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Introduction

Despite being one of the most familiar branches of physics, classical mechanics, in its modern formulation,
can be quite difficult to deal with mathematically. Mathematicians have spent many years building upon the
foundations laid by Newton, Lagrange, Hamilton, and Jacobi, and many subfields have sprung up as a result
of their work. Take Floer theory, for example: an active field of research in modern mathematics, it was
developed specifically to tackle problems in symplectic geometry, itself a byproduct of Hamilton’s formulation
of mechanics. Another, perhaps better-known, example comes from the work of Lorenz, Mandlebrot, and
Feigenbaum in chaos theory, the study of unpredictable behaviour in deterministic, dynamical systems.

Speaking personally for a moment, this is one of the things which fascinates me so much about classical
mechanics. The phenomena governed by the rules of mechanics are intuitive and commonplace: an apple
falling due to gravity, a wheel rolling on an incline plane, the collision of two billiard balls on a smooth surface.
And yet, peering deeper into the math, one encounters a level of complexity and sophistication rarely seen
elsewhere. Though we can observe the apple falling from the tree, the system’s roots run much deeper.

In this expository paper, I’m going to introduce some of modern mechanics’ main players: manifolds and Lie
groups. I’m going to define them, explain what geometric objects they can be equipped with, and talk about
how to do mechanics on them. The danger, of course, is that this subject can become very abstract very
fast. To remedy this, I’ve decided to stick to one concrete example which will help ground us on our journey:
that of the heavy symmetric top. It’s a great toy model to play with because it can be solved analytically,
and it combines many of the tools one uses often when solving physics problems. My hope is that someone
reading this, having gotten a sense that the material has become too heady, can come back to the image of
the spinning top to get a feel for, say, how some quantity varies with time, or how infinitesimal nudges can
accumulate to form continuous transformations.

The crown jewel of this paper, so to speak, is Lie-Poisson reduction, a method of simplifying the dynamics of
a mechanical system by exploiting its geometric symmetries. As with any mathematical scenario involving a
Legendre transform pair, we will start off with a simpler version, known as Euler-Poincaré reduction, which
uses the Lagrangian framework of mechanics, before shifting gears to focus on the Hamiltonian framework.

Ultimately, my hope is that this paper is interesting to read for students of both mathematics and physics,
and that there is something in it for everyone. Newcomers to mathematical mechanics have many, many
opportunities to survey their surroundings only to find that the terrain has shifted underneath them, and
that something which was once coarse and procedural has given way to something terrifying in its intricacy,
awesome in its scope. I felt that way a lot when researching this topic. I hope you do, too.
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Math and Physics Background

We assume that the reader is familiar with the following topics from mathematics and physics:

Math

Groups: an understanding of groups comprising the material of Algebra 1 (MATH 235 in McGill’s Course
Catalogue), although results like Lagrange’s Theorem, Cayley’s Theorem, etc. will not be used.

Vector Calculus: familiarity with calculus in Rn, and with some of the more important function theorems
(e.g. the Implicit Function Theorem).

Topology : the terms “open” and “closed” are almost always used in the context of Rn. If a set U is open
relative to a manifold M , we will specifically state that U is open relative to M .

Variational Calculus: Let q : I ⊂ R → Q be a smooth path in Q. A deformation of q(t), denoted q(t, s), is
a smooth map such that s ∈ (−ε, ε), ε > 0, and q(t, 0) = q(t) for all t ∈ I. The variation of the curve q(·)
corresponding to the deformation q(t, s) is given by

δq(·) = d

ds

∣∣∣∣
s=0

q(·, s) (1)

In addition, we will sometimes make use of the variational derivative in the context of the action functional,
to be defined later. The variational derivative, denoted using “δ/δq” rather than “d/dq” or “∂/∂q”, is defined
in relation to the variation to a functional S:

δS[q(·)] = ⟨δS
δq
, δq⟩ =

∫ b

a

δS
δq

· δq dt (2)

Physics

Newtonian mechanics: an understanding of the Newtonian formulation of dynamics. If the reader is unfamil-
iar with the finer details of Newtonian physics, such as the context in which quantities like linear momentum
or energy are conserved, there should be no issue, but we will not elaborate on these finer points here.

Subscripts and Superscripts

Throughout this paper, subscripts and superscripts will be use to differentiate between covariant and con-
travariant quantities. Given a coordinate transformation, contravariant quantities (e.g. vectors) will change
representation in a specific way dependent on the transformation, while covariant quantities (e.g. metric
tensors) will change representation in a completely different way, also dependent on the transformation.

Contravariant quantities are represented using superscripts. Ex:

v = (v1, v2, v3)

Covariant quantities are represented using subscripts. Ex:

v = (v1, v2, v3)



1

1 Manifolds

“I peruse Manifold objects, no two alike, and every one good.”

– Walt Whitman, Song of Myself (1855)

1.1 Preliminaries

It is good to start out with a heuristic approach to manifolds. Broadly speaking, manifolds are sets that
locally resemble Euclidean space. We will begin this section by defining real submanifolds, subsets of Rn
that satisfy the definition of a manifold. The important structures with which manifolds can be equipped are
defined in this context, as it is easier to imagine things like tangent spaces and coordinate charts as living in
an ambient space. Finally, to cover the topic more generally, we give the definition of an abstract manifold.

1.1.1 Submanifolds of Rn

Submanifolds of Rn are defined via smooth embeddings or level sets. In the former case, given a function
ψ : A ⊆ Rm → Rn whose Jacobian is injective at each point in its domain, a submanifold M may be related
to ψ topologically using neighbourhoods of M . In the latter case, given a function f : A ⊆ Rn → Rk whose
Jacobian is surjective at each point in its domain, the landscape of M can be inferred using the Implicit
Function Theorem. To clarify these definitions, it will be important to introduce the following classes of
functions.

Definition 1.1 (Submersions). A differentiable function f : A ⊆ Rn → Rk is a submersion at x ∈ A if the
derivative Df(x) is surjective. A function that satisfies this condition for all x ∈ A is called a submersion.

Example 1.1. Let m ≥ n, with Rm = Rn × Rm−n. The linear projection map π : Rm → Rn given by
(x, y) 7→ x is a submersion for all (x, y) ∈ Rm. Indeed, for all (x, y) ∈ Rm, we have

Dπ(x, y) =
(
In | 0n×(n−m)

)
(3)

Definition 1.2 (Immersion). A differentiable function f : A ⊆ Rm → Rn is an immersion at x ∈ A if the
derivative Df(x) is injective. A function that satisfies this condition for all x ∈ A is called an immersion.

Example 1.2. Let ψ : R2 → S2 ⊂ R3 by given by

ψ(θ, ϕ) = (cos(θ) sin(ϕ), sin(θ) sin(ϕ), cos(ϕ)) (4)

We have

Dψ(θ, ϕ) =

− sin(ϕ) sin(θ) cos(ϕ) cos(θ)
sin(ϕ) cos(θ) sin(ϕ) cos(θ)

0 − sin(ϕ)

 (5)

For ϕ ̸= kπ, k ∈ Z, the two columns of Dψ are linearly independent, so the restriction of ψ to the domain
R × (0, π) is an immersion. The restriction of ψ to the domain (−π, π) × (0, π) is an injective immersion,
and defines the spherical coordinate system on S2.

Definition 1.3 (Embedding). An embedding is an immersion ψ : A ⊆ Rm → Rn such that ψ−1 : ψ(A) → A
is continuous.

Example 1.3. Let ψ : R → R2 by given by ψ(θ) = (cos(θ), sin(θ)). We have ψ′(θ) = (− sin(θ), cos(θ)) ̸= (0, 0)
for any θ ∈ R, so ψ is an immersion. Its image is S1.
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The restriction of ψ to (0, 2π) is injective with continuous inverse ψ−1 : (S1\{(1, 0)}) → (0, 2π). In-
deed, for any sequence (θk)k∈N in (0, 2π) such that limk→∞ θk = θ0, we have limk→∞ ψ(θi) = ψ(θ0) and
limk→∞ ψ′(θi) = ψ′(θ0). Therefore ψ continuously differentiable on (0, 2π), and so by the Inverse Function
Theorem there exists U(θ0) ⊂ (0, 2π) such that ψ−1 exists and is continuously differentiable on U(θ0). Thus,
ψ−1|(0,2π) is continuous, and ψ|(0,2π) is an embedding.

Definition 1.4 (Diffeomorphism). A diffeomorphism is a differentiable map with a differentiable inverse.

Remark that if f is a diffeomorphism, then Df(x) is invertible for all x. Thus, every diffeomorphism is
also an immersion and a submersion. However, the converse does not always hold. The submersion given in
Example 1.1, for instance, is not a diffeomorphism, since it has no well-defined inverse.

With these terms defined, we can formally introduce the notion of a submanifold of Rn:

Theorem 1.1 (Equivalent Definitions of a Submanifold of Rn). Let M ⊆ Rn, 0 < m < n, and k = n −m.
The following are equivalent:

1. For every a ∈ M there exists a neighbourhood U of a, a smooth submersion f : U → Rk, and c ∈ Rk
such that M ∩ U = f−1(c)

2. For every a ∈M there exists a neighbourhood U of a such that M ∩U is the graph of a smooth function
expressing k of the standard coordinates in terms of the other m coordinates.

3. For every a ∈ M there exists a neighbourhood U of a and a smooth embedding ψ : V ⊆ Rm → Rn such
that ψ(V ) =M ∩ U

Proof. (1) =⇒ (2) Take any a ∈ M . There exists a neighbourhood U of a, a smooth submersion f and
c ∈ Rk such that M ∩ U = f−1(c). Note that

M ∩ U =M ∩ U ∩ U = f−1(c) ∩ U (6)

If we let f(a) = c, then by the Implicit Function Theorem we have that f−1(c)∩U is the graph of a smooth
function expressing k of the standard coordinates in terms of the other m coordinates. Since f−1(c) ∩ U =
M ∩ U , we are done.

(2) =⇒ (3) Again let a ∈ M and U a neighbourhood of a. Suppose that M ∩ U is the graph of a
smooth function g. Let U ⊂ Rn be written as U1 × U2 for U1 ⊂ Rm and U2 ⊂ Rk. Then we can write
M ∩ U = {(x, g(x)) : x ∈ U1}. Now let V = U1 and define ψ : V → Rn by ψ(x) = (x, g(x)). Then ψ is a
smooth immersion and ψ−1 :M ∩U → V is continuous because it is equal to the projection π : (x, g(x)) 7→ x.
Therefore ψ is a smooth embedding.

(3) =⇒ (1) Again let a ∈ M and U a neighbourhood of a. Suppose we are guaranteed for each such a the
existence of a smooth embedding ψ : V ⊂ Rm → Rn such that ψ(V ) = M ∩ U . Then dim(ψ(V )) = m, so
choose a basis of Rn such that, for all x ∈M ∩ U , we have

x = (x1, . . . , xm, 0, . . . , 0) ∈ U (7)

Define
f : U → Rk, (x1, . . . , xn) 7→ (xm+1, . . . , xn) (8)

It is trivial to show that f is smooth. It is also a submersion, as shown in Example 1.1. Finally, we note that

M ∩ U = f−1(0) (9)

In each of the preceding cases we say thatM ⊂ Rn is anm-dimensional manifold, denoted dim(M) = m, with
the codimension of M being k = n−m, denoted codim(M) = k. Knowing that a manifold is m-dimensional
is important as it allows one to construct local maps from neighbourhoods of M to subsets of Rm. These
local maps are called coordinate charts, and we define them here:
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Definition 1.5 (Coordinate Chart). Let M be a submanifold of Rn, let a ∈ M and ψ : V → M ∩ U be the
embedding corresponding to the neighbourhood U which contains a. The inverse of ψ, denoted

φ := ψ−1 :M ∩ U → V (10)

is called a coordinate chart, and the components of φ are called local coordinates.

