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1 Introduction

Prediction-powered inference (PPI) bridges the gap between modern predictive modeling and classical

statistical inference. While machine learning models—especially neural networks—excel at capturing

complex patterns in high-dimensional data, they often lack mechanisms for valid uncertainty quantifi-

cation. Classical inference, by contrast, guarantees coverage but requires restrictive assumptions and

sufficient labeled data.

PPI addresses this tension by introducing the rectifier, an empirical correction term that calibrates

predictions using a small labeled dataset. This allows complex prediction models to be integrated into

valid inferential procedures without sacrificing statistical rigor.

In this project, we explore the theoretical foundations and algorithmic formulations of PPI, focusing on

mean estimation, quantile inference, and linear and logistic regression. We present efficient confidence

interval constructions that leverage both labeled and unlabeled data and show how PPI generalizes to

convex estimation problems.

Our goal is to summarize this paper: https://arxiv.org/abs/2301.09633 and demonstrate how

prediction-powered inference enables valid and efficient estimation even under model complexity, lim-

ited supervision, or distributional shift—making it broadly applicable to fields such as genomics,

ecology, and population health. All of codes of generated graphs are available here: https://

github.com/dk1028/DRP/tree/main/codes and the poster for 2025 Undergraduate Science Show-

case is available here: https://www.mcgill.ca/ose/files/ose/prediction-powered_inference_

evaluating_efficiency_in_genomic_data_analysis.pdf.

2 Fundamentals and analysis

2.1 Prediction-Powered Estimation: From Classical to Corrected

Inference

Let (X, Y ) = {(X1, Y1), . . . , (Xn, Yn)} be labeled data and (X̃) = {X̃1, . . . , X̃N} unlabeled features,

with predictions f(Xi) and f(X̃i) from a model f . We will use this notation for the setup of our

procedure for the following.
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First, we introduce how PPI works with a simple example where the investigator is interested in the

mean of some population. The classical estimator for the mean in a sample of size n is

(2.1) θ̂class =
1

n

n∑
i=1

Yi.

This estimator is unbiased but may have high variance for small n.

The imputation estimator, which uses predictions only, is

(2.2) θ̂f =
1

N

N∑
i=1

f(X̃i),

efficient but potentially biased if the prediction function f is not well-calibrated or systematically de-

viates from true labels. See, for example, [LR02; BM02] for discussions on predictive bias in statistical

learning.

The classical estimator ignores data for which we do not have labels but have predicted labels—potentially

leading to unnecessary variance. On the other hand, if we use imputation, we implicitly rely on the

quality of our predictions.

To correct this bias, prediction-powered inference introduces the rectifier :

(2.3) ∆ =
1

n

n∑
i=1

(f(Xi)− Yi) .

The prediction-powered estimator is then defined by

(2.4) θ̂PP = θ̂f −∆ =
1

N

N∑
i=1

f(X̃i)−
1

n

n∑
i=1

(f(Xi)− Yi).

which is both unbiased and efficient when N ≫ n and prediction accuracy is moderate or high [GL21].

This framework generalizes to convex problems where E[gθ(X, Y )] = 0. The corresponding rectifier is

(2.5) ∆θ = E[gθ(X, Y )− gθ(X, f(X))].

A corresponding 95% confidence interval around (2.4) is

(2.6) θ̂PP ± 1.96

√
σ̂2
f−Y

n
+

σ̂2
f

N
,

where σ̂2
f−Y is the variance of the rectifier and σ̂2

f is the variance of predicted values. This interval

retains correct coverage by the Central Limit Theorem, as shown in [GL21].
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2.2 Comparative Analysis of Estimators

We summarize three estimators:

• Classical: Equation (2.1) – unbiased, but high variance for small n.

• Imputation: Equation (2.2) – efficient, but potentially biased.

• Prediction-powered: Equation (2.4) – combines efficiency and unbiasedness.

As illustrated in Figure 1, the prediction-powered estimator consistently yields narrower confidence

intervals while maintaining valid coverage. It outperforms classical methods and corrects the overcon-

fidence issues seen in näıve imputation [CSZ06].

