Algebraic Methods

111
Combinatorics

Directed Reading Program, Winter 2025

Kakeya Needle Set

Clara Riachi and Quentin Chiari

Department of Mathematics & Statistics
McGill University



CONTENTS CONTENTS
Contents
(1__Introductionl 2
2 Graph Theory]| 2
[2.1 Introduction to Spectral Graph Theory| . . . . . . . .. . ... 2
2.2 Expander Graphs| . . . . . ... ... oL 7
[3 Discrete Geometry| 11
3.1 Pommtsonalanel. . . . . .. . . ... ... ... 11
[3.2 Convex Geometry|. . . . . . . . . .. ... ... 12
[4  Polynomial Methods| 14
4.1 Basic Results . ... ... ... ... ... ... ... ... 14
4.2 'The Finite Field Kakeya Problem| . . . . . . . ... ... ... 17
4.3 'The Finite Field Nikodym Problem| . . . . . . ... ... ... 20
[5 Harmonic Analysis and the Kakeya Problem| 22
[>.1 The Loomis-Whitney Inequality| . . . . . . .. ... ... ... 22
[6  Acknowledgements| 24




2 GRAPH THEORY

1 Introduction

This report was completed at McGill University as part of a directed
reading project on algebraic methods combinatorics supervised by Gabriel
Crudele. The following work is a collection of proofs the authors have learned
and rewritten for themselves while being introduced to this topic. This work
provides examples of how tools from algebra can be employed to solve prob-
lems in combinatorics where a direct approach is possibly more complicated
(see [4.2). Most of the material is from the unpublished lecture notes of
Natasha Morrison [3], with the exception of the sections [4| and |5| whose con-
tents are mostly from [2].

2 Graph Theory

2.1 Introduction to Spectral Graph Theory

Definition 2.1. A graph G is a pair (V, E)) where V is a set of vertices and
E contains edges between vertices, i.e. elements of the form zy for z,y € V.
For any graph G we let G(V') and G(F) denote its set of vertices and edges
respectively. Every graph mentioned here will be finite and simple, meaning
V(G)| < oo, there is at most one edge between any two vertices, and edges
cannot start and end at the same vertex.

Definition 2.2. A graph G is connected if there is a path in G between any
pair of vertices, i.e. for any x,y € V(G) there exists iy, is, ..., 4, € V(G) such
that $i1, ilig, ey Zny € E(G)

Example 2.2.1. A complete graph K, with n vertices has an edge between
any pair of distinct vertices.

Example 2.2.2. A complete bipartite graph K,; has a vertex set A u B
where A and B are disjoint sets of cardinality a and b respectively, and has
an edge xy if and only if r € Aand y € B, or v € B and y € A. We sometimes
denote K, as (A, B).

Definition 2.3. N(z) := {y : yr € E(G)} is the neighborhood of a vertex
x € V(G) for a graph G.

Definition 2.4. For a graph G, the degree d(x) of a vertex x € V(G) is the
amount of neighbors x has, meaning d(x) = |N(x)|. A graph is said to be
reqular or d-regular if every vertex has the same degree d.
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2.1 Introduction to Spectral Graph Theory 2 GRAPH THEORY

Figure 1: A cycle graph with 4 vertices.

Definition 2.5. The adjacency matriz A(G) of a graph G is a |[V(G)| x
|V(G)| matrix where relabeling the vertices to be integers from 1 to |V (G)|,

1if ij € B(G)

0 otherwise.

(A(G))ij = { (1)

Example 2.5.1. The entries of the adjacency matrix of K, are 1 everywhere
except on the diagonal since K, contains every edge ij where i # j.

Example 2.5.2. The adjacency matrix of the bipartite graph ({1, 2}, {3,4})
is

0011
0011
1 100
1 100

Remark 2.6. Since simple graphs do not contain edges starting and ending
at the same vertex, the diagonal of their adjacency matrix is 0. Additionally,
the adjacency matrix is symmetric since containing the edge 77 is the same
as containing the edge ji.

The spectrum of adjacency matrices provide information on a graph. We
give the following example for intuition on dealing with eigenvalues of ad-
jacency matrices. This way of viewing eigenvectors of adjacency matrices
works for any graph, but we give a concrete example.

Example 2.6.1. Let G be the graph in figure [1| with adjacency matrix
01 01

10
A_Ol
10

— O =

0
1
0



2.1 Introduction to Spectral Graph Theory 2 GRAPH THEORY

If we take a vector x = (x1,x9,23,%4) to be weights placed on the corre-
sponding vertices of GG, the ith entry of Ax is the addition of weights from
the neighbors of 7 since

0 1 0 1 To + T4

I 0 1 0 |z + s
Ar = 13 0 + T9 1 + I3 0 + 24 'l
1 0 1 0 r1 + x3

In this interpretation, any eigenvector of A is a way of distributing weights on
the vertices of G such that the addition of weights from neighboring vertices
of a vertex is a uniform scalar multiple of the weight on that vertex. With
this insight, one can see without much computation that (1,1,1,1) is an
eigenvector of G, and that the unit vector is an eigenvector of the adjacency
matrix for any regular graph.