Remark: By definition, every coordinate chart is continuous and has a continuous inverse.

Remark: Given two different coordinate charts φ1 and φ2 with overlapping domains, the map φ2 ◦ φ−1
1 is

called a change-of-coordinates transformation, or simply a change-of-coordinates.

Example 1.4. Consider S2 ⊂ R3. Removing the point (0, 0, 1), we can define the stereographic projection of
S2\{(0, 0, 1)} onto R2 via

(x, y, z) 7→
(

x

1− z
,

y

1− z

)
(11)

This is a smooth coordinate chart on almost all of S2 but is not well defined at the “North Pole”. We can fix
this by defining the denominator of the chart to be 1+ z instead, but we must then remove the point (0, 0,−1).
In fact, one can show that S2 cannot be globally covered by any single chart which maps to R2.

Coordinate charts are useful because one can use them to perform computations in flat space, rather than
on the manifold directly. An example of this is the evaluation of functions defined on the manifold:

Definition 1.6 (Representation in local coordinates). Let M ⊂ Rm and N ⊂ Rn be submanifolds with
dim(M) = q, dim(N) = p, and f : M → N . Given any two coordinate charts φ1 : M ∩ U1 → V1 ⊂ Rq and
φ2 : N ∩ U2 → V2 ⊂ Rp, the representation of f in local coordinates is given by

φ2 ◦ f |M∩U1 ◦ φ−1
1 (12)

where it is assumed that Im(f) ∩ (N ∩ U2) ̸= ∅.

One can use the local representation of f to investigate its differentiability. In particular, with respect to
the situation presented in Definition 1.6, we say that f is differentiable at a ∈ M if, for every φ1 defined at
a and every φ2 defined at f(a), the composition φ2 ◦ f ◦ φ−1

1 is differentiable at φ1(a). If this holds for all
a ∈ M , we say that f is differentiable. Note that, provided f−1 exists, one can use the local representation
of f to check whether the function is a diffeomorphism.

1.1.2 Tangent and cotangent spaces

Since submanifolds of Rn locally resemble lower-dimensional Euclidean spaces, it is natural to ask how we
can formally describe directions of motion or infinitesimal displacements along them. This leads us to the
notion of the tangent space, which captures all possible velocities of curves that pass through a point on the
manifold.

Definition 1.7 (Tangent vectors, tangent spaces). Let M be a submanifold of Rn and let x ∈M . A tangent
vector to M at x is defined to be g′(0) for some smooth path g : R → M such that g(0) = x. The tangent
space of M at x is the set of all tangent vectors based at x, denoted TxM

TxM = {(x,v), v = g′(0), g : R →M, g(0) = x} (13)

Before we move on, we prove an important result concerning the tangent spaces of embedded submanifolds.
The corresponding result for level set submanifolds can be found in [1], though the reader is encouraged to
try and prove the latter result for themselves.
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Theorem 1.2 (Tangent spaces of parameterized manifolds). Let M be an m-dimensional submanifold of Rn
and let x ∈M . If M ∩U = Im(ψ) for some neighbourhood U of x and some embedding ψ with ψ(a) = x, then

TxM = {x} × ImDψ(a) (14)

Proof. Let ψ : W ⊂ Rm → Rn such that W open, Imψ = M ∩ U for a ∈ M and a neighbourhood U of a.
By Definition 1.7, it is clear that every tangent vector v at x is g′(0) for some smooth g : R → M ∩ U with
g(0) = x. Define

α(t) := ψ−1 ◦ g(t) (15)

Clearly α(0) = a and g = ψ ◦α. By the chain rule, we have g′(0) = Dψ(a)α′(0). Since α is an arbitrary path
in W and W is open, α′(0) can take on any value in Rm. Taking the union over all such vectors and pairing
the resulting value of g′(0) with x, the result follows.

The important thing to note about this result is that if TxM is a tangent space, it is also a vector space. This
means that linear combinations of tangent vectors yield other tangent vectors, and that tangent vectors can
be scaled by real coefficients. This may seem obvious, but this result has been used in the scheme of larger
proofs to great effect (see [2]).

Definition 1.8 (Tangent bundle, projection map). The tangent bundle of a submanifold M of Rn, denoted
TM , is the union of all the tangent spaces to M :

TM =
⊔

x∈M
TxM (16)

The tangent bundle projection is the map π : TM →M given by (x,v) 7→ x, i.e. the projection takes any
tangent vector to its base point.

Example 1.5. Consider S1 and its parametrization ψ : (0, 2π) → S1, ψ(θ) = (cos(θ), sin(θ)). Let a = π and
x = ψ(a) = (−1, 0). We have

Dψ(π) =

[
− sin(π)
cos(π)

]
=

[
0
−1

]
(17)

by the previous theorem, we have that

Tψ(π)S
1 = {(−1, 0)} × span{(0,−1)} = {(−1, 0, 0,−λ) : λ ∈ R} (18)

Generalizing this result to any x ∈ S1 and computing the tangent bundle, we find that

TS1 = {(x, y,−λy, λx) : x2 + y2 = 1, λ ∈ R} (19)

Note that TS1 is diffeomorphic to S1 × R via (x, y,−λy, λx) 7→ ((x, y), λ).

Example 1.6. Consider S2 and take any a ∈ S2. For any smooth path g : I ⊂ R → S2 with g(0) = a we
have that g′(0) defines a tangent vector based at a. It is easy to show that, for any such vector v, we have
a · v = 0. Indeed, the analogous result for level sets of Theorem 1.1 says that the tangent space TaS

2 can be
written as

TaS
2 = {(a,v) : a · v = 0} (20)

The tangent bundle can then be written as

TS2 = {(a,v) ∈ R6 : ||a|| = 1, a · v = 0} (21)

In contrast to S1, it is not possible to find a diffeomorphism from TS2 to S2 × R2.

As with other vector spaces, every tangent space has a basis. To see this, consider the parametrization
ψ : W ⊂ Rm → Rn of a smooth manifold M and suppose ψ(q) = x ∈ M . Since ψ is a parametrization,
Dψ(q) is injective. By the result of Theorem 1.2, ImDψ = TxM , and so Dψ(q) is an isomorphism from Rm
to TxM .
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Definition 1.9 (Basis of a tangent space). In the above context, we define the following special tangent vectors
at x:

∂

∂qi
(x) :=

∂

∂qi
(ψ(q)) = Dψ(q)ei (22)

where ei is the ith standard basis vector of Rm. Note that ∂
∂qi (x) is the ith column of Dψ(q), so the vectors

{ ∂
∂q1 (x), . . . ,

∂
∂qm (x)} form a basis for TxM .

One can also track how tangent spaces change when one manifold is mapped onto another.

Definition 1.10 (Tangent map, tangent lift). Let M ⊂ Rm and N ⊂ Rn be submanifolds of Rm and Rn,
respectively. Let f :M → N be differentiable. The tangent map of f at x ∈M is the map

Txf : TxM → Tf(x)N (23)

(x,v) 7→
(
f(x),

d

dt

∣∣∣∣
t=0

f(g(t))

)
(24)

where g(t) is a path in M with g(0) = x and d
dt |t=0(g(t)) = v. The tangential component v of Txf is often

written df(x) and is called the derivative of f at x.

Taken together, all of the maps Txf , for all x ∈M , define the tangent lift of f ,

Tf : TM → TN (25)

(x,v) 7→ (f(x), (Txf)(v)) (26)

Proposition 1.1 (Path independence of tangent map). Let M , N , f , and x be defined as above. Then Txf
is independent of one’s choice of path g : I ∈ R →M , so long as g satisfies g(0) = x and g′(0) = v.

Proof. Let (Txf)(v) denote the action of Txf on the second entry of the ordered pair (x,v). Working in
ambient space coordinates (i.e. the Euclidean spaces in which M and N are embedded), define

F : U ⊂ Rm → Rn, F |M := f (27)

An explicit computation gives

(Txf)(v) =
d

dt

∣∣∣∣
t=0

f(g(t)) = DF (x) · g′(0) = DF (x) · v (28)

Example 1.7. Let F : R3 → R3 be given in matrix representation bycosα − sinα 0
sinα cosα 0
0 0 1

 (29)

i.e. a rotation by an angle α around the z-axis. Since F is linear, DF (x) = F (x) for all x ∈ R3.

Consider S2. It is easy to show that F maps every point on S2 to another point on S2, so let f := F |S2 and
let x = (1, 0, 0). Then any tangent vector v based at x can be written as v = (0, v2, v3), and the action of the
tangent map of f at x is given by

T(1,0,0)f : T(1,0,0)S
2 → Tf((1,0,0))S

2, (30)

((1, 0, 0), (0, v2, v3)) 7→ ((cosα,− sinα, 0), (−v2 sinα, v2 cosα, v3)) (31)

The preceding theorem and its associated example were carried out using coordinates written with respect
to the standard basis of the ambient space. Now suppose we were to carry out computations using local
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coordinate charts. In particular, suppose we had a smooth embedding ψ :W ⊂ Rm → Rn such that W open
and Imψ =M ∩ U for some neighbourhood U of M .

Lemma 1.1. If U ⊆ Rn is open, then TU = U × Rn.
Proof. Let x ∈ U and define

g : I ⊂ R → Rn, g(t) = x+ tv, v ∈ Rn (32)

Note that we require U open in this definition because dim(∂U) < dim(U).

If (q1, . . . ,qm) are coordinates with respect to the standard basis of Rm, then for any open set W ⊆ Rm, we
can write the coordinates of TW as (q1, . . . ,qm, q̇1, . . . , q̇m) ∈W×Rm. Since we have that TxM = ImDψ(q)
for ψ(q) = x, we can express every tangent vector based at x as Dψ(q) · q̇ for a unique q̇ ∈ Rm. Indeed,

Dψ(q) · q̇ = Dψ(q) ·

(
m∑
i=1

q̇iei

)
=

m∑
i=1

q̇i (Dψ(q) · ei) =
m∑
i=1

q̇i
∂

∂qi
(x) (33)

The upshot of this expression is that one can also define tangent maps in terms of local coordinate charts
φ = ψ−1.

