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ABSTRACT. This paper provides a self-contained exposition of classical and modern Galois theory that culmi-

nates in the profinite-group viewpoint of infinite Galois extensions. We begin by reviewing field extensions,

algebraic and transcendental elements, minimal polynomials, and the tower law, laying a linear-algebraic foun-

dation for later results. After constructing splitting fields via Kronecker’s theorem, we introduce automorphism

groups of extensions and develop the concepts of separability, normality, and finite Galois extensions. The fi-

nite Fundamental Theorem of Galois Theory is presented together with explicit computations that illustrate its

field–subgroup correspondence.To pass to the infinite setting, we equip automorphism groups with the Krull

topology and assemble them as inverse limits of finite Galois groups, obtaining compact, totally disconnected,

Hausdorff (profinite) groups. A concise survey of the requisite topology—product spaces, compactness, Haus-

dorffness, and inverse limits—precedes the formulation of the infinite Fundamental Theorem. We prove that

intermediate fields of an arbitrary Galois extension L{K correspond bijectively to closed subgroups of the profi-

nite group GalpL{Kq, with finite subextensions matching open subgroups.
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1. FIELD EXTENSIONS

Definition 1.1 A set F with addition and multiplication is a field if the following conditions hold.

(1) F is an abelian group under addition.

(2) F zt0u is an abelian group under multiplication.

(3) The distributive law holds: apb ` cq “ ab ` ac.

Definition 1.2 If a field K is a subfield of a field L, then K Ď L is a field extension.

Example: Q Ď Qp
?
2q “ ta ` b

?
2 | a, b P Qu is a field extension of Q. In this paper, we will explore some

uncommon fields and study their properties.

Proposition 1.3 A field extension K Ď L is a vector space with scalars from K.

2. ALGEBRAIC EXTENSIONS

Definition 2.1 Let K Ď L be a field extension. We say that an element α P L is algebraic over K if there

exists a nonzero polynomial f P KrXs such that fpαq “ 0. If such a polynomial does not exist, α is tran-

scendental over K.

If α P C is algebraic over Q, then we say that α is an algebraic number.

Definition 2.2 If α P L is algebraic over K, then any non-zero polynomial of the least possible degree among

all the polynomials f P KrXs such that fpαq “ 0 is called a minimal polynomial of α over K. The degree

of f is called the degree of α over K. The minimal polynomial, is the unique minimal polynomial whose

highest coefficient equals 1.

Theorem 2.3 Simple Extension Theorem

(1) If a P L is algebraic over K, then each element in Kpαq can be uniquely written as a0 ` a1α `

... ` an´1α
n´1 where ai P K and n is the degree of the minimum polynomial of α over K. Thus

rKpαq : Ks “ n and 1, α, ..., αn´1 is a basis of Kpαq over K.

(2) If a P L is transcendental over K, then Krαs – KrXs, KrXs is the ring of polynomial over K.
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Proof. Let p be a minimal polynomial of α over K and consider the following ring homomorphism.

ϕ : KrXs Ñ Krαs

where ϕpfpXqq “ fpαq.

Kerpϕq “ tf P KrXs : ϕpfq “ ϕpαq “ 0u “ pppXqq

Every polynomial that has α as a root is a multiple ppXq. Trivially, the image of ϕ is the entire ring Krαs.

By ring homomorphism theorem, we have KrXs{Kerpϕq – KrXs{pppXqq – Krαs . Since every class in

KrXs{pppXqq can be written uniquely as

a0 ` a1X ` a2X
2

` ...anX
n´1, ai P K

Hence, by the ring homomorphism, every element in Krαs can be written uniquely in the form

a0 ` a1α ` a2α ` ... ` anα
n´1, ai P K

Since p is a minimal polynomial over K, it’s irreducible. KrXs{pppXqq – Krαs is a field if and only if p is

irreducible. Krαs is a field and clearly has basis α, ..., αn´1. Part (2) of the theorem is trivial. ■

Example: What is the smallest field extension of Q that contains α “
3

?
2 ? Find its basis and dimen-

sion. Clearly, α is algebraic over Q since fpXq “ X3 ´ 2 P QrXs and fpαq “ 0. Applying the Simple

Extension Theorem, t1, 3
?
2, 3

?
22u is a basis of Qp

3
?
2q.