Proposition 2.7. Let G be a graph with adjacency matriz A, and let A =
maxXey () d(x) be the largest degree of a vertex in G. Then

(i) If X is eigenvalue of A, |\ < A.

(i1) If G is connected, then A is an eigenvalue of A if and only if G is
reqular.

(11i) If G is connected, then —A is an eigenvalue of A if and only if G is
reqular and bipartite.

Proof. (i) Let v = (v, ...,v,) be an eigenvector for A with eigenvalue A and
i be such that |v;| = max;<, |vj|. Then rescaling v so that v; = 1 we have

Al = [(Av)i| = | D} v < Afwi| = A

JEN(i)

(ii) Suppose G is connected. If A is an eigenvalue of G with eigenvector
v = (v1,...,0,), if we pick ¢ and rescale v as in (i),

A= (Av);= ) v, (2)

JEN(9)

but since 1 = v; = max;<, |v;| and |N(i)| < A, v; = 1 for all j € N(i) and
d(1) = A. Applying this argument to the vertices in N(i) and repeating,

4



2.1 Introduction to Spectral Graph Theory 2 GRAPH THEORY

since GG is connected we get that each vertex has degree A so G is regular.
On the other hand, if G is regular then the unit vector is an eigenvector with
eigenvalue A.

(iii) Suppose G is connected. If —A is an eigenvalue of G with eigenvector
v = (vq,...,0,), the argument in (ii) using —A instead of A in ({2|) gives that
v; = —1 for all j € N(i) and d(i) = A. Furthermore, for j € N(i) the
argument in (ii) gives that for k € N(j), vy = 1 and d(k) = A. Since G is
connected, we may repeat this argument to get that G is regular and that for
any vertex z, if y € N(z) then v, = —v,. Therefore letting X = {z : v, = 1}
and Y = {y : v, = —1}, we get that G = (X,Y) so G is bipartite. On the
other hand, if G = (A, B) is regular, v = (vy, ..., v,) such that

lifie A
Vi =
—1ifie B

is an eigenvector for A. Indeed,

—Aifie A
O
Aifie B
so v has eigenvalue —A. O

Proposition 2.8. Let A be a real symmetric matriz and uy,...,u, an or-
thonormal eigenbasis for A such that Au; = \u; for any i = 1,...,n. Then
for any x = 3" | c;u; € R", we have

n n
ol Ar = Z Nic? and x'x = Z cl.
i=1

i=1
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2 GRAPH THEORY

Proof.

]

Definition 2.9. A decomposition of a graph G is a set of subgraphs Gy, ..., Gy
whose sets of edges are pairwise disjoint and  J, G;(E) = G

In the following proof we see that the adjacency matrix is not the only

useful matrix

Theorem 2.1. (Graham-Pollak Theorem) Let K, be a complete graph with
a decomposition G, ..., Gy where each Gy is a complete bipartite graph. Then

k=n-—1.



2.2 Expander Graphs 2 GRAPH THEORY

Proof. Suppose V(K,,) = {1,...,n} and for each t < k let G; = (X}, Y;). Also,
let M; be an n x n matrix defined by

lifi1e X;,j €Y,
(My)ij = .t ! '
0 otherwise

Note that every non-zero row of any M, is 1 where the label of the column
is the same as the label of a vertex in Y;, and thus they are all the same.
Hence each M, has rank 1. Because rank(A + B) < rank(A) + rank(B), if
n — 1 < rank(M) < k then we are done.

Let M’ : R® — R"! be obtained from adding a row of ones to M.
Supposing towards a contradiction that rank(M) < n — 2, we have that
rank(M') < n — 1, and by rank-nullity theorem ker(M’) = 0 so there exists
a nonzero vector x € R" such that M’z = 0, and by considering the row of
ones we see that

Mz =0 and <in=0 — Jna:=0> (3)

i=1

where J, is the n x n matrix with 1 in every entry. Notice that for ¢ # j,
if (M);; = 0 then since K, is complete and Gf, ..., G}, is a decomposition,
the edge ij lies in some G where i ¢ X;, so (M);; = 1. Observing that
M + MT = J, — I,, where I, is the n x n identity matrix, the following
calculation leads to a contradiction

T
(M)l 1 (M)nl
0=a"Mz+ (Mz)'x=2"Mx+ | 2, + : N
=2t (M + Mz =27(J, — L)z
= —fo <0,
i=1
where the last equality comes from . O

2.2 Expander Graphs

Definition 2.10. A graph is said to be a d-expander if for every partition
V(G) = Au B with |A| < |BJ, it satisfies e(A, B) = 0| A|.
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2.2 Expander Graphs 2 GRAPH THEORY

In other words, regardless of how one chooses to split an expander graph
into two parts, there will always be a large number of edges emanating from
the smaller part to the other so that one can quickly reach some part of the
graph starting at any vertex.