Definition 1.11 (Tangent map). Let ψ1 : W1 ⊂ Rp → Rm, ψ2 : W2 ⊂ Rs → Rn be smooth embeddings such
that Imψ1 =M ∩U , Imψ2 = N ∩V for U , V open in Rm and Rn, respectively. Let φ1 be the coordinate chart
corresponding to ψ1 and define φ2 analogously. For x ∈M and y ∈ N , write

q = φ1(x), r = φ2(y) (34)

Let f : M → N be differentiable. The tangent map of the representation of f in local coordinates is denoted
Tf , and is given by

(r, ṙ) = T (φ2 ◦ f ◦ φ−1
1 )(q, q̇) = (φ2 ◦ f ◦ φ−1

1 (q), D(φ2 ◦ f ◦ φ−1
1 )(q) · q̇) (35)

Example 1.8. Let f : S2 → S2 be a rotation about the z-axis by an angle α as in Example 1.7. Recall the
parametrization of S2:

ψ(θ, ϕ) = (cos θ sinϕ, sin θ sinϕ, cosϕ) (36)

In local coordinates, the action of f on S2 is given by f(θ, ϕ) = (θ + α, ϕ). Computing the Jacobian of this
transformation, we find

Df(θ, ϕ) =

[
∂
∂θ (θ + α) ∂

∂ϕ (θ + α)
∂
∂θ (ϕ)

∂
∂ϕ (ϕ)

]
=

[
1 0
0 1

]
= I2 (37)

Given this, we can define the tangent lift of f in local coordinates via

Tf(θ, ϕ, θ̇, ϕ̇) = (f(θ, ϕ), Df(θ, ϕ) · (θ̇, ϕ̇)) = (θ + α, ϕ, θ̇, ϕ̇) (38)

Remark that, given a transformation f that induces a change of coordinates from one set of local coordinates
{q} to another set {r}, one can write any component ṙi of a tangent vector with respect to the original
coordinates via a straightforward application of the chain rule:

ṙi =
∑
j

∂ri

∂qj
q̇j (39)

Another important application of the chain rule has to do with scalar-output functions f : M → R defined
on a manifold M . Given the tangential component df(x) of a tangent map Txf , one has, for any v ∈ TxM ,

df(x) · v = (f ◦ g)′(0) ∈ R (40)

Thus, for any function f which assigns real numbers to points on a manifold, we have that the tangential
component of the map Txf also acts as a real-valued map, this time mapping the tangent space of a point
on the manifold to the real numbers. It is also linear, meaning that it forms part of the space which is dual
to TxM . Recall that the dual space of any real vector space V , denoted V ∗, is the set of linear maps from V
to R. This set is also a vector space, and its elements are called covectors.
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Definition 1.12 (Cotangent Vectors, cotangent Spaces). The cotangent space to M at x is T ∗
xM :=

(TxM)∗, the dual space of TxM . The cotangent bundle T ∗M of M is defined as

T ∗M =
⊔

x∈M
T ∗
xM (41)

The cotangent bundle projection is the map π : T ∗M →M given by (x,p) 7→ x.

The interaction between cotangent vectors and functions is defined via a canonical bilinear form called the
natural pairing. Given a vector space V , for any v ∈ V and α ∈ V ∗, we define the natural pairing of v and
α as the function ⟨·, ·⟩ : V ∗ × V → R given by

⟨α,v⟩ =
∑
i

αiv
i (42)

In this sense, one can construct maps between cotangent spaces which are “dual” to their corresponding
tangent maps.

Definition 1.13 (Cotangent map, cotangent lift). Let M ⊂ Rm and N ⊂ Rn be submanifolds of Rm and Rn,
respectively. Let f :M → N be differentiable. The cotangent map of f at x ∈M is the map

T ∗
xf : T ∗

f(x)N → T ∗
xM (43)

which satisfies, for all v ∈ TxM and α ∈ T ∗
f(x)N ,

⟨(T ∗
xf)(α),v⟩ = ⟨α, (Txf)(v)⟩ (44)

If f is a diffeomorphism, we also define the cotangent lift of f at x to be the cotangent map of f−1 at f(x),
which is the map

T ∗
f(x)(f

−1) : T ∗
xM → T ∗

f(x)N (45)

given by
⟨T ∗
f(x)(f

−1)(α),v⟩ = ⟨α, Tf(x)(f−1)(v)⟩ (46)

Remark that if f maps M to N , its cotangent map maps “backwards” from T ∗
f(x)N to T ∗

xM , whereas the
cotangent lift maps “forwards” from T ∗

xM to T ∗
f(x)N . For this reason, when f is a diffeomorphism, it is more

common to use the cotangent lift than the cotangent map.

1.2 Vector Fields

We have seen how to equip a manifold M with tangent spaces and their corresponding cotangent spaces.
These spaces comprise a colossal number of vectors: more advantageous in many situations would be a specific
arrangement of vectors, assigned smoothly to each point x ∈ M . To this end, we introduce the concept of
a vector field. While some readers will have seen vector fields in the context of Rn, these objects live in full
generality on abstract manifolds. As such, we will suppress the phrase “an m-dimensional submanifold of
Rn” going forward, with the intention that readers continue to think of these objects as being embedded in
an ambient, Euclidean space.

Definition 1.14 (Vector field). A vector field on a manifold M is a map X : M → TM such that X(z) ∈
TzM for all z ∈M . Vector fields can be added together and scaled by functions k :M → R, satisfying

(X1 +X2)(z) = X1(z) +X2(z), (kX)(z) = k(z)X(z) (47)

Definition 1.15 (Integral curve). Let X be a vector field. An integral curve of X is a differentiable map
c : I ⊂ R →M such that I open and such that c′(t) = X(c(t)) for all t ∈ I
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Figure 1: A submanifold of R3, parametrized by the function ψ(x, y) = sin(x+ y2), equipped with the vector
field X(x, y) = (−y, x, 0).

Figure 2: A submanifold of R3 equipped with a vector field. The integral curve along the set of blue vectors
corresponds to a particular solution of the differential equation implied by the vector field.

Note that implicit in the definition of an integral curve is an ordinary differential equation. This is because
integral curves represent particular solutions to ODEs. We will see many examples in the following chapters
of functions defined on manifolds which induce a vector field, the solutions of which can be thought of as
integral curves corresponding to that vector field.

Example 1.9. Let X be the vector field on R2 defined by X(x, y) = (−y, x) ∈ T(x,y)R2. Defining a path
c : I ⊂ R → R2 such that c(t) = (x(t), y(t)), we have that{

ẋ = −y,
ẏ = x

(48)

This set of differential equations has a family of solutions of the form c(t) = (A cos(t+ ω), A sin(t+ ω))

As highlighted in the previous example, it is often helpful to imagine “families of integral curves,” i.e. time
evolution along several integral curves at once. To this end we introduce the notion of a flow:
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Definition 1.16 (Time-t flow). Let X be a differentiable vector field on a manifold M . A flow of X is a
differentiable map Φ : U × I →M , where I ⊆ R, t0 ∈ I, and U is a subset of M such that, for any z ∈ U , the
map Φ(z, t) is an integral curve of X with Φ(z, t0) = z.

The time-t flow of X is the “fixed time” map Φt(z) := Φ(z, t).

Theorem 1.3 (Properties of the time-t flow). Let Φ be a flow of a differentiable vector field X on a manifold
M . Then:

1. Φt0 = Id for all z ∈ U .

2. Φt+s = Φt ◦ Φs for all t, s ∈ I.

3. Φ is a diffeomorphism for all t ∈ I.

We will use interchangeably the phrases “a flow of X” and “the flow of X”, as it is almost always clear what
the “natural” flow of a vector field is in context.

We can also generalize the notion of a tangent map, or tangent lift, to any vector field defined on a manifold.
These operations are called a push-forward or pull-back, respectively, and they operate on all vectors in a
vector field simultaneously.

Definition 1.17 (Push-forward, pull-back). Let M,N be manifolds and let φ :M → N be a diffeomorphism.
The push-forward of the vector field X on M by φ is the vector field φ∗X on N , defined by

φ∗X = Tφ ◦X ◦ φ−1 (49)

In local coordinates, with r = φ(q), the push-forward is written as

(φ∗X)(r) = Dφ(q) ·X(q) =
dr

dq
·X(q) (50)

The pull-back of a vector field Y on N by φ is the vector field φ∗Y on M defined by

φ∗Y = Tφ−1 ◦ Y ◦ φ (51)

An application of the Inverse Function Theorem gives, in local coordinates,

(φ∗Y )(q) = (Dφ(q))−1 · Y (r) =
dq

dr
· Y (r) (52)

More pertinently, we may also want to measure the rate of change of one vector field X “along” another
vector field Y . We can do this using the pull-back of a flow in the following way:

Definition 1.18 (Lie derivative). Let X,Y be differentiable vector fields on a manifold M , with Φ the flow
of X. The Lie derivative of Y along X is given by

LXY =
d

dt

∣∣∣∣
t=0

Φ∗
tY (53)

Note that if f is a smooth scalar field on M , we can also compute the Lie derivative of f along X without loss
of generality via

(LXf)(z) = df(z) ·X(z) (54)

Example 1.10. Consider the vector fields on R2 given by

X(x, y) = (x, y), Y (x, y) = (1, 0) (55)
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The first vector field corresponds to a system of ODEs solved by (x(t), y(t)) = (xet, yet). Taking Φt(x, y) =
(xet, yet), we have that

DΦt(x, y) =

[
et 0
0 et

]
= et · I2 (56)

Computing the Lie derivative of Y along X, we find

LXY =
d

dt

∣∣∣∣
t=0

(Φ∗
t (x, y)Y ) (57)

=
d

dt

∣∣∣∣
t=0

(DΦt(x, y))
−1 · Y (Φt(x, y)) (58)

=
d

dt

∣∣∣∣
t=0

[
e−t 0
0 e−t

] [
1
0

]
(59)

=

[
−1
0

]
(60)

1.3 A Note on Abstract Manifolds

So far we have described manifolds as being embedded in an ambient Euclidean space. This description
suffices for the purposes of this paper, but it is worth noting that the definitions we have introduced can be
weakened to divorce the concept of a manifold from any notion of embedding. Here is a topological definition
of a manifold, taken from [3]:

Definition 1.19 (Topological manifold). A topological space M is locally Euclidean of dimension n if every
point p in M has a neighborhood U such that there is a homeomorphism ϕ from U onto an open subset of Rn.
We call the pair (U, ϕ) a chart, U a coordinate neighborhood or a coordinate open set, and ϕ a coordinate map
or a coordinate system on U . We say that a chart (U, ϕ) is centered at p ∈ U if ϕ(p) = 0.

A topological manifold is a Hausdorff, second countable, locally Euclidean space. It is said to be of dimension
n if it is locally Euclidean of dimension n.

There are benefits characterizing manifolds this way. For example, the topological definition of an abstract
manifold makes it easier to quickly identify which topological properties a manifold can and cannot have. For
example, the set defined by two intersecting lines in R2 is not a manifold, since the set is 1-dimensional and
would be homeomorphic to a subset of R. However, removing the point of intersection would split the set
into four connected components, whereas its image under homeomorphism would only have two connected
components. Since the number of connected components of a set is preserved under homeomorphism, the set
cannot be a manifold.
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2 Lagrangian and Hamiltonian Mechanics

“Go, wondrous creature! mount where science guides;
Go, measure earth, weigh air, and state the tides;
Instruct the planets in what orbs to run;
Correct old time, and regulate the sun.”

- Alexander Pope, An Essay on Man (1733)

In Newtonian mechanics, given a point particle m whose position x(t) and velocity ẋ(t) are defined at t = t0,
the position of the particle at any later time t ≥ t0 can be completely determined by solving the equation

ẍ(t) =
1

m

∑
i

Fi = − 1

m

∑
i

∇Vi (61)

While in principle this equation represents three ordinary differential equations which can be solved using
standard methods, in practice this process is often complicated by the inclusion of constraints or dissipative
forces. Worse still, it is often the case that physicists do not want to explicitly solve for the equation of
motion of the particle, but want to gleam some aspect of its motion. An engineer, for example, might want
to calculate the minimum angular velocity at which a spinning top, rotating about its pivot point, remains
standing. If forced to solve for the top’s motion in its entirety, huge amounts of computational time and
energy are wasted.