Definition 2.4 Let K Ď L and X be a subset of L, then KpXq denotes the intersection of all subfields of L

is the least subfield of L that contains both K and X . If X “ tα1, ..., αnu, we write KpXq “ Kpα1, ..., αnq.

If X “ K 1 is a subfield of L, we denote KpK 1q as KK 1 and call it the compositum of K and K 1

Definition 2.5 An extension K Ď L is algebraic if all elements in L are algebraic over K. It is finite if

rL : Ks ‰ 8. We say that the extension K Ď L is finitely generated if L “ Kpα1, ..., αnq, αi P L.

Now, let’s think about a finite field extension, say L “ Kpα1, ..., αnq, αi P L. How do we find its basis

and dimension? For example, what is the basis and dimension for Qp
?
2,

?
3q. We can slowly work this out,

but introducing the Tower Law will be more convenient.
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Theorem 2.6 Tower Law

Let K Ď L and L Ď M be finite field extensions. Then K Ď M is a field extension and

rM : Ks “ rM : LsrL : Ks

Proof. Let ei, i “ 1, ..., l be basis of L over K; let fj, j “ 1, ...,m be basis of M over L. Let x P M ,

then there is a unique presentation x “
řm

j“1 ljfj, lj P L. For each lj there is a unique presentation

lj “
řl

i“1 aijei , aij P K. Now, we write

x “

m
ÿ

j“1

ljfj “

m
ÿ

j“1

l
ÿ

i“1

aijeifj

This shows x is a unique linear combination of eifj and lm products eifj form a basis of M over K. ■

Example: Let’s revisit the finite field extension Qp
?
2,

?
3q. We express this extension as the following

rQp
?
2,

?
3q : Qs “ rQp

?
2,

?
3q : Qp

?
2qsrQp

?
2q : Qs “ 2 ˆ 2 “ 4

t1,
?
2,

?
3,

?
6u is a basis of Qp

?
2,

?
3q.

Theorem 2.7 A field extension K Ď L is finite if and only if it is algebraic and finitely generated.

Proof.

pñq Suppose a field extension K Ď L is finite. Then there must be a basis β1, ..., βn of L over K, so that

L “ Kpβ1, ..., βnq, i.e. L is finitely generated over K. To prove it’s algebraic, let x P L and consider the

powers t1, x, x2, ..., xnu. There are n ` 1 such elements, so they must be linearly dependent, i.e.

ao ` a1x ` a2x
2

` ... ` anx
n

“ 0, ai P K

not ai “ 0. Hence x is an algebraic element over K, i.e.L is an algebraic extension over K.

pðq Suppose K Ď L is algebraic and finitely generated, i.e. L “ Kpα1, ..., αkq. We have the following

K Ď Kpα1q Ď Kpα1, α2q Ď ... Ď Kpα1, α2, ..., αkq

For every i “ 0, ..., n ´ 1 we have αi`1 algebraic over K, so it’s algebraic over Kpα1, ..., αiq. Therefore, the

extension Kpα1, ..., αiq Ď Kpα1, ..., αi, αi`1q is finite. Hence the extension K Ď L is finite as its degree is

the product of degrees rKpα1, ..., αiq : Kpα1, ..., αi, αi`1qs. ■
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Remark: If a field extension K Ď L is finitely generated, it’s not sufficient to show the field extension is

finite. The extension being algebraic is a necessary condition. Let’s consider an interesting example where

Qpπq is finitely generated, but not algebraic over Q.This field extension is not finite, rQpπq : Qs “ 8.

Theorem 2.8 Let K Ď L. All elements in L algebraic over K form a field

Proof. Let α, β P L be two algebraic elements over K. Then the extensions K Ď Kpαq Ď Kpα, βq are finite.

Hence, the extensions are algebraic. α`β P Kpα, βq, αβ P Kpα, βq, α{β P L. The set of algebraic elements

in L is closed under the operations. Hence all elements in L algebraic over K form a field. ■

3. SPLITTING FIELDS

Definition 3.1 K is a field and f P Krxs, we say L is a splitting field of f over K if L “ Kpα1, ..., αnq and

fpXq “ apX ´ α1q...pX ´ αnq, a P K. Sometimes, we denote the splitting field of f over K as Kf .