Figure 1. Comparison of Confidence Interval Widths. Random genotype data (10
SNPs per individual) are simulated and a continuous phenotype is generated via a linear
model with added noise.
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2.3 Effect of Prediction Accuracy on Prediction-Powered Confidence

Intervals

Building on the mean estimator introduced earlier on (2.4), we examine how its accuracy and variance

behave under varying prediction quality.

The accuracy of the predictive model f directly affects the variance of the PPI estimator:

(2.7) Var(θ̂PP) =
Var(f(X))

N
+

Var(f(X)− Y )

n
.

As prediction accuracy improves, the second term decreases, leading to narrower confidence intervals.

The associated confidence interval is:

(2.8) θ̂PP ± z1−α/2

√
σ̂2
f

N
+

σ̂2
f−Y

n
,

where σ̂2
f and σ̂2

f−Y are the empirical variances of predictions and prediction errors, respectively.

If the predictor is unbiased in the sense that E[f(X)] = E[Y ], the rectifier ensures unbiasedness of the

estimator, and the confidence interval remains valid:

(2.9) E[f(X)− Y ] = 0 ⇒ E[∆̂] = 0.

However, if the predictor is biased (i.e., E[f(X)] ̸= E[Y ]), then ∆̂ may not fully correct the bias. Thus,

the PPI estimator is only guaranteed to be unbiased in the zero-bias case. As long as the variance

of the prediction error is small, the estimator remains efficient and valid under the Central Limit

Theorem assumptions [GL21].

Illustration: Consider a 1D example with θ∗ = 0. As model accuracy decreases from 100% to 50%,

confidence intervals widen but remain valid. The table below summarizes this effect:

Scenario Model Accuracy PP Confidence Interval Width

Perfect prediction 100% Narrow (smallest possible)

Good prediction 80% Moderately narrow

Poor prediction 50% or less Wide
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Figure 2. Prediction-powered estimates with 95% confidence intervals under varying
prediction accuracy.

In summary, PPI adapts to prediction quality: better models yield tighter intervals, while validity is

preserved even when predictions are noisy.

3 Algorithms and inferences

3.1 Mean Estimation

Problem. Estimate the population mean θ∗ = E[Y ], which minimizes expected squared loss:

(3.1) θ∗ = argmin
θ∈R

E
[
1
2
(Y − θ)2

]
.

Estimators.

• Classical: θ̂class =
1
n

∑
Yi — unbiased but high variance.

• Imputation: θ̃f = 1
N

∑
f(X̃i) — efficient but biased.

• Prediction-powered:

(3.2) θ̂PP = θ̃f − ∆̂ =
1

N

∑
f(X̃i)−

1

n

∑
(f(Xi)− Yi).

6



This correction ensures unbiasedness: E[θ̂PP ] = E[Y ].

Confidence Interval. Since θ̂PP is a sum of two independent terms, a valid (1− α) interval is:

(3.3) CPP
α = θ̂PP ± z1−α/2

√
σ̂2
f−Y

n
+

σ̂2
f

N
,

where σ̂2
f−Y and σ̂2

f are sample variances of the rectifier and prediction terms, respectively.

Algorithm 1 Prediction-Powered Mean Estimation

Require: Labeled data (Xi, Yi), unlabeled X∼
j , predictor f , level 1− α

1: Compute θ̃f = 1
N

∑
f(X∼

j )

2: Compute ∆̂ = 1
n

∑
(f(Xi)− Yi)

3: Form θ̂PP = θ̃f − ∆̂

4: Estimate variances σ̂2
f , σ̂

2
f−Y

5: Compute margin w = z1−α/2

√
σ̂2
f−Y /n+ σ̂2

f/N

6: return [θ̂PP − w, θ̂PP + w]

3.2 Linear Regression

Problem. Estimate θ∗ ∈ Rd minimizing squared error:

(3.4) θ∗ = argmin
θ

E[(Y −X⊤θ)2].

Estimators.