In Lagrangian and Hamiltonian mechanics, a dynamical system is characterized by its energy, rather than
the forces acting on it. This seems a small change, but the ideas underpinning it are subtle, and the equations
which arise from these frameworks shepherd in new, coordinate-independent methods of studying mechanics.

2.1 Lagrangian Mechanics

Lagrangian mechanics uses a function L : TQ→ R, known as a Lagrangian, to generate equations of motion
for a system parametrized by time. Here, Q is a manifold, often called the configuration space of the system,
and TQ is the tangent bundle of Q. According to Hamilton’s Principle, the path taken by a system through
its configuration space has a stationary action. We define the action functional, S, here, along with the
Euler-Lagrange equations, the equations of motion implied by δS = 0.

Definition 2.1 (Action functional). Let q : R → Q be a parametrized path in Q and let L : TQ → R be a
Lagrangian on Q. Consider the set Q[t] of all parametrized paths in Q. The action functional S : Q[t] → R
is defined as

S[q(t)] =
∫ b

a

L(q(t), q̇(t))dt (62)

We would like to act upon S in such a way as to obtain the same equations of motion we would by carrying
out a Newtonian analysis of q(t), a trajectory on Q. To this end, we prove the following Lemma:

Lemma 2.1. Let (q, q̇) ∈ TQ, L, and S be defined as above. Then,

δS = 0 ⇐⇒
∫ b

a

(
d

dt

(
∂L

∂q̇

)
− ∂L

∂q

)
· δq dt = ∂L

∂q̇
· δq

∣∣∣∣b
a

(63)

Proof. Recall that the variation δS is equivalent to evaluating the derivative of the deformation of S at s = 0.
Noting that δS[q(t)] = d/ds|s=0S[q(t, s)], d/dt δq = δq̇, and that it is possible to differentiate under the
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integral sign with respect to s, we have

δS =
d

ds

∣∣∣∣
s=0

∫ b

a

L(q(t, s), q̇(t, s))dt (64)

=

∫ b

a

[
∂L

∂q
· δq+

∂L

∂q̇
· δq̇

]
dt (65)

=

∫ b

a

[
∂L

∂q
− d

dt

(
∂L

∂q̇

)]
· δq dt+ ∂L

∂q̇
· δq

∣∣∣∣b
a

(66)

If δS = 0, we obtain the desired result.

The integrand in Equation 66, when set equal to zero, comprises a vectorized version of the Euler-Lagrange
equations,

d

dt

(
∂L

∂q̇i

)
− ∂L

∂qi
= 0, i = 1, . . . , n (67)

for dim(Q) = n. We prove an important Lemma about the Euler-Lagrange equations here.

Lemma 2.2. Let Q be an m-dimensional submanifold of Rn and let q(t) be a parametrized path on Q. Then
every Newtonian system

q̈ = − 1

m

∑
j

∇Vj (68)

is equivalent to the Euler Lagrange equations

d

dt

(
∂L

∂q̇i

)
− ∂L

∂qi
= 0, i = 1, . . . ,m (69)

For the Lagrangian L : TQ :→ R defined by

L(q, q̇) =
1

2
m||q̇||2 −

∑
j

Vj(q) (70)

Proof. For L as defined above, we have

d

dt

(
∂L

∂q̇i

)
− ∂L

∂qi
=

d

dt
(mq̇i) +

∑
j

∂Vj
∂qi

= mq̈i +
∑
j

∂Vj
∂qi

= 0 (71)

Dividing through by m, we obtain the ith component of q̈ and 1/m
∑
j ∇Vj .

Given the results of the preceding Lemma, we give the interpretation of δS as employed in the Lagrangian
formulation of mechanics as follows: given a path q(t) which represents the configuration of a system as it
evolves in time between two specified states q(t = a) and q(t = b), we say that q(t) is the true evolution of the
system (that is, the evolution which is equivalent to the one derived by Newtonian analysis) if it extremizes
the action functional. Since q(a) and q(b) are fixed, we have δq(a) = δq(b) = 0, and δS as given in Lemma
2.1 becomes

δS =

∫ b

a

(
d

dt

(
∂L

∂q̇

)
− ∂L

∂q

)
· δq dt = 0 (72)

Which implies
d

dt

(
∂L

∂q̇

)
− ∂L

∂q
= 0 (73)

for aribtrary variations δq. This is the mathematical formulation of Hamilton’s Principle.

To complete the Lagrangian formulation of mechanics on manifolds, we must show that arbitary paths on
manifolds satisfy Hamilton’s Principle irrespective of our choice of local coordinates.
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Theorem 2.1 (Euler-Lagrange equations). Let Q be a manifold. For any smooth Lagrangian L : TQ → R,
a path q(t) in Q satisfies Hamilton’s Principle if and only if it satisfies the Euler-Lagrange equations in every
local coordinate system.

Proof. Let {t0 = a, t1, . . . , tr = b} be a partition of [a, b] such that each subpath from ti−1 to ti is contained
in the domain of a single coordinate chart.

=⇒ Sketch: assume q(t) satisfies Hamilton’s Principle. Then

∂

∂s

∣∣∣∣
s=0

∫ b

a

L(q(t, s), q̇(t, s))dt = 0 (74)

For any variation δq(t) which vanishes at a and b, we have∫ b

a

(
d

dt

(
∂L

∂q̇

)
− ∂L

∂q

)
· δq dt = 0 (75)

The issue is that, for an arbitrary coordinate chart φi with domain Ui, we are not guaranteed to have
q(a), q(b) ∈ Ui, so the “local” endpoints, q(ti−1) and q(ti), may not be fixed. However, given any such
subset Ui, any variation of the ith subpath which does have δq(ti−1) = δq(ti) = 0 can be extended to a
variation of the entire path that is trivial for t /∈ [ti−1, ti]. This extension is not necessarily smooth, but we
can approximate it arbitrarily closely by smooth variations δq̃(t):∫ ti

ti−1

(
d

dt

(
∂L

∂q̇

)
− ∂L

∂q

)
· δq dt ≈

∫ b

a

(
d

dt

(
∂L

∂q̇

)
− ∂L

∂q

)
· δq̃ dt = 0 (76)

With a little analytical work, one can show that the left hand side is exactly zero, and so the Euler-Lagrange
equations are satisfied in the local coordinate patch containing {q(t) : t ∈ [ti−1, ti]}.

⇐= Suppose that q(t) satisfies the Euler–Lagrange equations everywhere. Then for each [ti−1, ti], we have
that q(t) satisfies ∫ ti

ti−1

(
d

dt

(
∂L

∂q̇

)
− ∂L

∂q

)
· δq dt = ∂L

∂q̇
· δq

∣∣∣∣ti
ti−1

(77)

Let δq be a variation to the path such that δq(a) = δq(b) = 0. Then, the restriction of δq to any subinterval
[ti−1, ti] is a variation of the ith subpath, so the equation above holds for every subpath. Adding the
contribution of each integral, one obtains the full action functional, and adding the corresponding right-hand
terms gives

r∑
i=0

∂L

∂q̇
· δq

∣∣∣∣ti
ti−1

=
∂L

∂q̇
· δq

∣∣∣∣t1
t0=a

+
∂L

∂q̇
· δq

∣∣∣∣t2
t1

+ · · ·+ ∂L

∂q̇
· δq

∣∣∣∣tr=b
tr−1

=
∂L

∂q̇
· δq

∣∣∣∣b
a

= 0 (78)

2.1.1 The Lagrangian Vector Field

Consider the Euler-Lagrange equations. Expanding the time derivative gives the equivalent equations

∂2L

∂q̇2
q̈+

∂2L

∂q̇∂q
q̇− ∂L

∂q
= 0 (79)

For sufficiently “nice” Lagrangians, we can invert this equation to obtain an expression for q̈. In this spirit,
we say that a Lagrangian L is regular if

det
∂2L

∂q̇2
̸= 0 (80)
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for all (q, q̇) ∈ TQ. Once satisfied, this condition nets us the following equation:

q̈ =

(
∂2L

∂q̇2

)−1(
∂L

∂q
− ∂2L

∂q̇∂q
q̇

)
(81)

This implies a system of ODEs of the form

d

dt
q = q̇ (82)

d

dt
q̇ =

(
∂2L

∂q̇2

)−1(
∂L

∂q
− ∂2L

∂q̇∂q
q̇

)
(83)

We have already shown that the Euler-Lagrange equations are local coordinate-independent. Therefore, the
system of equations above are also coordinate-independent, and so form a vector field on TQ.

Definition 2.2 (The Lagrangian vector field ZL). The Lagrangian vector field ZL on TQ is defined, in
local coordinates, by the system of equations

d

dt
q = q̇ (84)

d

dt
q̇ =

(
∂2L

∂q̇2

)−1(
∂L

∂q
− ∂2L

∂q̇∂q
q̇

)
(85)

Therefore, an equivalent statement of Theorem 2.1 goes as follows: if L is regular, then a path q(t) in Q
satisfies the Euler-Lagrange equations if and only if (q(t), q̇(t)) is a solution of the Lagrangian vector field
on TQ.

2.2 Hamiltonian Mechanics and Poisson Manifolds

An important, complementary view of mechanics was given by Hamilton, 54 years after Lagrange’s work was
published. Hamiltonian mechanics extends Lagrangian mechanics by considering functions defined on the
co-tangent space of a system, rather than on its tangent space. Working with respect to this space allows one
to exploit some of its special geometric properties; in particular, it allows one to come up with novel ways of
describing the time evolution of a mechanical system.

We must first define the way in which we normally translate from a Lagrangian viewpoint to a Hamiltonian
one. With this in mind, we give here the definition of the Legendre transform:

Definition 2.3 (Legendre transform). Let (Q,L) define a mechanical system with configuration space Q and
smooth Lagrangian L. The quantity

p(q, q̇, t) :=
∂L

∂q̇
(86)

is called the canonical momentum, or simply the momentum. For a given t ∈ R, the Legendre transform
(or Legendre transformation) of L is defined as the smooth map FL : TQ→ T ∗Q given by

⟨FL(q, q̇1), (q, q̇2)⟩ :=
(
q,

d

ds

∣∣∣∣
s=0

L(q, q̇1 + sq̇2)

)
=

(
q,
∂L

∂q̇
(q, q̇1) · q̇2

)
(87)

We are interested in Legendre transformations which are invertible, i.e. which allow us to solve for q̇ as a
function of p and vice versa. To this end, we define the following sub-class of Lagrangians:

Definition 2.4 (Hyperregular). A Lagrangian L is hyperregular if FL is a diffeomorphism. Remark that
hyperregularity implies regularity.

We will assume for the rest of this chapter that all Lagrangians are hyperregular. This allows us to define
the corresponding Hamiltonian functions:
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Definition 2.5 (Energy function). The energy function for a Lagrangian L : TQ → R is E : TQ → R
defined by

E(v) = ⟨FL(v), v⟩ − L (88)

In local coordinates,

E(q, q̇) =
∂L

∂q̇
· q̇− L(q, q̇) (89)

Definition 2.6 (Hamiltonian). The Hamiltonian corresponding to L is H : T ∗Q→ R defined by

H := E ◦ (FL)−1 (90)

In local coordinates, H is given by

H(q,p) = p · q̇(q,p)− L(q, q̇(q,p)) (91)

Theorem 2.2. For any hyperregular Lagrangian L : TQ → R let H be the corresponding Hamiltonian. The
Euler–Lagrange equations, in any tangent-lifted local coordinates (q, q̇) on TQ, are equivalent to Hamilton’s
equations of motion

q̇ =
∂H

∂p
, ṗ = −∂H

∂q
(92)

in the corresponding cotangent-lifted coordinates (q,p) on T ∗Q.

