FE → FV , giving the source and target of each edge.

This structure defines a directed multigraph: multiple edges and loops are allowed. Note
that identities and composition are not present here, unlike in categories.

Example 5.8. Adapted from [Riehl, 2016, Example 1.3.4].

Definitions

• FinMetric: objects are finite metric spaces, morphisms are distance–non-increasing
maps.

• Cluster: an object is a partition (“cluster”) of a set; a morphism f : X → Y must
refine the partition on X by preimages of the partition on Y .

• Classical clustering algorithms correspond to functors F : FinMetric → Cluster.

Kleinberg’s impossibility: No non-trivial functor F can satisfy the three reasonable
axioms of Kleinberg, so such functors do not exist.

Carlsson–Mémoli’s insight: Replace clusters by persistent clusters :

P : ([0,∞),≤) −→ Cluster,

allowing partitions to merge as the scale parameter r grows. This yields a new category
PCluster whose objects are persistent clusters and whose morphisms are set maps that
are morphisms in Cluster for every r.
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Result: There is a unique non-trivial functor

Φ: FinMetric −→ PCluster,

satisfying two natural conditions. Concretely, a two–point metric space with distance r
maps to a persistent cluster that has

• one cluster for all t ≥ r;

• two clusters for 0 ≤ t < r.

Moral. By enlarging the codomain category, we bypass Kleinberg’s obstruction and obtain
a categorical framework for clustering.

6 Natural transformations

Definition 6.1. Let C and D be categories and given functors F,G : C → D. A natural
transformation α from F to G, α : F ⇒ G consist of:

• a morphism αC : FC → GC for each object C of C, called component of α at C

• for each morphism f : C → C ′, the following graph commutes:

FC FC ′

GC GC ′

Ff

αC αC′

Gf

A natural isomorphism is a natural transformation α : F ⇒ G, denote as α : F ∼= G,
in which every component αC is an isomorphism.

Natural transformations provide a powerful way to compare functors. They do not simply
relate individual objects or morphisms, but establish a coherent system of morphisms
across the entire category. This coherence is what makes naturality so elegant—it encodes
a kind of ”structural uniformity” between functors.

From a higher-level perspective, natural transformations can be seen as the morphisms
between functors in the functor category, thus enriching category theory with another
layer of abstraction.

Example 6.1. Consider a category Vectk whose objects are vector spaces over a field k.
Let V be a finite-dimensional k-vector space that is an object of Vectk. V is isomorphic
to its linear dual V ∗ = Hom(V, k) since these vector spaces have the same dimension
and this can be proven by a construction of an explicit dual basis. [Riehl, 2016]

A double dual V ∗∗ = Hom(V ∗,k) = Hom(Hom(V, k),k), which is also a vector space
and thus an object ofVectk. We define the evaluation function evv : V

∗ → k, evv(f) =
f(v). The map v 7→ evv defines a linear isomorphism and thus V ∼= V ∗∗.

Now we construct the natural transformation. We have an identity endofunctor on Vectk
that maps V to itself and a double dual functor that maps V to its double dual V ∗∗. Then
the map ev : V → V ∗∗ that maps v ∈ V to evv ∈ V ∗∗ defines the components of a natural
transformation from identity endofunctor to double dual functor.
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Let V,W be objects of Vectk. To check if the following diagram commutes,

V V ∗∗

W W ∗∗

ev

φ φ∗∗

ev

One path is first sending v ∈ V to φv ∈ W by φ, and then sending φv to evφv : W
∗ → k

which maps f : W → k to f(φv) ∈ k by ev.

Another path is first sending v ∈ V to evv ∈ V ∗∗ by ev. And by definition, φ∗∗ : V ∗∗ →
W ∗∗, thus we have φ∗∗(evv) : W

∗ → k which also maps f : W → k to f(φv) ∈ k by ev.

Example 6.2. For a group G the opposite group Gop has the same underlying set as G
but the multiplication is reversed: x◦y := yx. This construction extends to a (covariant)
endofunctor

(−)op : Group −→ Group, φ 7→ φop, φop(g) = φ(g),

because a group homomorphism φ : G→ H respects the reversed product automatically.

The functor (−)op is naturally isomorphic to the identity on Group. For each group G
define

ηG : G −→ Gop, g 7→ g−1.

Although ηG is not a group automorphism of G (since g 7→ g−1 does not commute with
the original multiplication), it is a homomorphism G→ Gop.

To check naturality, take any group homomorphism φ : G → H. One must verify that
the square

G Gop

H Hop

ηG

φ φop

ηH

commutes. Indeed, for every g ∈ G,

φop
(
ηG(g)

)
= φop

(
g−1

)
= φ

(
g−1

)
=

(
φ(g)

)−1
= ηH

(
φ(g)

)
,

so φop ◦ ηG = ηH ◦ φ.
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