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1. INTRODUCTION

The fundamental group of a topological space X , based on a point x0 P X , captures information about the

shape of the space by studying loops that start and end at x0. Two loops are considered equivalent if one

can be continuously deformed into the other while keeping the endpoints fixed, which is called homotopy.

These homotopy classes of loops form a group, denoted π1pX, x0q, where the group operation is given by

concatenating loops. Understanding the fundamental group of a space is important because it reveals essential

information about the structure of the space, such as the presence of holes, twists, or loops.
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2. PATHS AND HOMOTOPIES

2.1. Preliminary Definitions.

Definition 2.1. A continuous map f : X Ñ Y is a homeomorphism if its bijective and its inverse function

f´1 : Y Ñ X is also continuous.

Definition 2.2. A path in a space X is a continuous map f : I Ñ X , where I is the unit interval r0, 1s.

Definition 2.3. A homotopy of paths in X is a family ft : I Ñ X, 0 ď t ď 1, such that:

(1) The endpoints ftp0q “ x0 and ftp1q “ x1, are independent of t.

(2) The associated map F : I ˆ I Ñ X , defined by F ps, tq “ ftpsq, is continuous.

When two paths f0 and f1 are connected by way of homotopy, we say that they are homotopic, which we

denote by: f0 » f1.

2.2. Homotopy Classes.

Proposition 2.4. The relation of homotopy on paths with fixed endpoints in any space is an equivalence

relation.

The equivalence class of a path f under the equivalence relation of homotopy is denoted rf s and is called

the homotopy class of f .

Proof. Reflexivity: f » f by the constant homotopy ft “ f .

Symmetry: if f0 » f1 by the homotopy ft “ p1 ´ tqf0 ` tf1, then f1 » f0 by the inverse homotopy

f1´t “ tf0 ` p1 ´ tqf1.

Transitivity: if f0 » f1 by ft “ p1 ´ tqf0 ` tf1, if f1 “ g0, and g0 » g1 by gt “ p1 ´ tqg0 ` tg1, then

f0 » g1 by the homotopy:

ht :“

$

&

%

f2t, 0 ď t ď 1
2

g2t,
1
2

ď t ď 1

By assumption, f1 “ g0, so the associated value t “ 1
2

corresponds to the same value in ht, and is thus well

defined. We define the associated map as:

Hps, tq :“

$

&

%

F ps, 2tq, 0 ď t ď 1
2

Gps, 2t ´ 1q, 1
2

ď t ď 1
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Where F and G are the associated maps of the homotopies ft and gt respectively. The continuity of H follows

from the continuity of F on r0, 1
2
s and G on r1

2
, 1s. So the relation of homotopy on paths with fixed endpoints

in any space is an equivalence relation. □

3. THE FUNDAMENTAL GROUP

Definition 3.1. We define a loop by restricting a path f : I Ñ X , to the same starting and ending point,

fp0q “ fp1q “ x0 P X , where x0 is referred to as the basepoint. The set of all homotopy classes rf s of loops

f : I Ñ X at the basepoint x0 is denoted as π1pX, x0q.

Definition 3.2. The product of two loops, f, g : I Ñ X , where fpx0q “ gpx0q is defined as follows:

f ¨ gpsq :“

$

&

%

fp2sq, 0 ď s ď 1
2

gp2s ´ 1q, 1
2

ď s ď 1

Note: The product of loops respects homotopy classes. If f0 is homotopic to f1 by the homotopy ft, and g0 is

homotopic to g1 by the homotopy gt, then the product f0 ¨ g0 is homotopic to f1 ¨ g1 by the homotopy ft ¨ gt.

Proposition 3.3. π1pX, x0q is a group with respect to the product rf srgs “ rf ¨ gs.

We call π1pX, x0q the fundamental group of X at the basepoint x0 P X .

Proof. We begin by defining a reparameterization path ϕ : I Ñ I , to be any continuous map such that

ϕp0q “ 0 and ϕp1q “ 1.