Proof. We first express Hamilton’s equations of motion with respect to the underlying Lagrangian,

∂H

∂q
= p · ∂q̇(q,p)

∂q
− ∂L

∂q
− ∂L

∂q̇
· ∂q̇(q,p)

∂q
= −∂L

∂q
(93)

∂H

∂p
= q̇(q,p) + p · ∂q̇(q,p)

∂p
− ∂L

∂q̇
· ∂q̇(q,p)

∂q
= q̇(q,p) (94)

where in both cases we have used the definition of p to cancel terms. The first of Hamilton’s equations
of motion is obtained explicitly through the expansion above. For the second, we note that the Legendre-
transformed Euler Lagrange equations read

d

dt
(p)− ∂L

∂q
= 0 (95)

Which gives us the second of Hamilton’s equations.

Corollary 2.1. Hamilton’s equations of motion define a vector field XH on T ∗Q, called the Hamiltonian
vector field. This vector field can be thought of as the push-forward of the Lagrangian vector field by the
Legendre transform, i.e. H = (FL)∗ZL.

2.2.1 Poisson Brackets, Poisson Manifolds

Upon first learning about the Hamiltonian formulation of mechanics, one might object that Hamilton’s equa-
tions of motion can hardly be said to represent an improvement upon the results one can get by Lagrangian
mechanics alone. As previously stated, there would be very little need for Hamiltonian mechanics in many
cases were it not for the geometric properties of the spaces on which Hamiltonians are defined. These spaces,
when equipped with an operator called a Poisson bracket, are referred to as Poisson manifolds, and we will
presently introduce them in detail.

Definition 2.7 (Poisson Bracket). A Poisson bracket on a manifold P is a bilinear, skew-symmetric
operator {·, ·} : C∞(P,R)× C∞(P,R) → C∞(P,R) satisfying

1. {{F,G}, H}+ {{H,F}, G}+ {{G,H}, F} = 0 (Jacobi identity)
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2. {FG,H} = F{G,H}+ {F,H}G (Leibniz identity)

Example 2.1. Let (q,p) = (q1, . . . , qn, p1, . . . , pn) ∈ T ∗Q, and let F,G : T ∗Q→ R. The canonical Poisson
bracket on Q is given by

{F,G} =
∑
i

(
∂F

∂qi
∂G

∂pi
− ∂F

∂pi

∂G

∂qi

)
(96)

So long as n is not too big, one can easily check that the canonical Poisson bracket satisfies both of the
conditions in Definition 2.7

The following theorem highlights the importance of Poisson brackets in Hamiltonian analysis:

Theorem 2.3. Let {·, ·} be the canonical Poisson bracket on T ∗Q, and let F : T ∗Q → R be differentiable.
Hamilton’s equations for a given H : T ∗Q→ R are equivalent to

Ḟ = {F,H} (97)

along all integral curves. More precisely, (q(t),p(t)) is a solution of Hamilton’s equations if and only if

d

dt
(F (q(t),p(t))) = {F,H}(q(t),p(t)) (98)

Proof. We have

dF

dt
=
∑
i

(
∂F

∂qi
q̇i +

∂F

∂pi
ṗi

)
(99)

=
∑
i

(
∂F

∂qi
∂H

∂pi
− ∂F

∂pi

∂H

∂qi

)
(100)

= {F,H} (101)

Note that (q(t),p(t)) above is also a solution to the Hamiltonian vector field, so the time derivative of F can
be alternatively written as

Ḟ (q(t),p(t)) = ⟨dF (q(t),p(t)), d
dt

(q(t),p(t))⟩ = LXH
F (q(t),p(t)) (102)

where we have used the natural pairing ⟨·, ·⟩ in the place of the dot product used in Definition 1.18.

Corollary 2.2. Ḣ = 0 along all integral curves of XH .

Definition 2.8 (Poisson Manifold). Let P be a manifold and let {·, ·} be a Poisson bracket on P . The pair
(P, {·, ·}) is called a Poisson manifold. Given any smooth H : P → R, the Hamiltonian vector field XH is
uniquely determined by the relation

Ḟ = LXH
F = {F,H} (103)

along all integral curves of XH .

Remark that the preceding definition extends Hamiltonian systems to spaces which are not co-tangent bun-
dles.
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2.3 Cyclic Coordinates and Symmetries

This section will be somewhat heuristic, but it is important to build intuition before generalizing further. It is
sometimes the case when solving problems in Lagrangian mechanics that one notices some coordinates from
the domain on which L is defined which are absent from L itself. A good example of this is the Lagrangian
for a point particle in the absence of any external potential:

L =
1

2
m||q̇||2 (104)

In this case, L is entirely independent of q, and we say that the components of q are cyclic:

Definition 2.9 (Cyclic coordinates). A coordinate qi is cyclic if L is independent of qi.

A consequence of this definition is that, if qi is a cyclic coordinate of a Lagrangian L, then ∂L/∂q̇i is a
conserved quantity, i.e. it does not change in time. In the above example we have

d

dt

∂

∂q̇

(
1

2
m||q̇||2

)
=

d

dt
m||q̇|| = 0 (105)

The quantity m||q̇|| corresponds to linear momentum. Note that

∂L

∂q̇
= m||q̇|| = p (106)

therefore if a quantity is conserved in the Lagrangian picture of mechanics, it is also conserved in the
Hamiltonian picture.

This prompts an interesting exercise: suppose we were to apply a translation φ : q 7→ q+ δ before deriving
the Euler-Lagrange equations. This transformation is distinct from a change of coordinates because we are
still differentiating with respect to q. However, since L is independent of q, we still have

d

dt

(
∂

∂q̇
(L ◦ φ)

)
− ∂

∂q
(L ◦ φ) = d

dt
(m||q̇||) = 0 (107)

In other words, the Lagrangian does not change under translation, and so the Euler-Lagrange equations one
gets from their composition are the same as before the translation was carried out. In light of this, we define
a symmetry of a function defined on a manifold M as follows:

Definition 2.10 (Symmetry transformation). A symmetry transformation (or a symmetry) of a function
F : M → R is a differentiable map φ : M → M such that F ◦ φ = F . The function F is invariant with
respect to the flow Φ if each time-t map Φt is a symmetry of F , that is, F ◦ Φt = F for all t.

However, the concept of symmetries obtained via cyclic variables is limited by its dependence on the choice
of a particular coordinate system. The rest of this paper is dedicated to developing a coordinate-free concept
of an invariance property, and applying it to a particular system.
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3 Lie Groups and Symmetry

“Symmetry, as wide or narrow as you may define its meaning, is one idea by which man through the
ages has tried to comprehend and create order, beauty, and perfection.”

- Hermann Weyl, Symmetry (1952)

“Madam, I’m Adam. And Able was I ere I saw Elba.”

- James Joyce, Ulysses (1922)

3.1 Lie Groups and Lie Algebras

In the previous section, we encountered symmetries of mechanical systems, defined as transformations that
leave a system’s behavior unchanged. Mathematically, these symmetries form continuous groups; they can
be continuously parameterized, like angles for rotation, or displacements for translation. Lie groups provide
the mathematical language for describing these continuous symmetries.

Definition 3.1 (Lie group). A Lie group is a smooth manifold that is also a group, with the property that
the binary operation on the group and inversion are smooth.

Example 3.1. The group GL(n) of all n × n invertible matrices is a Lie group. It is an open subset of
M(n,R), and so is an n2-dimensional submanifold of M(n,R).

Example 3.2. The group SU(1) of all unit-length z ∈ C is a Lie group. It is isomorphic to S1.

Figure 3: A plot of all complex numbers of the form z = exp[iπ · k/12] for k = 1, . . . , 24. Increasing the
denominator of the exponential creates a better and better approximation of the unit circle.

Lie groups are fundamental in that, given a local coordinate chart, one may construct an entire set of mutually
compatible coordinate charts via binary operations. To illustrate this, take the left translation by g ∈ G to
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be the map
Lg : G→ G, Lg(h) := gh (108)

Remark that, by the properties of the Lie group, Lg and L−1
g are smooth. For any chart U which covers the

identity, Lg(U) is a chart which covers g. Taking the union over g ∈ G, we find that⋃
g∈G

Lg(U) = G (109)

One might instead use the right translation map

Rg : G→ G, Rg(h) := hg (110)

however, we will come to see that left translations provide a natural way to describe Lie group actions. We
can also extend left translation to elements of the tangent space. Recall that, for f : G → H, the definition
of the tangent map is given by

Tpf : TpG→ Tf(p)H (111)

Likewise, the left extension of any ξ ∈ TeG is the vector field XL
ξ given by

XL
ξ (g) = TeLg(ξ) (112)

The reason why we specify ξ ∈ TeG will become clear in a moment. For now, we note that there exist some
vector fields defined on G which remain unchanged by left multiplication by any group element.

Definition 3.2 (Left invariance). A vector field X : G → TG, h 7→ X(h) is called left invariant if it is
invariant under local left extension, or

ThLg(X(h)) = X(Lg(h)) = X(gh) (113)

Using a more compact notation, we may also write

L∗
g(X) = X (114)

Intuitively, we say that the structure of X is preserved over G. A result that is easy to show is that a vector
field X defined on G is left invariant if and only if it is the left extension of some ξ ∈ TeG. If we denote the
set of all left invariant vector fields as XL(G), we have

XL(G) = {XL
ξ : ξ ∈ TeG} (115)

Given the existence of left invariant tangent structures on a Lie group G, a natural question to ask is whether
G possesses a trivial tangent bundle structure, i.e. that the tangent bundle of the group is isomorphic to the
trivial vector bundle G × Rn. To show that this is indeed the case, we introduce the idea of a Lie algebra,
a linear structure that encodes the infinitesimal symmetries of a Lie group. Throughout this paper we will
restrict ourselves to Lie algebras over the Reals, although complex Lie algebras exist.

Definition 3.3 (Lie algebra). A Lie algebra is a vector space g together with a bilinear operation (v, w) ∈
g 7→ [v, w] ∈ g called the bracket, such that

1. [v, w] = −[w, v] (skew symmetry)

2. [[v, w], u] + [[u, v], w] + [[w, u], v] = 0 (Jacobi Identity)

A subspace of g which is closed under the bracket is called a Lie subalgebra.

Example 3.3. The vector space R3 is a Lie Algebra when equipped with the usual vector cross-product [x,y] =
x× y.
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Example 3.4. A vector subspace of M(n,R) with the usual operations of addition and scalar multiplication,
equipped with the matrix commutator [A,B] = AB −BA, is a Lie algebra.

Example 3.5. The vector space X(M) of all smooth vector fields on a smooth manifold M is a Lie algebra.
The bracket is the Jacobi-Lie bracket,

[X,Y ] = (DY ) ·X − (DX) · Y (116)

Given the sheer number of Lie algebra structures from which to choose, we look for a way to assign to a
Lie group G with a canonical basis a unique Lie algebra g. This Lie algebra should emphasize the trivial
structure of the vector bundle on G. To this end, we prove the following two Lemmas:

Lemma 3.1. Let XL(G) be the set of all left invariant vector fields on a Lie group G, and let X(G) be the
set of all smooth vector fields on G. Then

1. XL(G) is a vector subspace of X(G).

2. XL(G) is a Lie subalgebra of X(G).

Proof. The first condition is trivial. For the second, We need to show that XL(G) is closed under the bracket
of X(G). We compute, for any ξ, η ∈ TeG,

[XL
ξ , X

L
η ] = [L∗

gX
L
ξ , L

∗
gX

L
η ] = L∗

g[X
L
ξ , X

L
η ] (117)

i.e. [XL
ξ , X

L
η ] is left-invariant.

