
COMPUTING WITH MONADS

Directed Reading Project Report

Hyungki Kim

Mentor: Antoine Pouline

BACKGROUND

The usefulness and power of computation needs no debate. But even
before the advent of the digital computer, mathematicians in the 1930s
were trying to formally define a model for computation. That is, a
series of mechanical steps that can be taken to complete a calculation.
Turing, with his Turing machines, [1] Gödel with general recursive
functions, [2] and Church with 𝜆-calculus [3] independently came up
with a model for computation. Later, these three models were proven
to be equivalent, and we suspect that they capture the natural meaning
of computation itself, in what is now known as the Church-Turing
thesis.

Early on, computer scientists were mainly focused on how to
translate the mathematical calculations they wanted to perform into
machine instructions. Computers were modeled on the von Neumann
architecture consisting of cpu and registers, and programming lan-
guages were mainly instructions for storing and fetching data from the
registers, and executing code on the cpu. However, this quickly got
complicated and hard to reason about. Thus, building on the efforts of
Turing and Church, an effort was made to find mathematical models
for programming. We wanted to be able to answer questions such as:
When are two programs equivalent? What can we prove about the
behavior and properties of programs? Can we formally guarantee the
correctness of programs? Perhaps one of the most amenable models of
programming to mathematical analysis is functional programming. [4]

Functional Programming

If we want to model functions in programs as functions in mathematics,
we need to make sure they are well-defined. In functional program-
ming (FP), such functions are called pure functions. Generally, a pure
function 𝑓 : 𝑇1 → 𝑇2 maps from one type to another, where types can be

1

thought of as collections of possible values. In particular, 𝑓 associates to
every value of 𝑇1, one, and only one value of 𝑇2. If you have used a non-
purely functional programming language before, you will realize that
many of the “functions” you may have used don’t possess this property.
For example, in the following Python code,

x = 3
def f(n):
 return x + n

f(5) # returns 8
x = 1
f(5) # returns 6

the function f returns a different output give the same input in
different circumstances. This additional context external to the input
is called state. Thus, pure functions must be stateless. In addition, the
purpose of certain functions is not to map inputs to outputs, but to
have a side effect, that is, to change state. An example is the Python
function print. A pure function must not have any side effects.

Functions in FP languages are usually first class or higher-order
functions, which means functions themselves are treated as values or
expressions. That is, functions can be the input to a function, and
can be the output of a function. This allows for modeling function
composition and recursively defined functions from mathematics.

Laziness

Infinite structures are often manipulated in mathematics without a
second thought. However, this poses a problem for us if we want to
represent infinite objects, such as the set of all natural numbers, as data.
We do not have infinite storage nor infinite time to perform infinite
computations. Fortunately, we usually don’t need to use all the values.
Rather, we can just compute up to the values we need. In standard

2

programming models, values are evaluated eagerly. That is, they are
fully evaluated before being manipulated. In contrast, we can evaluate
things lazily, and only evaluate values as we need them. For example,
we can use generators in Python to make use of lazy evaluation to
represent the natural numbers.

def N(): # the set of natural numbers
 n = 0
 while True:
 n += 1
 yield n

nats = N()
next(nats) # 1
next(nats) # 2
...

As a bonus, note that N is pure, whereas next is not.

HASKELL

Haskell is a purely functional, lazily evaluated programming language
with algebraic data types, known for its expressive power. [5] In the
midst of a revolution of many new ideas in the space, a committee got
together to solidify these ideas and gave rise to the Haskell program-
ming language. It acted as a testbed for researchers to implement their
theoretical programming language ideas, but also served to experiment
with the ideas of functional programming in building robust, reliable,
and less error-prone software systems.

Effects

You may have realized that functional programming avoids side
effects, but in order for software to actually be of use to us, side effects
are necessary. What’s the point in computing a solution to an equation

3

if the computer doesn’t output the result? Or to take user inputs
or write data. Generally, functional programming languages provide
some kind of abstraction of the external environment, so that the user
(programmer) can focus purely on the data going in and out of func-
tions. The implementation of the language would handle performing
the side effects behind the scenes. In Haskell, streams and continuations
were used to provide I/O functionalities. However, there was a more
elegant and general solution.