We write Zz‘~c ; to denote the sum over all edges ¢j in G, where each edge
contributes exactly once. That is, if the edge (i,7) is in the sum, then the
edge (j,1) is not.

Lemma 2.2. Let G be an n-vertex d-reqular graph whose adjacency matriz

A has eigenvalues \y = \o = -+ = \,,. Then for any x1,...,x, € R,

n

ez <(d=X)Yaf (1)

i~j =1

Moreover, if > x; = 0, then

(d—A2) 2%2 < Z(l"z — ;) (2)

L}

Proof. (1) Let uq, ..., u, be an orthonormal eigenbasis for A such that Au; =
Aiu; and u; = \/Lﬁ(l, ..., DT, Note that G being d-regular implies that we
can choose the all-ones unit vector u; to be an eigenvector of A, and it has
eigenvalue d. By algebraic expansion, we see that

Z —x] Zx—22x1x3+2x —dZ:U —ZAU:L’JJJ

i~GJ i~GJ ~GJ i~GJ

One may ask why there is no factor of 2 in front of the d coefficient when
equating >, .af + X, a7 = dY; 7. The key is that we must be
consistent about what Z%G it (1, 7) means when f is a function that depends
on only one of the indices. Define

2, 160) = ZA@JfZJ

where

1 if (4,7) is an edge
0 otherwise
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Here each edge {7, j} appears twice in the sum >}, . A;; f(i,7): once as (i, j)
and once as (j,7). The factor 1/2 ensures each edge contributes exactly once.
Applying this interpretation to our case, we have

ZxleZA”xlezn:xfzn:Amzlixfdzc—izn:xf
i~Gj 24 253 4 23 23
I T I SRS QU
Z Tj ZAUQCJ Z%ZAU ZIJ d le
i~Gj 243 245 '3 25 23

where >77_| A;; is the row sum of the it" row of the adjacency matrix A, and
this sum represents the degree of vertex ¢ in the graph G. We can thus see
why their sum only has a factor of d. In addition, 2, zx; =, ; Ajjzix;

i~GJ

By the result of (f), we notice that proving (1) can be reduced to showing

that .
1,5 i=1

To that end, let x = (z1,...,2,)" =Y, i, for ¢; € R. We have
Z Az = zT Az quadratic form
,J

= > \ic} Proposition 2.8

=1

.

>\, cf An is the smallest eigenvalue

n
i=1

= A\, z'x Proposition 2.8

This completes the proof of (1).
To prove (2), (f) tells us that it suffices to show

ZAijwixj < /\QZETJZ
‘7-]’

Suppose Y-, x; = 0. This means

X,u1) =0 <= {cqus + -+ Cuup,u1) =0 < ¢; =0
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Again, by Proposition [2.8] we have
P A2=A -
Z Az‘jCL’Z‘ZL'j = I'TAJ} Cl:_0 2 /\ici < Z = /\QJZTJI
i i=2 i=2
which proves (2). O

Theorem 2.3. Let G be a d-reqular graph with second largest eigenvalue Xs.
Then G is a %—empander.

Proof. We must show for any A, B that partition V(G) with |A| < |B|, that
e(A, B) = 22| A|. So let AU B be such a partition. Then |A| + |B| = n.
Define a vector x where

fn—14] ifieA,
" |-]4] ifi¢ A — ieB.

Consider 3, __(z; — x;)?. The only nonzero terms that contribute to the
sum are those edges having one endpoint in A and the other in B, and each
such edge contributes (z; — x;)? = (n — |A| — (—=|4]))? = n%. So we can see

that
Z (z; — x;)* = n’e(A, B)
i~Gj
We also have
| n
21’ = > (n—=AD*+ Y, (A = [Al(n—|A])*+(n—|ADIA]® = |A|(n—|A])n
i=1 i=|A|+1

Now observe that the sum of coordinates of x satisfies

sz (n — [ADIA] + (=[A]D(n — [A]) =
so we can apply part (2) of Lemma to obtain

(@i —x5)* = n’e(A, B) = (d— \p) Zgﬂ = (d— X\)|A|(n — |A])n.

i~GJ

Since |A| < |B| and |A| + |B| = n, we have |A] < n/2 then |B| =n — |A| >
n —n/2 =n/2, and dividing both sides by n? completes the proof. O]
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3 DISCRETE GEOMETRY

3 Discrete Geometry

3.1 Points on a Line

Theorem 3.1. Let k > n and let Ay, ..., Ay < {1,...,n} be non-empty.
Then there exist non-empty disjoint sets I,J < {1,...,k} such that | J,.; A; =

UjeJ Aj'
Proof. Let S = {vy,...,ux} be a collection of vectors in R" such that each
v; = (@1, ..., a;p) Where
Lif j e A
Qij = op o
0if j ¢ A;

Since k > n, S is linearly dependent, so there exists D < {1,...,k} and a
collection of ; € R which are not all zero such that ) ., a;v; = 0. We take
I:=1{i:a;>0}and J:={j: o > 0} and observe that

Z o;0; = Z(—Oéj>’llj.
iel jed

Then for any p € (J,.; Ai, by the definition of the vectors in S and the
definition of I, the pth coordinate of ) ,_; a;v; is positive, and by the equation
above we have that p € (J e Aj;. We apply the same argument in the other
direction to get that (J,c; Ai = U, Aj- O

With a slightly stronger assumption, we slighlty modify this technique to
get a stronger result.