Lemma 3.2. The map λ, defined as

λ : TeG→ XL(G), ξ 7→ XL
ξ (118)

is a vector space isomorphism.

Proof. We check, for any ξ, η ∈ TeG,

λ(aξ + bη) = XL
aξ+bη = TeLg(aξ + bη) = aTeLg(ξ) + bTeLg(η) = aλ(ξ) + bλ(η) (119)

where in the second-to-last step we have used the linearity of TeLg(ξ). As for the existence of λ−1, the only
issue we may run into is that λ does not have a trivial kernel. Assume this is the case, i.e. that there exist
ξ1 and ξ2 in TeG such that ξ1 ̸= ξ2, but λ(ξ1) = λ(ξ1) = XL

0 . Then by the linearity of λ we have

λ(ξ1)− λ(ξ2) = λ(ξ1 − ξ2) = 0 (120)

which implies
XL
ξ1−ξ2 = TeLg(ξ1 − ξ2) = 0 (121)

for all g ∈ G. Since the tangent map of Lg is linear and invertible, it must be that ξ1 = ξ2.

These two results justify the following definition:

Definition 3.4 (Lie algebra of a Lie group G). Let G be a Lie group. The tangent space at the identity TeG
of G, together with the Lie bracket defined by the isomorphism λ,

[ξ, η] := [XL
ξ , X

L
η ](e) (122)

is called the Lie algebra of G.

3.1.1 Vector Representations of Lie Algebras

Similar to how a group isomorphism preserves the binary operation, a Lie algebra isomorphism preserves the
bracket structure. These kinds of mappings are useful when constructing vector representations of elements
of a Lie algebra, which in turn are useful when trying to perform computations.
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Definition 3.5 (Lie algebra isomorphism). Let g and h be Lie algebras. A linear map ρ : g → h is called a
Lie algebra isomorphism if

1. ρ([ξ, η]) = [ρ(ξ), ρ(η)], for all ξ, η ∈ g.

2. ρ is bijective.

Example 3.6 (Vector representation of so(2)). The Lie algebra so(2) is isomorphic to the real line, with

ρ : R → so(2), ξ 7→
[
0 −ξ
ξ 0

]
(123)

The commutator of any two elements of so(2) is always zero, so if we define the bracket on R to be zero, then
this map is both linear and bracket-preserving.

Example 3.7 (Vector representation of so(3)). The Lie algebra so(3) can be identified with the vector space
R3 via the hat map, defined by

(̂. . . ) : R3 → so(3), x = (x1, x2, x3) 7→ x̂ =

 0 −x3 x2

x3 0 −x1
−x2 x1 0

 (124)

It is easy to show that, for any x,y ∈ R3, we have

x̂y = x× y (125)

3.2 The Exponential Map

We have shown that, given a Lie group G, one can easily construct a corresponding Lie algebra g. Now we
examine the inverse problem: given elements from g, we want to recapture the local group structure of G.
To accomplish this, we turn to the exponential map.

To begin, let ξ ∈ g and consider XL
ξ = TeLg(ξ). The one-parameter subgroup corresponding to ξ, denoted

γξ : R → G, is the unique integral curve which solves the initial value problem

dg

dt
= XL

ξ (g) (126)

g(0) = e (127)

One can show that the image of this curve is a subgroup of G. Given this definition of γξ, one can in turn
define the exponential map on G to be the unique function satisfying

exp : g → G, ξ 7→ exp(ξ) := γξ(1) (128)

Example 3.8 (Matrix Exponential). Let A ∈ gl(n) = M(n,R) and consider the usual exponential of matrices

etA =

∞∑
n=0

1

n!
tnAn (129)

If we define γA(t) = etA, it is easy to show that γA(0) = In. It is also easy to show that d/dt(etA) = etAA,
and using the definition of the left extension, we arrive at

d

dt
etA = XA(e

tA) (130)
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Therefore we conclude that γA(t) is the one parameter subgroup generated by A, with

exp(A) = γA(1) = eA (131)

Proposition 3.1 (Properties of the exponential map). The following statements hold:

1. exp(tξ) = γξ(t) ∀t ∈ R

2. γξ(s+ t) = γξ(s)γξ(t) ∀s, t ∈ R

3. All smooth one-parameter subgroups of G are of the form {exp(tξ) : t ∈ R} for some ξ ∈ g

4. The exponential map is a local C∞ diffeomorphism from a neighbourhood of 0 ∈ g onto a neighbourhood
of e ∈ G

Corollary 3.1. The exponential map induces a coordinate chart in a neighborhood of e. The coordinates
associated to this chart are called canonical coordinates of the Lie group G.

3.3 Lie Group Actions

Lie group actions generalize flows. An action of a group on a set is a map that associates to each element
of the group an invertible transformation, usually a diffeomorphism, of the given set, in such a way that
the group operation corresponds to composition of transformations. Thus, the group may be thought of as
a group of transformations. If the diffeomorphisms corresponding to the group elements all leave a certain
function invariant, then the group (with the specified action) is a symmetry group of that function.

Definition 3.6 (Left action). A left action of a Lie group G on a manifold M is a smooth map Φ : G×M →
M such that

1. Φ(e, x) = x for all x ∈M

2. Φ(g,Φ(h, x)) = Φ(gh, x) for all g, h ∈ G, x ∈M

3. For every g ∈ G, the map Φg :M →M defined as

Φg(x) := Φ(g, x) (132)

is a diffeomorphism.

Example 3.9. The standard action of a matrix Lie group G ⊂ GL(n,R) on Rn is given by

Φ(A,v) = Av (133)

Of course, the above example uses a group action which is generated explicitly by an element g in G. This is
not always necessary: using the exponential map, we can reformulate group actions on a set in the following
way:

Definition 3.7 (Infinitesimal generator). Consider the left action Φ of a Lie group G on the manifold M
such that x 7→ gx. Let ξ ∈ g be a vector in the Lie algebra of G and consider the one-parameter sub-group
{exp(tξ) : t ∈ R} ⊂ G. The orbit of x ∈ M with respect to this subgroup is a smooth path in M . The
infinitesimal generator associated to ξ at x ∈ M , denoted ξM (x), is the tangent vector to this path at x,
i.e.

ξM (x) :=
d

dt

∣∣∣∣
t=0

(exp(tξ)x) ∈ TxM (134)

The smooth vector field assigning to each x ∈ M its corresponding infinitesimal generator associated to ξ is
called the infinitesimal generator vector field associated to ξ.
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Example 3.10 (The infinitesimal generator for the SO(2) action on R2). Let

ξ =

[
0 −ξ
ξ 0

]
∈ so(2), x =

[
x1

x2

]
∈ R2 (135)

Then

ξR2(x) =
d

dt

∣∣∣∣
t=0

(exp(tξ)x) (136)

=
d

dt

∣∣∣∣
t=0

(∑
n

1

n!
tnξn

)
x (137)

= (ξ +O(t))x (138)

= ξx (139)

=

[
−ξx2
ξx1

]
(140)

The intuition for the definition of an infinitesimal generator is that the exponential map “projects down” from
the Lie algebra onto its corresponding group element, which then acts on x. By taking the time derivative
of the map, we obtain a tangent vector which encodes the change in x brought on by g. In this way, one can
describe a group action on a manifold by expressing the magnitude and direction of the changes brought on
by the action.

Finally, we introduce a definition which generalizes Definition 2.10:

Definition 3.8 (Invariance). A function F is invariant with respect to an action Φ of a Lie group G if,
for every g ∈ G, the map Φg is a symmetry of F , that is, F ◦ Φg = F . The group G is called a Lie group
symmetry or symmetry group of F .

This relates to the following result which is useful for our purposes:

Proposition 3.2. Let Φ : G × Q → Q be a flow. Let L : TQ → R be a hyperregular Lagrangian, with
corresponding Hamiltonian H : T ∗Q → R. If L is invariant with respect to the tangent lift of Φ then H is
invariant with respect to the cotangent lift of Φ.

3.3.1 The Adjoint and Co-adjoint Actions

A Lie group’s action extends not only to generic manifolds, but to members of its Lie algebra. Since these
are vectors, we are motivated to come up with linear transformations based on group actions. The final
definition of the previous section is informative here: it will be important to understand the action of a group
G on itself when we begin to define functions on G or g which are invariant with respect to an action.

Lie group actions can be lifted to actions on the tangent bundle TG and the cotangent bundle T ∗G. For
actions on the tangent bundle, we have

G× TG→ TG (141)

(g, (h, v)) 7→ (gh, gv) := (gh, ThLg(v)) =

(
gh,

d

dt

∣∣∣∣
t=0

(gc(t))

)
(142)

where c(t) is any path in G with c(0) = h and c′(0) = v, and

G× T ∗G→ T ∗G (143)

(g, (h, α)) 7→ (gh, gα) :=
(
gh, T ∗

ghLg−1(α)
)

(144)
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where

⟨T ∗
ghLg−1(α), w⟩ = ⟨α, TghLg−1(w)⟩ ∀w ∈ TghG (145)

The above notation looks somewhat formidable, so we introduce some simplifying notation:

Definition 3.9 (Conjugation). The conjugation of an element h ∈ G by g ∈ G is defined as

Ig : G×G→ G, Ig(h) := ghg−1 (146)

We say that two elements a, b ∈ G are conjugate if there exists g ∈ G such that b = gag−1. Orbits of this
action are called conjugacy classes.

Note that ghg−1 can also be written as (Lg ◦Rg−1)(h).

Definition 3.10 (Adjoint action, co-adjoint action). The adjoint action of G on g is defined by

Adg : G× g → g, Adg(ξ) := TeIg(ξ) = Te(Lg ◦Rg−1)(ξ) (147)

The co-adjoint action of G on g∗ is defined as the inverse dual to the Adjoint action, i.e.

Ad∗g−1 : G× g∗ → g∗ (148)

where
⟨Ad∗g−1µ, ξ⟩ = ⟨µ,Adg−1ξ⟩ (149)

Example 3.11 (The adjoint action for matrix Lie groups). Let G be any matrix Lie group, i.e. G ⊆ M(n,R).
Let B : I ⊂ R → G be a path in G such that B(0) = In and B′(0) = ξ ∈ g. Then, given g = M ∈ G, we have

Adg(ξ) = AdM(ξ) (150)

= TIn(LM ◦RM−1)(ξ) (151)

=
d

dt

∣∣∣∣
t=0

MB(t)M−1 (152)

= MξM−1 (153)

We can use this formulation of Adg to identify the co-adjoint action: let µ ∈ g∗ and take

⟨Ad∗M−1µ, ξ⟩ = ⟨µ,AdM−1ξ⟩ (154)

Using our expression for the adjoint action, and recalling that the trace pairing ⟨·, ·⟩ : M(n,R)×M(n,R) →
R, ⟨C,D⟩ =

∑
i,j CijDij = tr(CTD), we have

⟨µ,M−1ξM⟩ = tr(µMT ξTM−T ) (155)

= tr(M−TµMT ξT ) (156)

= ⟨M−TµMT , ξ⟩ (157)

Therefore,
Ad∗M−1µ = M−TµMT (158)

One can also define infinitesimal generators at g ∈ G. The infinitesimal generator of the adjoint action on G
is the vector field ξg defined by

ξg(η) =
d

dt

∣∣∣∣
t=0

Adexp(tξ)η = Te(Adgη)ξ (159)

Since g is a vector space, Tg = g × g, so infinitesimal generators can be identified with maps from g onto
itself.
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Definition 3.11 (Adjoint action of g, adjoint operator). The infinitesimal generator map

adξ(η) := ξg(η) =
d

dt

∣∣∣∣
t=0

Adexp(tξ)η (160)

is called the adjoint action of g on itself. The adjoint operator on g is denoted by ad.