Given a path f : I Ñ X , we have that f ¨ ϕ » f by the homotopy f ¨ ϕt, where ϕtpsq “ p1´ tqϕpsq ` ts. We

know that the product of homotopies respects homotopy classes (Def. 3.2), so reparameterizing a path will

also respect homotopy classes.

Associativity: Let f, g, h : I Ñ X be loops at the basepoint x0. We can then define the composition:

rf srg ¨ hs :“

$

’

’

’

&

’

’

’

%

fp2sq, 0 ď s ď 1
2

$

&

%

gp2s1q, 0 ď s1 ď 1
2

hp2s1 ´ 1q, 1
2

ď s1 ď 1
, 1

2
ď s ď 1

We define the composition:

rf ¨ gs ¨ rhs :“

$

’

’

’

&

’

’

’

%

$

&

%

fp2s1q, 0 ď s1 ď 1
2

gp2s1 ´ 1q, 1
2

ď s1 ď 1
, 0 ď s ď 1

2

hp2s ´ 1q, 1
2

ď s ď 1
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rf srg ¨ hs can be reparameterized to rf ¨ gs ¨ rhs using ϕ, so we have:

rf srg ¨ hs » rf ¨ gs ¨ rhs

Thus the product of loops of π1pX, x0q is associative.

Identity element: Given a loop f : I Ñ X at the basepoint x0 P X , we define c to be the constant path at

fpx0q. Specifically, let cpsq “ fpx0q for all s P I . Thus we have that f can be reparametrized to f ¨ c by ϕ,

similarly f ¨ c can be reparameterized to f by ϕ, so we have:

f ¨ c » f » c ¨ f

Thus the homotopy class of the constant path must be the identity element in π1pX, x0q.

Inverses: Given a loop f : I Ñ X at basepoint x0 P X , we define an inverse loop f̄ as f̄psq “ fp1 ´ sq. We

define the composition f ¨ f̄ as follows:

f ¨ f̄ :“

$

&

%

fp2sq, 0 ď s ď 1
2

fp2p1 ´ sqq, 1
2

ď s ď 1

So we have: f ¨ f̄ » c, where c is the constant path at x0. Similarly we have f̄ ¨ f » c. So we have:

f ¨ f̄ » c » f̄ ¨ f

Thus rf̄ s is the inverse of rf s in π1pX, x0q.

So π1pX, x0q is a group with respect to the product rf srgs “ rf ¨ gs.

□

Now we will calculate the fundamental group of the circle, π1pS
1q, to show that it is isomorphic to Z (i.e.

π1pS
1q » Z). We will begin with necessary definitions and lemmas for proving π1pS

1q » Z.

Definition 3.4. Given a space X , a covering space of X consists of a space X̃ and a map p : X̃ Ñ X ,

satisfying the following condition: For each x P X , there exists an open neighborhood U of x in X such that

p´1pUq is a union of disjoint open sets, each of which is homeomorphically mapped onto U by p. Such a U

will be called evenly covered.

3.1. Path and Homotopy Lifting Lemmas.

Proposition 3.5. Let p : X̃ Ñ X be a covering map, f : I Ñ X be a map, and f̃1 and f̃2 be both lifts of f .

Then the lifts f̃1 and f̃2 either agree everywhere or nowhere.
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Proof. First note that the unit interval I is a connected as it cannot be expressed as the union of two non-

empty disjoint open sets.

Now we will define the following set:

K :“ ts P I : f̃1psq “ f̃2psqu

We will show that K is both open and closed, and thus since I is a connected space, K “ I , or K “ H.

We will show that K is open: Let s P I such that f̃1psq “ f̃2psq. Then there is an evenly covered neighborhood

U Ď X of fpsq and V Ď X̃ such that f̃1psq P V and the map p|V : V Ñ U is a homeomorphism. Let

Z :“ f̃´1
1 pV q X f̃´1

2 pV q. We will show that f̃1 “ f̃2 on Z. By construction we have that:

p|V ˝ f̃1|Z “ p|V ˝ f̃2|Z

and since p|V is a homeomorphism, we have that:

f̃1|Z “ f̃2|Z

.