Theorem 3.2. Let k > n + 1 and let Ay, ..., A < {1,...,n} be non-empty.
Then there exist non-empty disjoint sets 1,J < {1,....k} such that both

Uie[ A = UjeJ Aj and ﬂie[ A = mjeJ Aj'

Proof. Let S = {vy,...,u;} be a collection of vectors in R"™ such that each
v; = (a1, ..., a;n) where

aij

Cfrifje A
Coifj ¢ A

Also, let S” = {uy, ..., u;} be a collection of vectors in R"™! where each u; is
the same as v; for its n first coordinates and 1 for its n + 1 coordinate.

11



3.2 Convex Geometry 3 DISCRETE GEOMETRY

Since k > n, S is linearly dependent, so there exists D < {1,...,k} and a
collection of ; € R which are not all zero such that ) ., a;v; = 0. We take
I:={i:a;>0}and J:= {j:a; > 0} so using the same proof as in theorem
3.1| we have that | J,.; A = UjEJ Aj;.

It remains to show that (),.; A; = (), A;. Note that >}, ., azu; = 0, and
since the last coordinate of every u; is 1, > .., o = 0. Hence for some t € R,

20@' = Z(-Oéj) =t.

el jedJ
Then the pth coordinate of Y., a;v; is ¢ if and only if p € [, 4;, but
p € (;es 4 if and only if the pth coordinate of > .. ; ajv; is t. Since if the
pth coordinate of is . ; oyv; is ¢, the same is true of Zjej a;v;, so we have

that (e, A; = ﬂjeJ Aj. O

3.2 Convex Geometry

Definition 3.1. A set S € R" is convex if the line between any two points in
S lies in S. In other words, S is convex if for any =,y € R", tx + (1 —t)y € S
for all t € [0, 1].

The convezr hull of S, denoted conv(S), is the smallest convex set con-
taining the points of S. By this we mean that for any convex set C' 2 §,
conv(S) c C.

A convexr combination of a finite set S is a point of the form ) o s
where ay > 0 for all s € S and ), g, = 1. A convex combination can be
thought of as a weighted average of points.

Proposition 3.2. For any finite set S < R™, conv(S) is the set of all convex
combinations of points in S, denoted cc(S).

Proof. For any point s € S, taking as = 1 we see that s € cc(S), so S € cc(S).
Additionally, for any z1 = >, g as15 and 2o = Y ¢ @95 in cc(S), the points
on the line tx; 4+ (1 — t)z, are convex combinations of S for each ¢ € [0, 1],
so cc(9S) is convex. Indeed, for any t € [0, 1],

try + (1 —t)ay = Z(tO‘SJ + (1 —t)as2)s,
seS
tasy + (1 —t)as = 0 for every s € S, and

Diltaas + (1= t)age) =t > agi+ (1—1) > .o = 1.

seS seS seS

12



3.2 Convex Geometry 3 DISCRETE GEOMETRY

It remains to show that cc(S) € conv(S). Letting S = {s1,...,s,}, we
proceed by induction on n. Forn = 1, take a; = 1 80 ays1 = s1 € S. Assume
that for n = k — 1, ce(S) € S. Let z = ¥ | ays; be convex combination
where we take without loss of generality that a,, # 1. Then

n—1 n—1 v
1
o= T — Tt
i=1 -1t T %

and «;/(1 — a,,) = 0 for any 4, so by the induction hypothesis we have that

n—1
Q;
i € S .
; 1_&ns conv(S)
Therefore,

n—1

n
o
x=2aisi = (1—an)2 1 - Si + QpSn,
i=1

o1t T On

which is a point on a line between two points in conv(S), so x € conv(S). [

Theorem 3.3. (Radon) Let A = {x1,...,xx} € R™ such that k = n + 2, then
there exist disjoint sets I,J < {1,...,k} such that

conv({z; i€ I}) n conv({x;: je J}) # &.

Proof. For each i € {1,....k} let y; = (x;,1) € R"*L. Since k > n + 2 we have
that there exists a collection of constants a; which are not all 0 such that

k
Z a;y; = 0.
=1

From the last row we get that > | a; = 0.
Let I ={i:a; >0}, J ={j:a; <0}. Then

Z QiYi = Z(_aj)yj7
el jedJ

and from the last row we may let ¢ := >, ;a; = — > .., a; > 0. Then if we
drop the last entry of the y;s and divide by ¢ we have that

p = Z%L’Ez = Z _tajxj.

