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Abstract

This document presents a study conducted as part of the McGill Directed Reading Program (DRP), which pairs undergrad-
uate students with graduate mentors to explore research-level topics in mathematics and statistics. Over the semester,
our focus was on three topics: martingale theory, stochastic processes on trees and and the neural tangent kernel (NTK).
These notes aim to elucidate key concepts associated with each topic. The section on the NTK culminates in an experi-
mental project that investigates the convergence behaviour of the empirical NTK to a fixed limit.

Contents

1 Martingale Theory 2

2 Galton-Watson Branching Processes 11

3 Stochastic Processes on Trees 14
3.1 Motivation: Broadcasting on Trees . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
3.2 Gibbsian theory on countable vertex sets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

3.2.1 Gibbsian specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
3.2.2 Extremal Gibbs measures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
3.2.3 Uniqueness . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

3.3 Gibbs measures on trees . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
3.3.1 Construction of Gibbs measures via boundary laws . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
3.3.2 Completely homogeneous tree-indexed Markov chains on Cayley trees: the Ising and Potts models . 26

4 Neural Tangent Kernel 28
4.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

4.1.1 Kernel & Kernel Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
4.1.2 Gaussian Processes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
4.1.3 Notation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

4.2 Basics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
4.3 Infinite Width Networks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

4.3.1 Connection with Gaussian Processes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
4.3.2 Deterministic Neural Tangent Kernel . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
4.3.3 Linearized Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
4.3.4 Lazy Training . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

4.4 Project . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
4.4.1 Model Definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
4.4.2 Inputs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
4.4.3 Targets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
4.4.4 NTK . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
4.4.5 SGD updates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
4.4.6 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
4.4.7 Expectation of the Weight Updates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

Acknowledgements 39

References 40

1



1 Martingale Theory

The notes in this section are compiled from these sources: [18], [6], [13] and [5].

Definition 1.1 (Stochastic Process). Let (Ω, F, P) be a probability space, (S, Σ) be a measurable space and (T, ⩽) be an
index set equipped with a total order then a stochastic process Y is a collection of S-valued random variables, i.e.,

Y = {X : T×Ω→ S}

where S is called the state space of Y. A sample function is a single outcome of a stochastic process, i.e., ∀ω ∈ Ω, the map

Xω := X(·, ω) : T→ S

is called a sample function, or a realization, or particularly a sample path if T is interpreted as time. Let t1, t2 ∈ T : t1 ⩽ t2
then Xt2 − Xt1 is called an increment of Y.

Remark. An increment can be interpreted as how much the stochastic process changes over a certain time period.

Definition 1.2 (Filtration). Let (Ω, Σ, P) be a probability space, (T, ⩽) be an index set equipped with a total order and
∀ t ∈ T : Ft ⊆ Σ be a σ-algebra. If

∀ t1, t2 ∈ T : t1 ⩽ t2 =⇒ Ft1 ⊆ Ft2

then
F := (Fi : t ∈ T)

is called a filtration. In this case, (Ω, Σ, F, P) is called a filtered probability space. Moreover, given a sequence of real-valued
random variables (Xt : t ∈ T), if

∀ t ∈ T : Ft = σ
(
Xt̃

∣∣ t̃ ⩽ t
)

then F is called a natural filtration.

Definition 1.3 (Adapted Process). Let (Ω, F, P) be a probability space, (T, ⩽) be an index set equipped with a total order,
F = (Ft : t ∈ T) be a filtration on F, (S, Σ) be a measurable space then the stochastic process Y = (Xt : Ω→ S | t ∈ T)
is said to be adapted to the filtration F if ∀ t ∈ T : Xt is an (Ft, Σ)-measurable map.

Definition 1.4 (Martingale). Let (Ω, Σ, F, P) be a filtered probability space, and S be a Banach space. A stochastic process
Y = (Xt : Ω→ S | t ∈ T) is said to be a martingale with respect to F and P if

• ∀ t ∈ T : Xt is a Ft-measurable map.

• ∀ t ∈ T : Xt ∈ L1(Ω, Ft, P, S), i.e., E[ ∥Yt∥S ] is finite.

• ∀ t1, t2 ∈ T : t1 < t2 =⇒ Xt1 = E[Xt2 | Ft1 ]

Moreover, if
∀ t1, t2 ∈ T : t1 < t2 =⇒ Xt1 ⩽ E[Xt2 | Ft1 ]

then Y is called a super-martingale, and if

∀ t1, t2 ∈ T : t1 < t2 =⇒ Xt1 ⩾ E[Xt2 | Ft1 ]

then Y is called a sub-martingale.