So f̃1 “ f̃2 on Z, where Z “ f̃´1
1 pV q X f̃´1

2 pV q, the intersection of two open sets, so Z “ K is open.

Now we will show that K is closed: We will do so by assuming for contradiction that K is not closed.

In other words, there exists s P K̄zK (on the boundary of K) such that f̃1psq ‰ f̃2psq.

Let U be an evenly covered neighborhood of fpsq, let p´1pUq “ \Uα. Let f̃1psq P Uβ and f̃2psq P Uγ ,

where β ‰ γ. Then Z :“ f̃´1
1 pUβq X f̃´1

2 pUγq is an open neighborhood of s and intersects K, since its

an open set on the boundary of K. Thus there exists z P Z such that f̃1pzq “ f̃2pzq, but f̃1pzq P Uβ and

f̃2pzq P Uγ which is a contradiction. Thus K must be closed.

So since K is both open and closed, K “ I , or K “ H. The lifts f̃1 and f̃2 agree everywhere or nowhere.

□

3.1.1. Path Lifting Lemma.

Lemma 3.6. Let p : X̃ Ñ X be a covering map. For each path f : I Ñ X , starting at a point x0 P X , such

that ppx̃0q “ x0 “ fp0q, there is a unique lift f̃ : I Ñ X̃ , of f , starting at x̃0.

Proof. We begin by defining:

S :“ ts P I : f̃ exists and is continuous on r0, ss Ď Iu
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By construction, S ‰ H, since 0 P S.

We will now show that S is open: Let s P S, then there exists a continuous lift f̃ : r0, ss Ñ X̃ . We

will show that we can extend f̃ on a larger interval, showing that S is open.

We know p is a covering map, so there exists an evenly covered neighbourhood U Ď X of fpsq and V Ď X̃

such that f̃psq P V and the map p|V : V Ñ U is homeomorphism.

Since f is continuous, there exists ε ą 0 such that for all t P rs, s ` εs, fptq P U . We define:

f̃ptq :“ pp|V q
´1

˝ fptq, t P rs, s ` εs

So we have that f̃ is continuous on rs, s ` εs, as pp|V q´1 is a homeomorphism, and thus we can extend the

continuity of r0, ss to r0, s ` εs. f̃ is continuous on r0, ss by assumption and both intervals agree at f̃psq,

since p ˝ f̃psq “ fpsq. So f̃ exists and is continuous on a larger interval r0, s ` εs, and thus S is open.

We will now show that S is closed: We will assume that f̃ exists and is continuous on r0, sq, then by taking

the limit point of the of the paths as they get arbitrarily close to s, we can extend the continuity of f̃ to r0, ss.

We have that p is a covering map for fpsq P X , so there exists an evenly covered open neighborhood U Ă X

of fpsq such that p´1pUq “ \αVα, disjoint open sets in X̃ , and p|Vα : Vα Ñ U is a homeomorphism.

By the continuity of f , there exists ε ą 0 such that fpps ´ ε, ssq Ă U . So the image of f̃ on ps ´ ε, sq

must lies entirely in a single Vβ since each Vα is disjoint and open. So f̃ exists and is continuous on r0, sq.

Now we will extend f̃ continuously r0, ss by the following:

f̃ptq :“

$

&

%

f̃ptq, 0 ď t ă s

pp|Vβq´1pfpsqq, t “ s

We restricted map p|Vβ : Vβ Ñ U to a single open set in X̃ , and is thus bijective. We know p´1 is continuous,

so we then have that p|Vβ is a homeomorphism. We then have that f̃ is continuous arbitrarily close to s,

which is then extended to s by the pre-image of fpsq. So f̃ exists and is continuous on r0, ss, so S is closed.