13
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Noting that >, ; o/t = >, ;(—a;)/t = 1 and a;/t, —a;/t > 0 for every i € 1
and j € J, we have that

pecc{x;iel}) nec({x;:je J}) =conv({x;:iel}) nconv({x;:je J}).
[

Theorem 3.4. (Helly) Let k = n+ 1 and let Cy,..,Cy, < R™ be convex sets
such that any n + 1 of them intersect. Then ﬂle Ci #

Proof. We proceed by induction on k. For k = n+ 1, by assumption we have
that ﬂ?:ll ci # . Assume that for k — 1 > n + 1, the intersection of k — 1
convex subsets of R” where n + 1 of them intersect is non-empty. Then for
any i € {1,...,k} := [k], there exists a point z; € (. sy Cj- Therefore we
may let A = {x1,...,2%} be a collection of points such that x; € C; for every
i # j. Since k = n + 2, by theorem there exist disjoint sets I, J < [k]
such that

conv({x; e A:iel}) nconv({z; e A:je J})

contains a point x. By definition of A, for each je J, {z; e A:ie I} < C;
and since C} is convex, conv({z; € A:i e I}) < C;. By the same argument,
for each i € I, conv({z; € A: j e J}) < C;. Taking I and J disjoint such
that 1 U J = [k]| does not change the theorem, and doing this we get that
S ﬂle Cz #* @ ]

4 Polynomial Methods

4.1 Basic Results

Lemma 4.1. Let F be a field and f € Flx| a polynomial of degree at most
d. For any x1 € F there exists a polynomial fi € F[z] of degree at most d — 1
and r € F such that

f(@) = h(@)(@ —2) + 7

Proof. We proceed by induction on d. For d = 0 f is constant and we take
fi(x) = 0 and r = f. Let k € N assume the hypothesis holds for & — 1.
Write f(z) = 3, apa” and let g(z) = f(z) — (z — 21)(axz*!). The terms

14



4.1 Basic Results 4 POLYNOMIAL METHODS

of degree k in g cancel so g has degree at most k£ — 1. For x; € F, by the
assumption we have that there exist g; of degree at most k — 2 and r € F
such that

Then,

f(@) = (g1(x) + apa® ") (@ — 21) + 7
O

Lemma 4.2. Let F be a finite field and f € F[x] a polynomial of degree at
most d. Then if f € F|x]| has more than d roots, it is the 0 polynomial.

Proof. We proceed by induction on d. For d = 0, f is constant so if it has a
root f must be 0. Let k € N and assume the hypothesis for d = k — 1. Let
f have distinct roots x1,...,£4,1. Then by lemma [4.1| we have that for f; of
degree at most d — 1,

f(x) = filz)(z — xat1)

where we have r = 0 since f(z441) = 0. Then fi(x) has roots x1, ..., 4, but
by the assumption f; is the 0 polynomial hence f is the zero polynomial. [J

The below lemma tells us that a nonzero polynomial of small degree can’t
have too many zeroes:

Lemma 4.3. (Schwartz-Zippel) Let F be a finite field with q elements. A
non-zero polynomial f(1,...,2n) = Dyegn CLT + -+ caxle of degree at most
d over F, has at most dg"~" roots.

Proof. By induction on the number of variables n. For n = 1, a univariate
polynomial has at most d = dg'~! roots over F. So let n > 1 and consider a
multivariate polynomial f(zy,...,z,) of degree at most d over F. Note that
F* =F"! xF. Fory = (z1,....,7,_1) € F* 1 and z € F, write

f,2) =g0(y) + a1 (¥)z + - + gu(y)2'

where each g¢;(y) is a polynomial in n — 1 variables of degree at most d — i
(because the degree deg(g;(y)) + 7 of each term g;(y)z* must not exceed the

15



4.1 Basic Results 4 POLYNOMIAL METHODS

degree d of f(y,z)), t is the highest power of z appearing in f(y,z). We
now partition the roots based on (two cases) whether or not ¢;(y) = 0 (if
g:(y) = 0 then f(y, z) has lower degree in z). We have

{(y,2) e F" 2 f(y,2) = 0} = {(y,2) : f(y,2) = 0,40(y) = O}
+{(y, 2) : fy,2) = 0,9:(y) # 0}

We can upper bound the first summand:

{(y,2): f(y,2) = 0,0:(y) = 0}| < gl{y : ge(y) = 0}] < q(d—t)q" > = (d—t)q" "

by the inductive hypothesis since g;(y) is a polynomial of degree at most d—t
in n — 1 variables. Also, for each y, z has ¢ possible choices. Now, for each
y € F"~1 such that g;(y) # 0, we have that f(y,z) is a univariate nonzero
polynomial of degree t. By the base case, it has at most ¢ roots. Thus, we
obtain

{(y,2) : f(y,2) = 0 and g,(y) # O}| < tq" "

Summing the two bounds yields

{(y,2): f(y,2) =0 and g;(y) # 0} < dg"!
O

Lemma 4.4. Let F be a field. The vector space V' of polynomials in F|xy, ..., x,]

of degree at most d has dimension (”:d).