Definition 1.5 (Stopping Time). Let (Ω, F, F, P) be a filtered probability space and τ ∈ Ω×T be a random variable. Then
τ is called a stopping time if

∀ t ∈ T : {τ ⩽ t} := {τ(ω) ⩽ t |ω ∈ Ω} ∈ Ft

Remark. The definition above can be also be interpreted as an adapted process, i.e., τ ∈ Ω× T is called a stopping time if
the stochastic process X = (Xt : t ∈ T) defined by

Xt :=

{
1 t < τ

0 t ⩾ τ

is adapted to the filtration F = (Ft : t ∈ T).
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Remark. Stochastic approximation looks like Euler’s method

xk+1 = xk +
1
k
f(xk)

with step size 1
k . Informally, we might expect stochastic approximation to behave like the o.d.e. x ′

t = f(xt). Moreover, we
might expect that not only does stochastic approximation find a zero of f, but is should (almost surely) find a stable zero of
f.

Theorem 1.6. The maximum and minimum of two stopping times is also a stopping time.

Proof. Let τ, σ be stopping times then
{min{τ, σ} ⩽ j} = {τ ⩽ j} ∪ {σ ⩽ j} ∈ Fj

{max{τ, σ} ⩽ j} = {τ ⩽ j} ∩ {σ ⩽ j} ∈ Fj

Theorem 1.7. Let (Xn) be a Markov chain with transition probability p and let f(x,n) be a function of the state x and the
time n such that

f(x,n) =
∑
y

p(x,y) f(y,n+ 1)

then (Mn) = f(Xn,n) is a martingale. In particular, if

h(x) =
∑
y

p(x,y)h(y)

then h(Xn) is a martingale.

Proof. By the Markov property and the assumption on f,

E[f(Xn+1,n+ 1) | Fn] =
∑

Y∈Fn

p(Xn, Y) f(Y,n+ 1) = f(Xn,n)

hence Xn is martingale.

Example 1.8 (Gambler’s ruin). Consider a gambler who starts with an initial fortune of $k and then on each successive
gamble either wins $1 or loses $1 independent of the past with probabilities p and q = 1 − p. The gambler’s objective is to
reach a total fortune of $N, without first getting ruined (running out of money).

1. Calculate by brute force, the probability of ruin given the initial state 0 ⩽ k ⩽ N.

2. Compare the above with the martingale version.

∀ 1 ⩽ k ⩽ n− 1 : pk = p · pk+1 + (1 − p)pk−1 =⇒ pk+1 =
1
p
pk −

1 − p

p
pk−1

=⇒ pk+1 − pk =

(
1
p
pk −

1 − p

p
pk−1

)
− pk

=

(
1
p
− 1
)
pk −

1 − p

p
pk−1

=
1 − p

p
(pk − pk−1)

=

(
1 − p

p

)2
(pk−1 − pk−2)

...

=

(
1 − p

p

)k

(p1 − p0)

=⇒ pk =

i−1∑
k=0

(
1 − p

p

)k

p1

If p = 1
2 then 1−p

p = 1 therefore

pN = N · p1 =⇒ p1 =
1
N

=⇒ pk =
k

N
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When p ̸= 1
2 then

pN = p1
1 −

(
1−p
p

)N
1 − 1−p

p

=⇒ p1 =
1 − 1−p

p

1 −
(

1−p
p

)N
therefore

pk =
1 −

(
1−p
p

)k
1 −

(
1−p
p

)N
It follows that the probability of ruin is

p̃k =


1 − k

N p = 1
2

1 −
1−( 1−p

p )
k

1−( 1−p
p )

N p ̸= 1
2

For the second part, consider
(
Un ∼ U{−1, 1} : n ∈ N

)
and let F = (Fn : n ∈ N) = σ({Ui | 1 ⩽ i ⩽ n}) and Sn be the total

amount of dollars gained so far at timestep n ∈ N0. Define

S0 := k Sn :=

n∑
i=1

Ui

Claim. (Sn : n ∈ N0) is a martingale.