Example 3.12 (The adjoint action for matrix Lie algebras). Recall from Example 3.11 that, for any Lie
group G ⊂ M(n,R),

AdMξ = MξM−1 (161)

It follows that, for any η ∈ g, we have

adξη =
d

dt

∣∣∣∣
t=0

Adexp(tξ)η (162)

=
d

dt

∣∣∣∣
t=0

exp(tξ)η exp(−tξ) (163)

= ξη − ηξ = [ξ, η] (164)

This result does not only hold for matrix Lie algebras:

Proposition 3.3. For any Lie algebra g and for any ξ, η ∈ g, we have

adξη = [ξ, η] (165)

Proof.

adξη =
d

dt

∣∣∣∣
t=0

Te(Lexp(tξ) ◦R− exp(tξ))η (166)

=
d

dt

∣∣∣∣
t=0

Texp(tξ)R− exp(tξ)(TeLexp(tξ)(η)) (167)

=
d

dt

∣∣∣∣
t=0

Texp(tξ)R− exp(tξ)(X
L
η (exp tξ)) (168)

(169)

Using exp tξ = e · exp tξ = Rexp tξ · e = Φt(e), we have

adξη =
d

dt

∣∣∣∣
t=0

TΦt(e)Φ
−1
t (XL

η (Φt(e))) (170)

=
d

dt

∣∣∣∣
t=0

(Φ∗
tX

L
η )(e) (171)

= LXL
ξ
XL
η (e) (172)

= [XL
ξ , X

L
η ](e) = [ξ, η] (173)

Definition 3.12 (Co-adjoint operator). The co-adjoint operator is the map

ad∗ : g× g∗ → g∗ (174)

(ξ, µ) 7→ ad∗ξµ (175)

such that
⟨ad∗ξµ, η⟩ = ⟨µ, adξη⟩ (176)
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Remark: the infinitesimal generator of the co-adjoint action is

ξg∗(µ) = −ad∗ξ(µ) (177)

Example 3.13 (The co-adjoint action for matrix Lie algebras). From the above definition we have

⟨ad∗ξµ, η⟩ = ⟨µ, adξη⟩ = ⟨µ, ξη − ηξ⟩ = ⟨µ, ξη⟩ − ⟨µ, ηξ⟩ (178)

Using the trace pairing, we see that

⟨µ, ξη⟩ − ⟨µ, ηξ⟩ = tr(µ(ξη)T )− tr(µ(ηξ)T ) (179)

= tr(µηT ξT )− tr(µξT ηT ) (180)

= tr(ξTµηT )− tr(µξT ηT ) (181)

= tr((ξTµ− µξT )ηT ) (182)

= ⟨−[µ, ξT ], η⟩ (183)

from which we identify
ad∗ξµ = −[µ, ξT ] (184)

If G = SO(n), we have that ξ = −ξT for all ξ ∈ so(n), and so

ad∗ξµ = [µ, ξ] in so(n) (185)

The adjoint and co-adjoint actions on g and g∗, respectively, are the linear transformations mentioned at the
beginning of this section. We now have all the tools we need to derive and begin studying reductions.

4 Reductions

“From a drop of water, a logician could infer the possibility of an Atlantic or a Niagara without having
seen or heard of one or the other.”

- Arthur Conan Doyle, A Study in Scarlet (1887)

We have seen how the symmetries of a Lagrangian or Hamiltonian system defined on a Lie group G can help
us find quantities inherent to the system which remain constant over time. Now, we study applications of
those symmetries, exploiting them to reduce the computational complexity of finding equations of motion.
This process of shaving off redundant quantities from a mechanical system is known as a reduction, and
we will carry it out in two examples: one using the Lagrangian formalism, and one using the Hamiltonian
formalism.

4.1 Rigid Body Dynamics

Consider a rigid body with a fixed point. It is usually assumed that this fixed point is the centre of mass
of the body, but this is not necessary, and will not be true when we study the heavy symmetric top. Given
a reference configuration of the body, two systems of coordinates are introduced: a fixed inertial spatial
coordinate system, and a moving body coordinate system, both with origin at the fixed point of the
body.

The position of a particle in body coordinates is called the particle’s label. The configuration of the body
at time t is determined by a rotation matrix R(t) that takes the label X of any particle in the body to its
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Figure 4: Symmetric top with fixed point [4]

spatial position x(t). From this, we determine that the configuration space of the rigid body is SO(3), and
R(t) is a path in SO(3). The position and velocity at time t of the particle with label X are given as

x(t) = R(t)X, ẋ(t) = Ṙ(t)X = Ṙ(t)R−1(t)x(t) (186)

Proposition 4.1. For any R ∈ SO(3), ṘR−1 and R−1Ṙ are elements of so(3).

Proof. Since so(3) = TISO(3), any tangent vector (R, Ṙ) ∈ TSO(3) can be translated to so(3) by either left
or right multiplication by R−1:

TLR−1(R, Ṙ) = (I,R−1Ṙ), TRR−1(R, Ṙ) = (I, ṘR−1) (187)

Note that the above result reveals that ṘR−1 and R−1Ṙ are skew-symmetric.

We define the spatial angular velocity vector ω as

ω̂ = ṘR−1 (188)

where
ẋ = ṘR−1x = ω̂x = ω × x (189)

We also define the body angular velocity vector Ω as

Ω = R−1ω (190)

A straightforward calculation shows us that

Ω×X = R−1ω ×R−1x = R−1(ω × x) = R−1ṘR−1x = R−1ṘX (191)

which gives
Ω̂ = R−1Ṙ (192)

Let ρ(X) be the density of the body at position X in body coordinates, which we assume to be constant.
Let B be the region occupied by the body at time t = 0. Then the mass of the body is given by

m =

∫
B
ρ(X)d3X (193)
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We define the kinetic energy of the rigid body as

K =
1

2

∫
B
ρ(X)||ẋ||2d3X (194)

We can massage this equation to obtain an expression fully in terms of the label X:

1

2

∫
B
ρ(X)||ẋ||2d3X =

1

2

∫
B
ρ(X)||ṘX||2d3X (195)

=
1

2

∫
B
ρ(X)||R−1ṘX||2d3X (196)

=
1

2

∫
B
ρ(X)||Ω̂X||2d3X (197)

(198)

If we identify Ω̂X with −X̂Ω, we obtain

K =
1

2

∫
B
ρ(X)||X̂Ω||2d3X =

1

2

∫
B
ρ(X)ΩT X̂T X̂Ωd3X =

1

2
ΩT

(∫
B
ρ(X)X̂T X̂d3X

)
Ω (199)

Identifying X̂T with −X̂ and expanding the integrand gives

X̂T X̂ = −X̂2 =

(X2)2 + (X3)2 −(X1)(X2) −(X1)(X3)
−(X1)(X2) (X1)2 + (X3)2 −(X2)(X3)
−(X1)(X3) −(X2)(X3) (X1)2 + (X2)2

 (200)

Which is equivalent to ||X||2I3 − XXT . We denote the integral in Equation 199 the moment of inertia
tensor,

I :=
∫
B
ρ(X)

(
||X||2I3 −XXT

)
d3X (201)

Note the use of subscripts to differentiate the 3× 3 identity matrix. We can now express the kinetic energy
of the rotating body as

K =
1

2
ΩT IΩ (202)

4.2 Euler-Poincare Reduction

One objection to the way we have written the kinetic energy term above is that it no longer contains explicit
mention of any element of SO(3). In fact, we could have defined the kinetic energy of the system another
way:

K =
1

2

∫
B
ρ(X)||Ω̂X||2d3X (203)

=
1

2

∫
B
ρ(X)tr

(
(Ω̂X)(Ω̂X)T

)
d3X (204)

=
1

2
tr

(
Ω̂

(∫
B
ρ(X)XXT d3X

)
Ω̂T

)
(205)

=
1

2
tr
(
Ω̂JΩ̂T

)
(206)

=
1

2
tr
(
(R−1Ṙ)J(R−1Ṙ)T

)
(207)

=
1

2
tr
(
ṘJṘT

)
(208)
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where we define J :=
∫
B ρ(X)XXT d3X to be the coefficient of inertia tensor of the body with respect to

the origin. The Lagrangian of the system with respect to SO(3), as well as the corresponding Euler-Lagrange
equations, would be given by

L(R, Ṙ) =
1

2
tr
(
ṘJṘT

)
− V (R), (209)

d

dt

(
∂L

∂Ṙ

)
− ∂L

∂R
= 0 (210)

While technically correct, these equations are tricky to work with: we would have to consider SO(3) as a
submanifold of M(3R) ∼= R9 and model the the evolution of the body using a system of constraint equations.
Depending on the form of the potential energy V (R), however, it is sometimes possible to make use of the
system’s inherent symmetry to “reduce” the dynamics of the system. The Lagrangian of the reduced system
will no longer act on TG, but on g, which is based solely at the identity.

To expand upon this, we prove the follow Lemma.

Lemma 4.1. Let K be the kinetic energy of a rigid body system as defined in 208. Then K is left invariant
with respect to tangent-lifted left translation.

Proof. Let Q ∈ SO(3). We compute

1

2
tr
(
(QṘ)J(QṘ)T

)
=

1

2
tr
(
QṘJṘTQT

)
=

1

2
tr
(
ṘJṘT

)
= K (211)

In the proceeding calculations we will assume left-independence of all our Lagrangians. For this purpose we
define the left-trivialized coordinates

(g, ġ) 7→ (g, g−1ġ) = (g, TgLg−1 ġ) (212)

Left-trivialized coordinates represent a tangent vector at a point on a Lie group in terms of its coordinates
in the tangent space at the identity, effectively “flattening” the tangent space at that point into the tangent
space at the identity.