Definition 3.2 τ : K Ñ K 1 is an embedding of the field K if τ is an injective function such that τpx ` yq “

τpxq ` τpyq and τpxyq “ τpxqτpyq, x, y P K.

τ can be extended to the embedding of the polynomial rings τ : KrXs Ñ K 1rXs

τpfpXqq “ τpanqXn
` ... ` τpa1qX ` τpa0q

fpXq “ anX
n

` ... ` a1X ` a0 P KrXs

If τpKq “ K 1, then the function is an isomorphism of the field K and K 1.

Theorem 3.3 Kronecker’s Theorem

(1) If f is an irreducible polynomial over K, then there exists a field K Ď L such that L “ Kpαq and

fpαq “ 0.

(2) If τ : K Ñ K 1 is a field isomorphism, f an irreducible polynomial over K, L “ Kpαq, where

fpαq “ 0 and L1 “ K 1pα1q, where τpfqpα1q “ 0, then there is an isomorphism σ : Kpαq Ñ K 1pα1q.

Kpαq K 1pα1q

K K 1

σ

τ

σpαq “ α1 and σ|K “ τ .
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Proof.

(1) Let L “ KrXs{pfpXqq, since f is irreducible in KrXs, L is a field. The class rXs “ α is a solution

in L of the equation fpXq “ 0 and L “ Kpαq.

(2) Consider the isomorphism τ : K Ñ K 1. Extend τ to the embedding of the polynomial rings

τ : KrXs Ñ K 1rXs. This maps the irreducible polynomial fpXq onto the irreducible polynomial

τpfqpXq in K 1rXs. Now, we have an isomorphism of the quotient rings:

τ 1 : KrXs{pfpXqq Ñ K 1
rXs{pτpfqpXqq

such that the class of rXs “ α is mapped onto rXs “ α1 in the second ring. Since KrXs{pfpXqq “

Kpαq and K 1rXs{pτpfqpXqq “ K 1rα1s, we have τ 1 “ σ as the required extension of τ . ■

Corollary 3.4

(1) Every polynomial f P KrXs has a splitting field over K.

(2) If τ : K Ñ K 1 is a field isomorphism, L is a splitting field of a polynomial f P KrXs and L1 is the

splitting field of τpfq P K 1rXs, there exists an isomorphism σ : L Ñ L1.

L L1

K K 1

σ

τ

Remark: To prove this corollary, we just apply inductive argument.

4. AUTOMORPHISMS AND GALOIS GROUPS

Definition 4.1 Let L be a field. An automorphism of L is a bijection σ : L Ñ L such that @x, y P L

(1) σpx ` yq “ σpxq ` σpyq

(2) σpxyq “ σpxqσpyq

If K Ď L is a field extension, an automorphism σ : L Ñ L is called a K-automorphism, if @x P K, σpxq “ x.

Proposition 4.2 All K-automorphisms of L form a group under the composition of automorphisms.The

group is called Galois group of L over K, denoted as GalpL{Kq.
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Definition 4.3 Let G be a group of automorphisms of L, we define LG “ tx P L : @σ P G, σpxq “ xu.

Remark: It’s trivial to see that LG is a subfield of L. To construct elements of LG, we introduce the trace

(TrG) and the norm (NrG) with respect to G.

TrGpαq “
ÿ

σPG

σpαq, NrG “
ź

σPG

σpαq, α P L

TrG and NrG P LG, and for all α, β P L, we have TrGpα ` βq “ TrGpαq ` TrGpβq and NrGpαβq “

NrGpαqNrGpβq. It easily follows from the definitions of trace, norm, and automorphisms.

Theorem 4.4 Dedekind’s Lemma
Let σ1, σ2, ..., σn be distinct automorphisms of a field L, if the equality: a1σ1pxq`a2σ2pxq`...`anσnpxq “ 0,

where ai P L, holds for all x P L, then a1 “ a2 “ ... “ an “ 0.

Proof.