Monads

Monads are described as one of the most distinctive features of Haskell
[5]. It allowed a unification and simplification of the different I/O
abstractions, but was general enough to be applicable to other parts of
the language as well.

Monads are a concept in Category Theory, first used by Moggi [6]
to describe features of programming languages, like state management.

Definition (Monad). A Monad is an endofunctor 𝑀 : C → C along
with natural transformations

𝜂 : idC ⇒ 𝑀

𝜇 : 𝑀2 ⇒ 𝑀
such that

𝜇 ∘ (id𝑀 ⋅ 𝜇) = 𝜇 ∘ (𝜇 ⋅ id𝑀)
𝜇 ∘ (id𝑀 ⋅ 𝜂) = 𝜇 ∘ (𝜂 ⋅ id𝑀) = id𝑀 .

Note that 𝜂 is also known as unit or return, and 𝜇 as join.

This is the minimal requirement for a monad. However, in Haskell, it’s
often more useful to define a monad with just unit along with bind

bind : 𝑀(𝑋) × hom(𝑋 ,𝑀(𝑌)) → 𝑀(𝑌)

for 𝑋, 𝑌 ∈ C with

4

bind : (𝑋 , 𝑓) ↦ 𝑓 (𝑋), and
𝜇𝑀(𝑌) : 𝑀(𝑌) ↦ bind (𝑌 , id𝑌).

Bind allows us to easily compose monadic functions. Suppose we have

a composition 𝐴 →
𝑓

𝑀(𝐵) and 𝐵 →
𝑔

𝑀(𝐶). We can’t normally compose
them since the domain doesn’t match, but we can apply bind to com-
pose them with bind(𝑓 (𝐴), 𝑔). Haskell provides bind as a composition
operator (>>=) so that

bind (f x) g = (f x) >>= g

For our purposes, we consider the category Hask whose objects are the
types in Haskell, and whose morphisms are Haskell functions. A monad
generalizes the notion of wrapping a value with an additional context,
be it state, effect, or any kind of computation. For example, take the
Maybe monad

return :: a -> Maybe a
return x = Just x

bind :: Maybe a -> (a -> Maybe b) -> Maybe b
bind Nothing f = Nothing
bind (Just x) f = Just (f x)

which represents a computation that may or may not fail. This could
be used when attempting to read a file which may not exist. Failure
is represented by Nothing, and success with resulting value x by Just
x. Showing that return and the resulting join are natural is left as an
exercise.

Monadic I/O

The Haskell team realized that monads could be used to model in a
pure way, not only states, but even general “computations” including
performing side effects like I/O operations. For a function to be pure,

5

it cannot depend on anything external to its input. But how can we
perform operations like taking input or printing output in a pure way?
Every I/O operation in Haskell is modeled with the IO monad

type IO a = World -> (a, World)

That is, functions on IO take as their monadic context, the state of the
entire external world, and returns an output along with a new state of
the world. (one in which your monitor is now displaying the output,
for example) Of course, Haskell doesn’t allow a programmer to literally
mold the world as they wish. It is a powerful language, but not that
powerful. It merely allows the programmer to work as if this is the case,
in a purely functional manner. The dirty details of actually perform
the side effects is handled by the language under the hood. For example,
here are the type signatures for the standard Haskell IO functions for
getting input and printing output:

getLine :: IO String
putStr :: String -> IO ()

Note that () is the Unit type, which has just one value ().

Monoid in the Category of Endofunctors

Programmer’s often have a hard time understanding monads. This led
to a proliferation of tutorials on monads, leading to jokes such as that
a rite of passage or a Haskell programmer is to write a monad tutorial,
that “Monads are Burritos” regarding an oft-cited example of analogies
used in these tutorials, a paper by Morehouse titled “Burritos for the
Hungry Mathematician”, [7] and the infamous quote that “a monad is
a monoid in the category of endofunctors, what’s the problem?” We
will demonstrate the last statement, showing that a monad is really a
categorification of the idea of a monoid. A monoid is a set with an
associative binary operation, and an identity element. Naturally, the
binary operation for categories would generalize to composition.