We have that the set

S :“ ts P I : f̃ exists and is continuous on r0, ss Ď Iu

is non-empty, open, and closed, we have that S = I, the entire interval [0,1], so f̃ exists. We can start the lift

at x̃0, by taking the p´1 ˝ fpx0q, and the uniqueness of the lift follows from Prop. 3.5.

□
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3.1.2. Homotopy Lifting Lemma.

Lemma 3.7. For each homotopy ft : I Ñ X of paths starting at x0 and each x̃0 P p´1px0q there is a unique

lifted homotopy f̃t : I Ñ X̃ of paths starting at x̃0, such that f̃tp0q “ x̃0 for all t, and p ˝ f̃t “ ft.

Proof. We will do a sketch relying on the the Path Lifting Lemma 3.6.

(1) We can use compactness of I ˆ I to partition small neighborhoods Uij in X .

(2) We can then define a lift of f on U1,1, using the Path Lifting Lemma. We start this lift at x̃0, which

ensures that f̃tp0q “ x̃0.

(3) We can continue this step inductively from Uij to Unm to lift the whole space, 1 ă i ď n and

1 ă j ď m. Where n and m are the respective partitions of the unit intervals in I ˆ I .

(4) Each lifted path is combined continuously using the uniqueness of path lifting. If any lifts agree at

one spot, they will agree over the entire interval.

(5) We can then piece together these lifted paths to form a continuous homotopy f̃t.

□

3.2. The Fundamental Group of the Circle.

Theorem 3.8. π1pS
1q is an infinite cyclic group generated by the homotopy class of the loop ωpsq “

pcosp2πsq, sinp2πsqq based at p1, 0q.

Proof. We aim to show that every loop in S1 based at p1, 0q is homotopic to some integer power of the loop

ω, and that this integer is unique. This would imply that π1pS1q is cyclic, generated by rωs, and isomorphic

to Z.

Let f : I Ñ S1 be a loop based at p1, 0q. Consider the covering map: p : R Ñ S1, ppsq “ pcos2πs, sin2πsq,

and note that p´1p1, 0q “ Z Ă R. By Lemma 3.6, we can lift f uniquely to a path f̃ : I Ñ R such that

f̃p0q “ 0. Then f̃p1q “ n P Z, since ppf̃p1qq “ fp1q “ p1, 0q, so the lift starts at 0 and ends at an integer

n P Z. Now define: ωn : I Ñ S1, ωnpsq “ pcos2πns, sin2πnsq for n P Z. ωn is a path that loops around

the circle n times, where ωnp0q “ p1, 0q “ ωnp1q. So, rωns “ rωsn, where ωn is the concatenation of ω with

itself n times. This means that ωn is a loop based at p1, 0q, and it lifts to the path ω̃n : I Ñ R, ω̃npsq “ ns,

starting at 0 and ending at n, since pp ˝ ω̃nqpsq “ ppω̃npsqq “ ppnsq “ pcos2πns, sin2πnsq “ ωnpsq.

We now want to show that f » ωn.
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Define a homotopy f̃tpsq “ p1´ tqf̃psq` tω̃npsq, in R from f̃ to the path ω̃npsq “ ns. Then, f̃t is a homotopy

of paths that start at 0 and end at n. Composing with p, we get a homotopy of loops ft “ p ˝ f̃t in S1, where

f0 “ ppf̃0q “ ppf̃q “ f , and f1 “ ppf̃1q “ ppω̃nq “ ωn. Therefore, ft is a homotopy of loops from f to ωn.

Thus, f » ωn.