Proof. A basis for V consists of polynomials x{'z%...zt» where Y  t; < d
and t; = 0 for all 7. This basis is in 1-1 correspondence with {t; +to+ ...+, :
> ti < d,t; = 0} which has the same cardinality as {t; +ta+ ...+, +lpy1
Z?:ll t; = d,t; = 0}. We proceed by the stars and bars method. If we take
n + d slots and place n ‘4’ signs in them, we are left with d slots within
which we place bars. The number of bars between consecutive ‘+’ signs or
between ‘+’ signs and the first and last slots corresponds to a value of ¢; since
we have d bars. For example, for d = 6 and n = 3, the string || + ||| + +|
corresponds with ¢; = 2,t, = 3,3 = 0,t4 = 1. Since there are (”Zd) such
strings, dim V' = (”;d). ]
Lemma 4.5. Let F be a field and let S < F™ such that |S| < ("Zd), then
there exists a non-zero polynomial f € F[x1, ..., x,] of degree at most d which
vanishes on S.

16
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Proof. By lemma , the vector space V' of polynomials in F[xy, ..., z,] of
degree at most d has dimension (":d). Let E : V — FISl such that E(f) =
(f(s))ses. E is linear since for a, f e F and f,ge V' ,

E(af + Bg) = (af(s) + Bg(s))ses = a(f(s))ses + B(g(s))ses-
By rank-nullity theorem we have that
dimV — dim(ImFE) = dim(ker£),

but since dim(ImE) < dimFI*l < ("*) = dimV, dim(ker E) > 0 so there
exists a non-zero polynomial in V' vanishing on S. [

Lemma 4.6. Let F be a finite field and n = 2. Then for any set S < F" there
exists a non-zero polynomial f € F|xq, ..., x,]| vanishing on S with degree at
most n|S|Y".

Proof. Let d € N such that d < n|S|"/" and n|S|" —d < 1. Since n > 2 we
have that n"™ > n!, so

15| < (%)n - (d+n)(d+n—1)..(d+1)d <n+d>'

nld! n

Then by lemma there exists a nonzero polynomial of degree at most
n|S|Y/" vanishing on S. O

4.2 The Finite Field Kakeya Problem

Definition 4.1. Let F be a finite field. For a € F* and b € F"\{0} a line
Loy < F™ is defined as

Lop:={a+t-b:teF}.

We say that L, is a line centered at a with the direction b. We also let L,
denote a line containing a point x € F".

Remark 4.2. Let [F be a finite field. If L,; and L. 4 are distinct lines in F",
there is at most one point where they intersect.

17



4.2 The Finite Field Kakeya Problem 4 POLYNOMIAL METHODS

.L(Q,O),(O,l)

Figure 2: A Kakeya set in Z/3Z? colored in rhodamine where some lines it
contains are colored and labeled. We have one line for each direction.

Proof. Suppose for contradiction that there exist two distinct points in L, N
L. 4, then there exist t1,19,%3,t4 € IF such that ¢; # ¢35 and ¢y # t4 where

tio b= ty - d
{“1 o — (ta—ty)-d=(t1—t3)- b = d=(t1 —t3)(t2—ts) " - b.

a+ts-b=c+ty-d
Letting A\ = (t; — t3)(t2 — t4) ™' we have
a—c=ty-d—1t;-b=(taA—1t1) D,
so for any t € F,
a+t-b=c+tA—t)Nd+ AT o d=c+ (A -t + AT,

which means L, = L. 4, contradiction. O

Definition 4.3. Let F be a finite field. A set K < F" is a Kakeya set if it
contains a line in every direction. In other words, for every b € F™\{0} there
exists a € K such that L,;, = K. See figure [2| for an example.

In R", Kakeya sets are compact sets containing unit line segments in
every direction. In [5], Wolff introduced a conjecture on the cardinality of
Kakeya sets in finite fields as an analogue of the Kakeya conjecture, which
asks about the size of Kakeya sets in R” with respect to Hausdorff and
Minkowski dimension. Several years later, Dvir resolved this conjecture in
[1] by using polynomial methods. We provide some methods of obtaining
bounds on the size of Kakeya sets in finite fields without the polynomial
method in comparison with Dvir’s proof.

18
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Proposition 4.4. (Counting Method) Let F, be a finite field with q elements
and K € F} a Kakeya set. Then if n > 1, |K| > (1/2)¢.

Proof. We can count the elements in K as follows. For n > 1, we have
q choices for the first component of the direction of a line in K so there
are at least ¢ distinct lines in K. Pick a line in K, this has ¢ points, then
by remark there is another line with ¢ — 1 points not in the first, and
repeating this till we've picked ¢ distinct lines we get that K has at least
g+ (q—1)+...+1=(1/2)¢* points. O

Proposition 4.5. (Bush Method) Let F,, be a finite field with q elements and
K ¢ F} a Kakeya set. Then |K| = (¢" — 1)z.