• Classical: θ̂OLS = (X⊤X)−1X⊤Y

• Imputed: θ̃f = (X∼⊤X∼)−1X∼⊤f(X∼)

• Prediction-powered:

(3.5) θ̂PP = θ̃f − ∆̂, ∆̂ = (X⊤X)−1X⊤(f(X)− Y )

Inference. Let residuals ε∼j = f(X∼
j )−X∼⊤

j θ̃f and εi = f(Xi)− Yi −X⊤
i ∆̂. The covariance estimate

is:

(3.6) V̂ = Af + Ar,
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where each term represents the contribution from imputation and rectification:

Af = (X∼⊤X∼)−1

(
1

N

∑
ε∼2
j X∼

j X
∼⊤
j

)
(X∼⊤X∼)−1,

Ar = (X⊤X)−1

(
1

n

∑
ε2iXiX

⊤
i

)
(X⊤X)−1

A coordinate-wise (1− α) interval for θPP,j∗ is:

CPP
α,j∗ =

[
θ̂PP,j∗ ± z1−α/2

√
V̂j∗,j∗

]
.

Algorithm 2 Prediction-Powered Linear Regression

Require: Labeled (X, Y ), unlabeled X∼, predictor f , target coordinate j∗, level 1− α

1: Compute θ̃f , ∆̂, and θ̂PP

2: Compute residuals and covariance matrix V̂

3: return Confidence interval for θ̂PP,j∗

3.3 Convex Estimation and Theoretical Guarantees

Let θ∗ minimize a convex risk:

(3.7) θ∗ = argmin
θ

E[ℓθ(X, Y )],

with subgradient gθ(X, Y ) satisfying E[gθ∗(X, Y )] = 0.

The prediction-powered estimating equation augments with a rectifier:

∆θ = E[gθ(X, Y )− gθ(X, f(X))].

Empirical Procedure.

• Compute empirical rectifier: ∆̂(θ) = 1
n

∑
[gθ(Xi, Yi)− gθ(Xi, f(Xi))]

• Compute predicted gradient: ĝfθ = 1
N

∑
gθ(X̃i, f(X̃i))

Confidence Set. Under CLT assumptions, the confidence set is:

(3.8) CPP
α =

{
θ : ∥ĝfθ + ∆̂(θ)∥ ≤ wα(θ)

}
,
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where ∥ · ∥ denotes the Euclidean norm. This means we include all parameter values θ such that the

magnitude of the corrected gradient (combining labeled and unlabeled data) is sufficiently small to be

consistent with the true minimizer.

with

wα(θ) = z1−α/2

√
σ̂2
∆(θ)

n
+

σ̂2
g(θ)

N
.

Coverage Guarantee. As shown in [GL21], if:

P (∆θ ∈ Rδ(θ)) ≥ 1− δ, P (gfθ ∈ Tα−δ(θ)) ≥ 1− (α− δ),

then the confidence region

CPP
α = {θ : 0 ∈ Rδ(θ) + Tα−δ(θ)}

achieves asymptotic coverage at level 1− α via the union bound.

Algorithm 3 Prediction-Powered Convex Estimation

Require: Data (X, Y ), (X̃), predictor f , grid Θ, level 1− α

1: for θ ∈ Θ do

2: Compute ĝfθ , ∆̂(θ), variances

3: Form wα(θ) and include θ if condition (3.8) holds

4: end for

5: return Confidence set CPP
α

3.4 Cases Where Prediction-Powered Inference is Underpowered

Prediction-powered inference (PPI) for mean estimation performs well when the prediction model

is accurate and the unlabeled dataset is large. However, it can become underpowered when either

condition fails.

Mean Inference.

Based on the Section 3.1, the variance of the mean inference becomes:

(3.9) Var(θ̂PPI) =
Var(f(X))

N
+

Var(f(X)− Y )

n
.

and PPI becomes underpowered when:

(3.10) Var(θ̂PPI) > Var(θ̂class).
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Key Conditions for Underpowering:

• Poor predictions: High Var(f(X)− Y ) [BO17].

• Limited unlabeled data: Small N , so the 1
N

term does not vanish.

Bernoulli Example. For Y ∼ Bernoulli(p), the threshold prediction error rate η = P(f(X) ̸= Y ) must

satisfy:

η < 0.25 (when p = 0.5),

for PPI to outperform classical estimation.

Figure 3 illustrates: The comparison of confidence interval widths for classical, imputation, and PPI

estimators.