Proposition 4.2. Let G be a Lie group together with a Lagrangian L : TG → R. In left-trivialized coordi-
nates, the equations of motion are given by

d

dt

(
δL

δξ

)
= ad∗ξ

δL

δξ
+ T ∗

e Lg

(
δL

δg

)
(213)

Proof. Define the Lagrangian in left-trivialized coordinates; that is,

L̃(g, ξ) = L(g, gξ) (214)

Along these paths, Hamilton’s Principle states

δ

∫ b

a

L̃(g(t), ξ(t))dt = 0 (215)

Using variational derivative notation, one can write∫ b

a

⟨δL̃
δg
, δg⟩+ ⟨δL̃

δξ
, δξ⟩dt = 0 (216)

We will assume that G is a matrix Lie group for the purposes of this proof. Define gε(t) to be a family of
curves in G such that g0(t) = g(t) and let

δg =
dgε(t)

dε

∣∣∣∣
ε=0

(217)
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For ξ = g−1ġ, the variation is computed as

δξ =
d

dε

∣∣∣∣
ε=0

(g−1
ε ġε) = −g−1(δg)g−1ġ + g−1 d

2g

dtdε

∣∣∣∣
ε=0

(218)

Set η := g−1δg, i.e. η(t) is an arbitrary path in g that vanishes at the endpoints. We compute

dη

dt
= −g−1ġg−1(δg) + g−1 d

2g

dtdε

∣∣∣∣
ε=0

(219)

Taking the difference of the two terms, we find

δξ − dη

dt
= −g−1(δg)g−1ġ + g−1ġg−1(δg) (220)

= ξη − ηξ (221)

= [ξ, η] (222)

Or,
δξ = η̇ + [ξ, η] = η̇ + adξη (223)

Substituting this into the above and noting that δg = gη, we have

0 =

∫ b

a

⟨δL̃
δg
, δg⟩+ ⟨δL̃

δξ
, δξ⟩dt (224)

=

∫ b

a

⟨δL̃
δg
, gη⟩+ ⟨δL̃

δξ
, η̇ + adξη⟩dt (225)

=

∫ b

a

⟨δL̃
δg
, TeLg(η)⟩+ ⟨δL̃

δξ
,
dη

dt
⟩+ ⟨δL̃

δξ
, adξη⟩dt (226)

=

∫ b

a

⟨T ∗
e Lg

(
δL̃

δg

)
, η⟩+ ⟨− d

dt

(
δL̃

δξ

)
+ ad∗ξ

(
δL̃

δξ

)
, η⟩dt (227)

=

∫ b

a

⟨T ∗
e Lg

(
δL̃

δg

)
− d

dt

(
δL̃

δξ

)
+ ad∗ξ

(
δL̃

δξ

)
, η⟩dt (228)

Since the integrand must be zero for any path η(t), the result follows.

Note that, if the original Lagrangian L is left invariant, then

L̃(g, ξ) = L(e, ξ) (229)

i.e. L is independent of g, and so the variational derivative δL/δg vanishes. In this case, we are left with

d

dt

(
δl

δξ

)
= ad∗ξ

δl

δξ
(230)

where l is the reduced Lagrangian defined by

l : g → R, l(ξ) = L(e, ξ) (231)

The following theorem is a consequence of this construction:

Theorem 4.1 (Euler Poincaré Reduction). Let G be a Lie group and L : TG→ R a left-invariant Lagrangian.
Define the reduced Lagrangian

l : g → R, l(ξ) := L(e, ξ) (232)
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as the restriction of L to g. For a curve g(t) ∈ G, let

ξ(t) = g(t)−1ġ(t) := Tg(t)Lg(t)−1 ġ(t) ∈ g (233)

Then, the following four statements are equivalent:

1. Hamilton’s Principle

δ

∫ b

a

L(g(t), ġ(t))dt = 0 (234)

holds for variations among paths with fixed endpoints.

2. g(t) satisfies the Euler–Lagrange equations for Lagrangian L defined on G.

3. Hamilton’s Principle

δ

∫ b

a

l(ξ(t))dt = 0 (235)

holds on g, using variations of the form δξ = η̇+[ξ, η], where η(t) is an arbitrary path in g that vanishes
at the endpoints, i.e. η(a) = η(b) = 0.

4. The (left invariant) Euler–Poincaré equations hold:

d

dt

δl

δξ
= −ad∗ξ

δl

δξ
(236)

Example 4.1 (Heavy Symmetric Top – Lagrangian Formalism). The heavy top is a rigid body rotating with
a fixed point of support (the ‘pivot’) in a constant gravitational field. Let m be the mass of the body, and let
k be the vertical unit vector. Let χ be the vector from the point of support to the body’s centre of mass. With
this notation, the potential energy of the top is given by

V (R) = mg⟨k,Rχ⟩ (237)

The kinetic energy is given by

K :=
1

2

∫
B
ρ(X)||ṘX||2d3X =

1

2
tr(ṘJṘT ) (238)

We identify the Lagrangian L : TSO(3) → R given by

L(R, Ṙ) =
1

2
tr(ṘJṘT )−mg⟨k,Rχ⟩ (239)

While a free rigid body is SO(3) left invariant, gravity breaks this symmetry. We will take advantage of this
broken symmetry as follows: in order to regain SO(3) left invariance, we define a new, extended Lagrangian
which is defined over SO(3)× (R3)∗, creating a degree of freedom related to the direction of the vertical axis.
Let

Lext(R, Ṙ,v, v̇) =
1

2
tr(ṘJṘT )−mg⟨v,Rχ⟩ (240)

Note that Lext(R, Ṙ,v, v̇)

∣∣∣∣
v=k

= L(R, Ṙ).

It is easy to show that Lext is left-invariant. That done, we write both angular velocity and v in body coordi-
nates:

Ω̂ = R−1Ṙ (241)

Γ = R−1v (242)
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Taking the time derivative, we see that

Γ̇ :=
d

dt
(R−1v) = Ṙ−1v +R−1v̇ (243)

= −R−1ṘR−1v +R−1v̇ (244)

= −Ω̂Γ+R−1v̇ (245)

= Γ×Ω+R−1v̇ (246)

With this in place we define L̃ext to be the Lagrangian of the system with respect to its body coordinates, i.e.

L̃ext(R, Ω̂,Γ, Γ̇) = Lext(R,RΩ̂,RΓ,RΓ̇) = Lext(R, Ṙ,v, v̇) (247)

Hamilton’s Principle can now be applied to the new coordinates via

δ

∫ b

a

L̃ext(R, Ω̂,Γ, Γ̇)dt = 0 (248)

We now have to consider the variations δR, δΩ, δΓ, and δΓ̇. However, since the heavy symmetric top is
a rigid body, L̃ext is independent of Γ̇. Also note that L̃ext inherits left invariance from Lext, prompting the
translation

L̃ext(R, Ω̂,Γ) = L̃ext(R
−1R, Ω̂,Γ) = L̃ext(I3, Ω̂,Γ) (249)

This implies that L̃ext is independent of R as well. Therefore the only variations we need concern ourselves
with are those of Ω and Γ. Starting with the former, we have

δΩ̂ = −R−1δRR−1Ṙ+R−1δṘ (250)

= −(R−1δR)(R−1Ṙ) +R−1δṘ (251)

= −(R−1δR)Ω̂+R−1δṘ (252)

Defining
Σ̂ = R−1δR (253)

and computing
dΣ̂

dt
= −R−1ṘR−1δR+R−1δṘ (254)

We can isolate for the last term in the sum to find

R−1δṘ =
dΣ̂

dt
+R−1ṘΣ̂ =

dΣ̂

dt
+ Ω̂Σ̂ (255)

giving

δΩ̂ =
dΣ̂

dt
+ [Ω̂, Σ̂] (256)

or in vector notation,
δΩ = Σ̇+Ω×Σ (257)

Proceeding to the latter term, we find

δΓ = δ(R−1k) = (δR−1)k (258)

= −(R−1δRR−1)k (259)

= −(R−1δR)(R−1k) (260)

= −Σ̂Γ = Γ×Σ (261)
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We now have a clear candidate for the reduced Lagrangian. Set

l(Ω,Γ) := L̃ext(I3, Ω̂,Γ, Γ̇) =
1

2
tr(Ω̂JΩ̂T )−mg⟨Γ, χ⟩ (262)

or in vector notation for so(3),

l(Ω,Γ) := L̃ext(I3,Ω,Γ, Γ̇) =
1

2
tr(ΩIΩT )−mg⟨Γ, χ⟩ (263)

which, discarding δR and δΓ̇, must satisfy

δ

∫ b

a

l(Ω,Γ)dt = 0 (264)

Now we derive the equations of motion for the heavy top. From the variational principle, we obtain

0 = δ

∫ b

a

l(Ω,Γ)dt (265)

=

∫ b

a

⟨ δl
δΩ

, δΩ⟩dt+
∫ b

a

⟨ δl
δΓ
, δΓ⟩dt (266)

=

∫ b

a

⟨ δl
δΩ

, Σ̇+Ω×Σ⟩dt+
∫ b

a

⟨ δl
δΓ
,Γ×Σ⟩dt (267)

=

∫ b

a

⟨− d

dt

(
δl

δΩ

)
+

δl

δΩ
×Ω+

δl

δΓ
× Γ,Σ⟩dt (268)

=⇒ d

dt

(
∂l

∂Ω

)
=

∂l

∂Ω
×Ω+

∂l

∂Γ
× Γ (269)

Since we have δl/δΩ = IΩ and δl/δΓ = mgχ, the equations of motion are{
IΩ̇ = IΩ×Ω−mgχ× Γ

Γ̇ = Γ×Ω
(270)

4.3 Lie-Poisson Reduction

Now that we have defined the reduced Lagrangian, we can proceed with defining the reduced Hamiltonian.
Our new Hamiltonian will be related to its corresponding Lagrangian in the exact same way as their un-
reduced counterparts: through a Legendre transformation.

Definition 4.1 (Reduced legendre transform). Let L : TG→ R be a hyperregular, left invariant Lagrangian.
Let l : g → R be the reduced Lagrangian such that l(ξ) = L(e, ξ). We define the reduced Legendre transform
as the map

fl : g → g∗, ⟨fl(ξ), η⟩ := d

ds

∣∣∣∣
s=0

l(ξ + sη) = ⟨ δl
δξ
, η⟩ (271)

for all ξ, η ∈ g.

Definition 4.2 (Reduced energy function, reduced Hamiltonian). We further define the reduced energy
function:

ẽ : g → R, ẽ(ξ) := ⟨fl(ξ), ξ⟩ − l(ξ) (272)

and the reduced Hamiltonian:
h : g∗ → R, h(µ) := ẽ ◦ fl−1 (273)

Letting µ = fl(ξ), we have h(µ) = ẽ ◦ (fl)−1(µ). Identifying fl(ξ) with δl/δξ, we obtain the following:
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Theorem 4.2 (Lie-Poisson Reduction). With µ and h as defined above, the Euler–Poincaré equations are
equivalent to the Lie–Poisson equations

µ̇ = ad∗∂h/∂µµ (274)

Example 4.2 (Heavy Symmetric Top – Hamiltonian Formalism). From the Euler-Poincaré reduction of the
heavy symmetric top we found

l(Ω,Γ) =
1

2
⟨Ω, IΩ⟩ − ⟨mgΓ, χ⟩ (275)

Applying the reduced Legendre transformation to Ω, we obtain

Π :=
δl

δΩ
= IΩ (276)

This corresponds to the reduced Hamiltonian

h(Π,Γ) =
1

2
⟨Π, IΠ⟩+ ⟨mgΓ, χ⟩ (277)

with equations of motion

dΠ

dt
= Π× I−1Ω+mgΓ× χ (278)

dΓ

dt
= Γ×Ω (279)

In searching for a physical interpretation of these equations of motion, we arrive at the following:

1. Π× I−1Ω corresponds to a centripetal acceleration, scaling as second order in Ω.

2. mgΓ×χ is a precession term, transferring the angular momentum of the top about its symmetry axis
to a portion about the vertical axis. This causes the top to precess about its pivot point.

3. Γ ×Ω is a nutation term, accounting for the change in the angle the top makes with the vertical as
it precesses.

Taken in aggregate, these equations can be made tangible by visualizing the pattern such a top would “trace
out” on the inside of a sphere centered at its pivot. To wrap up our treatment of he heavy symmetric top,
we include three of these patterns here.

(a) Nutation of “cusp” type. (b) Nutation of “smooth” type.

(c) Nutation of “loop” type.

Figure 5: Patterns traced out by the tip of a heavy symmetric top as it precesses about its pivot.
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