Proof. Let A € F,\{0}, then for any line L,;, < K, we also have that L, , =
L,p. Since we have ¢" — 1 choices for a direction b and ¢ — 1 directions
are a scalar multiple of b, K contains at least (¢" —1)/(¢ — 1) distinct lines.
Then, by the pigeonhole principle, there exists x € K which lies in at least
(¢" — 1)(¢—1)7Y/| K| distinct lines. By remark [£.2] these lines only intersect
at x, and if there are many of these lines one may picture this as a bush.
Each line through x has ¢ — 1 points disjoint from any other line through x,
hence

q" —

—1 1
Do DL = KPR L= (K= (- D

K| >

O

Theorem 4.7. (Finite Field Kakeya Theorem (Dvir)) Let F, be a finite field
with q elements and K < Iy a Kakeya set. Then for some constant ¢, > 0
depending only on n,

K| = cnq".

Proof. 1t will suffice to prove the following claim.

Claim 4.7.1. Let f € F,[z1,...,x,] be a non-zero polynomial with degree at
most ¢ — 1. Then there exists a € K such that f(a) # 0.

We proceed by contradiction. If there exists K such that |K| < ("777"),

n

then by lemma there exists a non-zero f € F,[z1,...,x,] with degree at
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most ¢ — 1 vanishing on K, which contradicts claim [4.7.1} Hence we would
have that

— _ — — . . — 1) n
K| > n+q—1 :(n+q Dn—14+q¢—1)-...-(¢g—1)! q_’
n nl(qg—1)! n!

\%

and choosing ¢, = 1/n! we are done.

We now prove claim . Suppose that f € F[zy,...,x,] is a non-zero
polynomial of degree < ¢ that vanishes on S. We will show that f = 0, and
thus obtain a contradiction. Let d = deg(f) and write f = Z?:o fi, where
for each i, f; is the polynomial containing all the monomials of f of degree 1.
In particular, f; # 0. For every b € F"\{0}, there exists a = a(b) € F" such
that the polynomial f(a +tb) = 0 for all t € F (as S is a Kakeya set). So
define g, : F — F such that for ¢t € F, we have g,,(t) := f(a + tb). Then
Gap € F[z] is a polynomial of degree at most d < ¢ (by assumption) that
vanishes on F. But by lemma [4.2] g,,(t) = 0. The coefficient of t? in g, ;(t)
is fa(b) (check). So we have f;(b) = 0 for all b € F"\{0}. So f; has at least
¢" — 1 roots in F. As d < ¢, we have dg"! < ¢" — 1, and so this contradicts
the Schwartz—Zippel lemma. ]

Dvir’s proof demonstrates how the polynomial method can provide a
quick proof to a combinatorial problem which might otherwise be rather
difficult.

4.3 The Finite Field Nikodym Problem

Closely related to Kakeya sets are Nikodym sets, which in R? are subsets
of the unit square with area 1 where for each point there is a line intersecting
the set at only that point. Nikodym sets also have a finite field analogue. The
finite field Nikodym problem asks about the size of Nikodym sets in finite
field, and the method to approaching this is similar to that of the Kakeya
problem.

Definition 4.6. Let F be a finite field. A set N < F" is a Nikodym set if for
each point x € N there is a line L, through x such that L,\{z} < N.

The complement of a Nikodym set in R? in the square has measure 0,
though it is not easy to see that it must have Hausdorff dimension 2 (see
chapter 9 of [4]). If one thinks about F}y as an n dimensional grid with ¢
points on each side, see figure , a Nikodym set in [y will be at a 'distance’
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i

Figure 3: A Nikodym set N in Z/37Z? colored in orchid where z and y are
examples of points such that L,\{z} < N and L,\{y} = N.

of at most 1 of any point in Fy, and the complement of the Nikodym set will
have a line through it only intersecting the complement at that point. This
resembles the Euclidean version of Nikodym sets, though the condition on
their size has been removed since in a finite field knowing the size of a set
also reveals the size of its complement.

Theorem 4.8. Let ¥, be a finite field with q elements and N < Fy a Nikodym
set. Then for some constant c, > 0 depending only on n,

IN| = c,q".
To prove this theorem, we will first need the vanishing lemma.

Lemma 4.9. (Vanishing lemma) Let F be a finite field. If a polynomial
f € Flxy, ..., z,] of degree at most d vanishes at d + 1 points on a line, then
it vanishes at all points on that line.