Uniqueness of n: Suppose m ­“ n, and suppose f » ωm and f » ωn. Then, ωm » ωn, so there exists

a homotopy ft with f0 “ ωm and f1 “ ωn. By Lemma 3.7, there is a f̃t : I Ñ R such that p ˝ f̃t “ ft. By

the uniqueness of path and homotopy lifting, f0 “ ωm implies f̃0 “ ω̃m, and f1 “ ωn implies f̃1 “ ω̃n. The

end point of f̃t is independent of t, i.e. f̃0p1q “ f̃1p1q. But f̃0p1q “ ω̃mp1q “ m and f̃1p1q “ ω̃np1q “ n.

Contradiction. Thus, m “ n.

We have shown that every loop in S1 based at p1, 0q is homotopic to ωn for a unique n P Z. Recall that

rωns “ rωsn. Therefore, every homotopy class of loops in S1 based at p1, 0q is of the form rωsn, and different

values of n give different classes. This means that π1pS
1q » Z. Thus, π1pS

1q is an infinite cyclic group

generated by the homotopy class of the loop ωpsq “ pcosp2πsq, sinp2πsqq. □

4. APPLICATIONS

Now, we will use the calculation of π1pS1q to prove the Fundamental Theorem of Algebra.

4.1. The Fundamental Theorem of Algebra.

Corollary 4.1. Every nonconstant polynomial with coefficients in C has a root in C.

Proof. Without loss of generality, let ppzq “ zn ` a1z
n´1 ` ... ` an be a nonconstant polynomial with com-

plex coefficients. Suppose, for contradiction, that ppzq has no roots in C. Then ppzq ­“ 0 for all z P C. Now

define, for each r ě 0, the loop

frpsq “
ppre2πisq{pprq

|ppre2πisq{pprq|
, for s P r0, 1s

This function is a loop on the unit circle S1 Ă C based at 1. Simply put, frpsq is a function that tracks the

direction (or angle) of the polynomial ppzq as z “ re2πis moves in a circle of radius r. As r varies, fr is

a homotopy of loops based at 1 (since the function is normalized). For r “ 0 (or very small r), f0 is the

constant loop at 1 (the trivial loop). Hence, the homotopy class rfrs P π1pS
1q is zero for small r (since the

homotopy class is based on the number of times the loop winds around the circle).

8



Now, let’s look at a large value of r, bigger than both 1 and |a1| ` ... ` |an|. For such r, on the circle

|z| “ r (circle is made up of all z P C with a distance r from the origin), we have:

|zn| “ |z|
n

“ rn ą pa1| ` ... ` |an|qrn´1
“ pa1| ` ... ` |an|q|zn´1

|

Which implies that,

|zn| ą |a1z
n´1

| ` ... ` |an| ě |a1z
n´1

` ... ` an|

So the entire homotopy ptpzq “ zn`tpa1z
n´1`...`anq, for t P r0, 1s, has no roots on the circle |z| “ r, since

|zn| ą tp|a1z
n´1| ` ... ` |an|q. Then, define f t

rpsq by replacing p with pt in the formula for frpsq above. As t

goes from 1 to 0, this gives a homotopy between the original loop fr and the loop ωnpsq “ e2πins, which winds

around the circle n times. By Theorem 3.8, this loop represents the homotopy class rωns “ n P π1pS
1q » Z.

But earlier, we concluded that rfrs “ 0, since fr is homotopic to the trivial loop. So, rfrs “ rωns “ 0. This

implies n “ 0, meaning that ppzq is a constant. This is a contradiction, and thus our assumption that ppzq has

no roots in C must be false. Hence, every nonconstant complex polynomial has a root in C. □

5. CONCLUSION

In this paper, we explored the fundamental group and used it to compute π1pS
1q, showing that it is isomorphic

to Z. This result reflects the fact that loops around the circle can be classified by how many times they wind

around, and in which direction. Beyond this, we saw how calculating the fundamental group of the circle has

a surprising application outside of pure topology: by using the structure of π1pS
1q, we were able to prove

the Fundamental Theorem of Algebra. This connection shows the power of algebraic topology—even simple

topological spaces like the circle can provide tools to prove deep and far-reaching results in mathematics.
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