6

Definition (Monoidal Category). A monoidal category is a category
C with a functor ⊗ : C × C → C and a unit object 1 such that for all
objects 𝐴, 𝐵, 𝐶 and all morphisms 𝑓 , 𝑔, ℎ, we have:
• 𝐴 ⊗ (𝐵 ⊗ 𝐶) = (𝐴 ⊗ 𝐵) ⊗ 𝐶
• 1 ⊗ 𝐴 = 𝐴
• 𝐴 ⊗ 1 = 𝐴
• 𝑓 ⊗ (𝑔 ⊗ ℎ) = (𝑓 ⊗ 𝑔) ⊗ ℎ
• id1 ⊗ 𝑓 = 𝑓
• 𝑓 ⊗ id1 = 𝑓

Definition (Monoid). An object 𝑀 in a monoidal category (C, ⊗, 1) is
a monoid object when there are two morphisms

𝜂 : 1 → 𝑀
𝜇 : 𝑀 ⊗ 𝑀 → 𝑀

such that
𝜇 ∘ (𝜇 ⊗ id𝑀) = 𝜇 ∘ (id𝑀 ⊗ 𝜇)
𝜇 ∘ (𝜂 ⊗ id𝑀) = 𝜇 ∘ (id𝑀 ⊗ 𝜂) = id𝑀 .

By taking C to be the category of endofunctors, functor composition
as the tensor product, and the identify functor idC as the unit object,
we can see that 𝜂 and 𝜇 meet the conditions of the unit and join for
monads. Thus monads are monoids in the category of endofunctors.

CONCLUSION

Composition plays a big role in programming, and especially in
functional programming. Category theory provides an abstraction for
composition, and monads provide a mathematical framework for han-
dling state and side effects in a purely functional manner. This gives
programmers an algebraic way to reason about programs.

However, theory has its practical limits. The category Hask, often
used to model Haskell’s type system, is not strictly a category. [8]

7

Undefined or bottom values ⊥ break associativity and identity laws.
Despite these limitations, monads and other abstractions remain useful,
and provide structure for the otherwise messy world of computation.

BIBLIOGRAPHY

[1] Alan Turing, “On computable numbers, with an application to the
Entscheidungsproblem,” in Proc. Lond. Math. Soc, 1936.

[2] Kurt Gödel, “On undecidable propositions of formal mathematics
systems,” 1934.

[3] Alonzo Church, “An Unsolvable Problem of Elementary Number
Theory,” American Journal of Mathematics, 1936.

[4] John Backus, “Can Programming Be Liberated from the von
Neumann Style? A Functional Style and Its Algebra of Programs,”
Communications of the ACM, 1978.

[5] Philip Wadler, Simon Peyton Jones, Paul Hudak, and John
Hughes, “A History of Haskell:Being Lazy With Class,” in Proc.
of the 3rd ACM SIGPLAN, 2007.

[6] Eugenio Moggi, “Notions of Computation and Monads,” Infor-
mation and Computation, 1991.

[7] Ed Morehouse, “Burritos for the Hungry Mathematician,”
2015. [Online]. Available: https://edwardmorehouse.github.io/
silliness/burrito_monads.pdf

[8] Nils Anders Danielsson, John Hughes, Patrik Jansson, and Jeremy
Gibbons, “Fast and loose reasoning is morally correct,” Association
for Computing Machinery, 2006.

8

https://edwardmorehouse.github.io/silliness/burrito_monads.pdf
https://edwardmorehouse.github.io/silliness/burrito_monads.pdf

	Background
	Functional Programming
	Laziness

	Haskell
	Effects
	Monads
	Monadic I/O
	Monoid in the Category of Endofunctors

	Conclusion
	Bibliography