Proof of lemmal4.9 Suppose f € F[z1, ..., x,] of degree at most d vanishes
on d + 1 points of the line L,;. Letting g(t) = f(a + tb) € F[x] we have that
g is a polynomial of degree at most d. Since f has d + 1 roots on L,;, g has
more than d roots, hence by lemma|.2| g is the zero polynomial so f vanishes
at all points on Lg. O

Proof of theorem Assume by contradiction that |[N| < (10n) "¢
Then by lemma there exists a non-zero polynomial f € F[xy, ..., z,] van-
ishing on N with degree at most n|N|" < 107"¢ < ¢ — 1. Then for any
x € F" since N is a Nikodym set there exists a line L, through x such that
L, \{z} < N. f vanishes on the ¢ — 1 points of L,\{z}, so by the vanishing
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lemma (lemma f vanishes on all points of L,. Because x was arbitrary,
J vanishes on all points of Fy, but this alone does not guarantee that f is
the zero polynomial. Indeed, zP~! — 1 vanishes on F, without being the zero
polynomial. However, since we also know that f has degree at most ¢ — 1,
the following claim will show that f is the zero polynomial, leading us to a
contradiction.

Claim 4.9.1. If f € Fy[z1, ..., x,] has degree at most ¢ — 1 and vanishes on
[y, then f is the zero polynomial.

Proof. We proceed by induction on n. For n = 1, f has ¢ roots so by lemma
f is the zero polynomial. For k£ € N, assume the hypothesis for £ — 1 and
let f of degree at most ¢ — 1 vanish on qu“. For x1, ...,z € F, let F' € F[z]
such that

q—1
Fxl,..,xk(mk) = f(-rla "wrk) = Z gi(xlv "7'2:]{2—1)3:2;
i=1

where x1,...,x,_1 are fixed and each g; € Flxy,...,xx_1] is a polynomial of
degree at most ¢ — 1. Since f has degree at most ¢ — 1 and vanishes on all ¢
values of x, by lemma f is the zero polynomial. Then each g; vanishes
on F’;_l so by the assumption they are also zero polynomials. Hence, f is
the 0 polynomial. O

[]

5 Harmonic Analysis and the Kakeya Prob-
lem

5.1 The Loomis-Whitney Inequality

The Loomis-Whitney inequality is a combinatorial and geometric inequal-
ity about Euclidean space with many consequences in Analysis.
Let X be a set of unit cubes in the unit cubical lattice in R” with volume
| X|. Let m; be the projection onto the coordinate hyperplane perpendicular
to the z;-axis. We would like to bound |X| given that 7;(X) is ‘small’ for
all j. Informally, this is asking: if a set X appears small when viewed from
any angle, is it actually small as a whole?
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Theorem 5.1 (Loomis-Whitney). If |m;(X)| < A for all 1 < j < n, then
| X| < An-T.

The original proof uses induction and Holder’s inequality repeatedly to
obtain the bound.
The below proof by induction does not give a sharp upper bound but is fairly
straightforward and not too computational.

Proof. Define a column of cubes to be the set of cubes obtained by starting
at any cube and taking all the cubes that lie along a line parallel to the
xj-axis, for some 1 < j < n. We require the following lemma:

Lemma 5.2. If |7;(X)| < B for all j, then there exists a column of cubes
with between 1 and BT cubes of the set X.

Proof. Suppose for the sake of contradiction that every column has > B =
cubes of the set X. This implies, in particular, that there are > Bt
along some line parallel to the xj-axis. Call this line A;. If a point p lies
on the line A; and inside a cube of X, then the line passing through p
parallel to the xs-axis must intersect > B+1 cubes of X. The plane A,
containing the line A; and parallel to the (z1,z3)-plane must intersect >
(Bﬁ)2 — Ba1 cubes of X. If we continue in this manner, each time
sweeping along dimensions, we can find an (n — 1)-dimensional plane A,,_;
which is parallel to the (z1,- - ,z,_1)-plane and intersects > (Bﬁ)”_1 =B
cubes of X. However, this would imply that |m,(X)| > B, which contradicts
the assumption that |7;(X)| < B forall 1 <j <n. O

The Loomis-Whitney inequality then follows from this lemma by induc-
tion.

Corollary 5.3. If Y, |m;(X)| < B, then | X| < Xp b=1. Therefore, | X| <
B,

Proof. We prove this by induction on B, the total size of all projections. The
base case B = 1 is trivial since if the sum of all projection sizes is at most 1,
then X can contain at most 1 cube. For the inductive step, consider the set X
and identify its smallest column (the column containing the fewest cubes).
Let X’ denote the set X with this smallest column completely removed.
The key insight is that removing any column reduces the projection size
in at least one direction. Specifically, if we remove a column parallel to
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the x;-axis, then |7;(X’)| becomes strictly smaller than |r;(X)|. Therefore,
25 Imi (XN < X |m(X)| =1 < B — 1. By the inductive hypothesis applied
to the smaller set X', we have:

B-1 s
X< )b
b=1

Now we need to account for the column we removed. By Lemma [5.2] since
2 Im(X)| < B, there exists some column containing at most B#-T cubes.
Since we chose the smallest column to remove, it certainly contains at most
B cubes. Combining these facts:

B-1 B

| X| = |X'| + (size of removed column) < Z b1 + BT = Z bt
b=1 b=1

The final inequality |X| < B#-t follows because the sum Y. | b1 can
be bounded by the integral Sf xﬁd:v, which evaluates to approximately

n

nT_an_l' D

]
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