We will use induction to prove this theorem. Base case: n “ 1, then a1σ1pxq “ 0 for all x P L. This forces

a1 “ 0, so the base case holds. Now, assume that the theorem holds when the number of isomorphisms is

less than n, where n ą 1. We have:

(1) a1σ1pxq ` a2σ2pxq ` ¨ ¨ ¨ ` anσnpxq “ 0

This equality (1) holds for all x P L, so we can choose an arbitrary α P L and replace x by αx:

(2) a1σ1pαqσ1pxq ` a2σ2pαqσ2pxq ` ¨ ¨ ¨ ` anσnpαqσnpxq “ 0

Multiply the equality (1) by σnpαq and subtract it from the equality (2):

(3) a1pσnpαq ´ σ1pαqqσ1pxq ` a2pσnpαq ´ σ2pαqqσ2pxq ` ... ` an´1pσnpαq ´ σn´1pαqqσn´1pxq “ 0

By our inductive assumption, all the coefficients in equality (3) must be zero, i.e. aipσnpαq ´ σipαqq “ 0 for

i “ 1, ..., n´1. Now, since all automorphisms are distinct, this forces ai “ 0 for i “ 1, ..., n´1. Let’s revisit

equality (1), we have anσnpxq “ 0 for all x P L, which again forces an “ 0. ■

Proposition 4.5

If G is a group of automorphisms of L (finite or infinite), then LG is a subfield of L and rL : LGs “ |G|.
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Proposition 4.6 Let fpXq P KrXs and let L{K be a field extension of K. If σ : L Ñ L is a K-automorphism

and if α P L is a root of fpXq, then σpαq is also a root of fpXq.

Theorem 4.7 If fpXq P KrXs has n distinct roots in its splitting field L, then GalpL{Kq is isomorphic

to a subgroup of the symmetric group Sn, and its order divides n!.

Proof.

Let T :“ tα1, α2, ..., αnu be the set of roots of fpXq in L. By Proposition 4.3, if σ P GalpL{Kq, σpT q “ T .

The map GalpL{Kq Ñ ST , defined by σ ÞÑ σ|T is clearly a bijective homomorphism, and ST – Sn. ■

5. NORMAL, SEPARABLE, AND GALOIS EXTENSIONS

Definition 5.1 A field extension K Ď L is called normal, if every irreducible polynomial fpXq P KrXs,

which has one zero in L, has all its zeros in L, i.e. L contains a splitting field of fpXq.

Proposition 5.2 A field extension K Ď L is normal if and only if L is a splitting field of polynomials

with coefficients in K.

Definition 5.3

(1) An irreducible polynomial fpXq P KrXs is separable over K, if it has no multiple zeros.

(2) α P L Ě K is a separable element over K, if it is algebraic and its minimal polynomial over K is

separable.

(3) The extension L{K itself is called separable if every element of L is separable over K. For finite

extensions this is equivalent to saying that L{K admits the maximum possible number rL : Ks of

K-embeddings into an algebraic closure.

Definition 5.4 Let K Ď L be a finite field extension. We say that L{K is Galois if it is simultaneously

normal and separable.

Proposition 5.5 For a finite extension L{K the following statements are equivalent:

(1) L{K is Galois.

(2) L is the splitting field over K of a separable polynomial.

(3) |pL{Kq| “ rL : Ks.

(4) The fixed field of pL{Kq equals K, i.e. LpL{Kq “ K.
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6. FINITE GALOIS THEORY

Let K Ď L be a field extension and write

F “ tM | K Ď M Ď L u, G “ tH ď pL{Kq u.

Define two order-reversing maps

f : G ÝÑ F , fpHq “ LH :“ tx P L | σpxq “ x for every σ P H u,

g : F ÝÑ G, gpMq “ pL{Mq “ tσ P pL{Kq | σ|M “ idM u.

Theorem 6.1 Fundamental Theorem of Galois Theory
Let L{K be a finite Galois extension with group G “ pL{Kq.

(1) The maps f and g are inverse bijections G
f
// F

g
oo that reverse inclusion.

(2) A subgroup H ď G is normal in G iff the field LH is Galois over K; in that case pLH{Kq – G{H .

(3) For every subgroup H ď G one has rLH : Ks “ |G : H|.

Proof. We must prove that f ˝ g “ idF and g ˝ f “ idG .