Figure 3. Confidence interval widths under different estimators and prediction quali-
ties.

3.5 Prediction-Powered Inference for Structured Parameters

Prediction-powered inference generalizes to various estimands, including quantiles, logistic regression

coefficients, and linear regression. In each case, PPI adjusts imputed estimates by a rectifier term to

debias and construct valid confidence intervals. Below, we summarize key formulations and conditions

for underperformance.
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Quantile Estimation (e.g., Median)

The target parameter is the q-quantile:

(3.11) θ∗ = inf {θ ∈ R : P (Y ≤ θ) ≥ q} , q ∈ (0, 1).

PPI replaces the empirical CDF P (Y ≤ θ) with P (f(X) ≤ θ) and corrects the discrepancy. The

variance of the PPI estimator becomes:

(3.12)
1

n
Var (1{Y ≤ θ} − 1{f(X) ≤ θ}) + 1

N
Var (1{f(X) ≤ θ}) .

Underpowered Cases. PPI may underperform if:

• f(X) poorly approximates the distribution near θ∗, especially when q is close to 0 or 1, i.e.,

when θ∗ lies in the tails of the distribution. In such cases, there may be too few training

samples near θ∗ to ensure accurate approximation.

• or the unlabeled sample size N is not large enough to reduce the second variance term.

Logistic Regression Coefficients (Binary Response)

The target parameter minimizes the logistic loss:

(3.13) θ∗ = arg min
θ∈Rd

E
[
−Y X⊤θ + log

(
1 + eX

⊤θ
)]

.

PPI substitutes predictions f(X) for Y , then debiases the estimating equation. The variance for each

coordinate j is approximated by:

(3.14)
1

n
Var (Xj(f(X)− Y )) +

1

N
Var (Xj(hθ(X)− f(X))) ,

where hθ(X) = P(Y = 1 | X) is the true conditional probability. For example, if Y = 1 indicates a

rare event (e.g., disease presence), f(X) must closely approximate this probability even for infrequent

outcomes.

Underpowered Cases. Performance degrades when:

• f(X) is a poor approximation of hθ(X),

• or N is small relative to d.
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Linear Regression Coefficients (Continuous Outcomes)

Based on the estimand (3.4) of the Section 3.2, the variance of the PPI estimator decomposes as:

(3.15)
1

n
Var

(
X⊤(f(X)− Y )

)
+

1

N
Var

(
X⊤(Xθ − f(X))

)
.

Underpowered Cases. PPI performs poorly when:

• f(X) lacks linear structure aligned with X⊤θ; this may reflect model bias, and PPI is not

guaranteed to correct for biased predictors.

• or N is too small to offset the imputation error.

Figure 4 summarizes: The comparison of confidence interval widths for classical, imputation, and PPI

estimators.

Figure 4. Conditions for Success or Failure of Prediction-Powered Inference across
different estimators.
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4 Conclusion

Prediction-powered inference (PPI) provides a powerful framework for integrating machine learning

predictions into classical statistical inference while preserving valid coverage guarantees. By combin-

ing a small labeled dataset with a large unlabeled one, PPI leverages model predictions efficiently,

correcting for systematic prediction error via an empirical rectifier. This enables the construction of

confidence intervals that are both valid and often narrower than classical alternatives.

Across multiple settings—mean, quantile, and regression estimation—PPI offers a general, convex-

optimization-based strategy for achieving unbiased inference, even under complex or misspecified

models. Empirical evaluations confirm that PPI performs optimally when predictions are accurate

and unlabeled data is abundant, while still maintaining robustness in less ideal conditions.

However, PPI is designed for scenarios where the predictor is sufficiently accurate—typically meaning

low variance and ideally low bias—to improve power using predictions on unlabeled data. For a fixed-

quality predictor, the inferential power increases with the size of the unlabeled dataset N . When the

predictor has high variance or systematic bias, PPI may no longer yield valid or efficient inference. In

summary, the success of prediction-powered inference critically depends on the quality of the predictive

model.

Ultimately, PPI bridges the gap between predictive modeling and inferential rigor, offering a flexi-

ble and scalable methodology for modern data analysis. Future extensions may further expand its

applicability to dependent data, model selection, and causal inference contexts.
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