(i) Evaluate f ˝ g. Choose any intermediate field M with K Ď M Ď L. By definition,

gpMq “ GpL{Mq and f
`

gpMq
˘

“ LGpL{Mq.

Since L Ě M is itself a finite Galois extension (Prop.5.5) tells us that the fixed field of the full automorphism

group GpL{Mq is exactly M : LGpL{Mq “ M . Hence f ˝ g acts as the identity on F .

(ii) Evaluate g˝ f . Now take a subgroup H ď G “ pL{Kq. Because fpHq “ LH , we have

g
`

fpHq
˘

“
`

L{LH
˘

.

The group of automorphisms of L that fix LH point-wise is precisely H itself, so g˝ f is the identity on G.

(iii) Order reversal. If H1 Ď H2 then LH2 Ď LH1 , so f reverses inclusion; the same reasoning applied to g

gives the dual statement for intermediate fields.

Consequently, f and g are mutually inverse bijections that invert the partial orderings. ■
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7. TOPOLOGY BACKGROUND FOR INFINITE GALOIS THEORY

Definition 7.1 (Topological space). A topological space is a pair pX,T q where T Ď 2X (the “open” sets)

satisfies (i) ∅, X P T ; (ii) arbitrary unions of opens are open; (iii) finite intersections of opens are open. A

set is closed if its complement is open.

Definition 7.2 (Continuous map, basis, discrete space). (1) A function f : X Ñ Y between spaces is

continuous if f´1pUq is open in X whenever U is open in Y .

(2) A collection B Ď T is a basis if every open set is a union of elements of B.

(3) The discrete topology on a set X is the topology T “ 2X ; a space with the discrete topology is called

discrete.

Definition 7.3 (Hausdorff, compact). A topological space X is Hausdorff if any two distinct points admit

disjoint open neighbourhoods, and compact if every open cover has a finite subcover.

Definition 7.4 (Product topology). For a family of spaces tXiuiPI the product topology on
ś

iPI Xi is gener-

ated by sets
ś

i Ui with Ui Ď Xi open and Ui “ Xi for all but finitely many indices i.

Proposition 7.5. Every finite discrete space is compact and Hausdorff.

Proof. Any open cover of a finite set contains finitely many opens, hence compact; distinct singletons are

closed, so their complements form disjoint opens, giving the Hausdorff property. □

Definition 7.6 (Directed set). A non-empty partially ordered set pI,ďq is directed if for any i, j P I there

exists k P I with i ď k and j ď k.

Definition 7.7 (Inverse system and inverse limit). Given a directed set I , an inverse system
`

Xi, πij

˘

consists

of spaces Xi and continuous maps πij : Xj Ñ Xi for i ď j such that πii “ id and πik “ πij ˝ πjk. Its inverse

limit is the subspace

lim
ÐÝ
iPI

Xi “

!

pxiq P
ź

Xi : πijpxjq “ xi

)

,

with the subspace topology from the product.
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Definition 7.8 (Totally disconnected, profinite space/group). A space is totally disconnected if its only con-

nected subsets are singletons. A profinite space is compact, Hausdorff, and totally disconnected. A profinite

group is a topological group whose underlying space is profinite.

Definition 7.9 (Topological group). A topological group is a group G equipped with a topology for which

multiplication px, yq ÞÑ xy and inversion x ÞÑ x´1 are continuous.

Proposition 7.10. If each Xi in Definition7.7 is compact Hausdorff then lim
ÐÝ

Xi is compact Hausdorff. Con-

sequently, any inverse limit of finite discrete groups is a profinite group.

Proof. By Tychonoff, the product
ś

Xi is compact Hausdorff. The limit set is closed (hence compact) and

inherits Hausdorffness. Finite discrete groups satisfy Proposition7.5. □

Definition 7.11 (Krull topology). For a Galois extension L{K (finite or infinite) set

G “ pL{Kq “ lim
ÐÝ

E{K finite Galois

pE{Kq.

Equip G with the inverse-limit topology; a sub-basis of open neighbourhoods of 1 is given by the kernels of

the natural restriction maps G Ñ pE{Kq.

Proposition 7.12. With the Krull topology, G “ pL{Kq is a profinite group.

Proof. Each finite layer pE{Kq is a finite discrete group, hence compact Hausdorff (Proposition7.5). Apply

Proposition7.10. □

Proposition 7.13 (Field–subgroup dictionary). For G “ pL{Kq as in Definition7.11:

Closed subgroup H ď G Intermediate field LH

Open subgroup H LH{K finite

|G : H| ă 8 degpLH{Kq “ |G : H|

Proof. Closedness follows because the fixed-point set of a continuous group action is closed; kernels of the

restriction maps are open and of finite index, yielding the second row. The degree–index equality is the finite

Fundamental Theorem applied to each layer of the inverse system. □
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pL{E1q pL{E2q pL{E3q ¨ ¨ ¨

G “ lim
ÐÝ

pL{Eiq

π1

π2

π3

Armed with these topological notions, one extends the finite Fundamental Theorem of Galois Theory to

arbitrary Galois extensions by interpreting “subgroup” as “closed subgroup” and “finite” as “open” inside the

profinite group pL{Kq.

8. INFINITE GALOIS THEORY

Throughout, K is a field and L{K an algebraic extension. All topological notions are those from Chapter 7,

and every automorphism group carries the Krull topology of Definition7.11.

Definition 8.1 (Separable, normal, Galois).

(1) L{K is separable if every α P L is the root of a separable polynomial over K.

(2) L{K is normal if every irreducible f P Krxs that has a root in L splits completely in L.

(3) A Galois extension is algebraic, separable, and normal.

Definition 8.2 (Absolute Galois group). Fix a separable closure K of K and set

GK “ pK{Kq “ tσ P pKq | σ|K “ idKu.

With the Krull topology, GK is profinite (Proposition7.12).

Theorem 8.3 (Fundamental theorem of infinite Galois theory). Let L{K be (possibly infinite) Galois and

write G “ pL{Kq with the Krull topology. There is an inclusion-reversing bijection

K Ď E Ď L ÐÑ closed subgroups H ď G, E ÞÑ pL{Eq, H ÞÑ LH ,

satisfying:

(1) E{K is finite iff pL{Eq is open in G.

(2) E{K is normal iff pL{Eq is normal in G.

(3) For each closed H ďG the natural map G{H ÑpLH{Kq is a topological isomorphism.

Proof. View G as the inverse limit of its finite Galois quotients. The classical (finite) correspondence holds

on each layer; passing to the limit gives the result. Details appear in Artin–Tate,Chap. VI. □
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Proposition 8.4 (Fixed-field diagram). For a closed subgroup H ď G “ pL{Kq the diagram

G pLH{Kq

G{H

„

commutes and the diagonal arrow is an isomorphism.

Proof. Restriction kills H , hence factors through G{H; bijectivity follows from Theorem8.3(3). □

Example 8.5 (Finite fields). For Fq (q “ pm) the Frobenius φ : x ÞÑ xq generates pFq{Fqq – pZ. Finite

extensions Fqn correspond to open subgroups xφny.

Corollary 8.6 (Inverse-limit descriptions). Let E be the directed set of finite Galois subextensions E{K

inside L. Then

L – lim
ÝÑ
EPE

E, pL{Kq – lim
ÐÝ
EPE

pE{Kq,

the latter with its profinite topology.

Proof. L equals the union of its finite Galois subfields; Proposition7.10 identifies the inverse limit of groups.

□

Proposition 8.7 (Tower law). For Galois extensions L{F {K there is an exact sequence

1 ÝÑ pL{F q ÝÑ pL{Kq ÝÑ pF {Kq ÝÑ 1.

Proof. Restriction onto F is surjective; its kernel is pL{F q. □

Theorem 8.8 (Hilbert 90, cohomological form). If L{K is Galois with group G, then H1pG,Lˆq “ 1.

Equivalently, for a, b P Lˆ, σpaq{a “ σpbq{b for all σ P G implies a{b P Kˆ.

Proof. See Lang, Algebraic Number Theory, Chap. VIII. □

Dual diagrams (fields Ø groups)

L

E1 E2

K

pL{E1q pL{E2q

G

H1 H2

t1u

Left: lattice of intermediate fields. Right: lattice of closed subgroups. Arrows are inclusions, illustrating the

bijection of Theorem8.3.
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