Proof.
E[Sn+1 | Fn] = E[Sn +Un+1 | Fn]

= Sn + E[Un+1]

= Sn

Let τ = inf{n ∈ N : Sn ∈ {0, n}} then

E[Sτ] = E[S0] = k

= 0 · P(Sτ = 0) +N · P(Sτ = N)

= N · pk

therefore pk = k
N . It follows that the probability of ruin is 1 − k

N .

Let (Un : n ∈ N) i.i.d. such thatP(Un = 1) = p andP(Un = 1) = 1−p =: q. SetF = (Fn : n ∈ N) = σ({Ui | 1 ⩽ i ⩽ n}).

Claim.
(
q
p

)Sn

is a martingale

Proof.

E

[(
q

p

)Sn+1
∣∣∣∣∣Fn

]
= p

(
q

p

)Sn+1

+ q

(
q

p

)Sn−1

=

(
q

p

)Sn
(
p · q

p
+ q · p

q

)
=

(
q

p

)Sn
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It thus follows that

E

[(
q

p

)Sτ
]
= E

[(
q

p

)S0
]
=

(
q

p

)k

= pk

(
q

p

)N

+ (1 − pk)

(
q

p

)0

= 1 − pk

(
1 −

q

p

)N

therefore

pk =
1 −

(
q
p

)k
1 −

(
q
p

)N
and the probability of ruin is

1 −
1 −

(
q
p

)k
1 −

(
q
p

)n
Theorem 1.9 (Optional Stopping). Let τ be a stopping time and (Mn : n ∈ N0) be a martingale adapted to (Fn : n ∈ N0)

such that one of the following three conditions holds:

1. τ is a.s. bounded

2. E[τ] < ∞ and ∃ c ∈ R+ : E[|Mt+1 −Mt| | Ft] ⩽ c a.s. on the event {τ > t}, for all t ∈ N.

3. ∃ c ∈ R+ :
∣∣Mmin{t,τ}

∣∣ ⩽ c a.s. for all t ∈ N.

Then Mτ is a.s. well defined and
E[Mτ] = E[M0]

Proof.

Mmin{t,τ} = M0 +

min{τ−1, t−1}∑
s=0

(Ms+1 −Ms)

yields ∣∣Mmin{t,τ}
∣∣ ⩽ M := |M0|+

τ−1∑
s=0

|Ms+1 −Ms| = |M0|+
∞∑
s=0

|Ms+1 −Ms| · 1{τ>s}

Hence by the monotone convergence theorem,

E[M] = E[|X0|] +
∞∑
s=0

E
[
|Ms+1 −Ms| · 1{τ>s}

]
If (1) holds then the series above only has a finite number of non-zero terms, hence M is integrable. If (2) holds, then

E[M] = E[|X0|] +
∞∑
s=0

E

E[|Ms+1 −Ms| | Fs] · 1{τ>s}︸ ︷︷ ︸
⩽c1{τ>s} a.s. by (2)


⩽ E[|X0|] + c

∞∑
s=0

P(τ > s)

= E[|X0|] + cE[τ] < ∞
and if (3) holds then M := c. Therefore if any of the three conditions hold, then the stopped process is dominated by an
integrable M, and converges a.s. to Mτ, the dominated convergence theorem implies that

E[Mτ] = lim
t→∞E

[
Mmin{t,τ}

]
By the martingale property of the stopped process,

E
[
Mmin{t,τ}

]
= E[M0]
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hence
E[Mτ] = E[M0]

Remark. Under the third condition, P({τ = ∞}) may be positive. On this event Mτ is defined as the a.s. pointwise limit of
Mt as t→∞.

Corollary 1.10. Similarly, if (Mn : n ∈ N0) is a submartingale and one of the conditions of the previous theorem above holds,
then it follows directly that

E[Mτ] ⩾ E[M0]

and if the process is a supermartingale then
E[Mτ] ⩽ E[M0]

Example 1.11. We aim to use optional stopping to compute the expected amount of time Gambler’s ruin runs for starting
at $K. Let (Un : n ∈ N) i.i.d. such that Un ∼ U{−1,1}, F = (Fn : n ∈ N) = σ({Ui | 1 ⩽ i ⩽ n}) and Sn be the total amount
of dollars gained so far at timestep n ∈ N0. Define

S0 := k Sn :=

n∑
i=1

Ui

Assume that p = q and consider
(
S2
n − n : n ∈ N

)
then

E
[
S2
n+1 − (n+ 1)

∣∣Fn

]
= E

[
(Sn +Un+1)

2 − (n+ 1)
∣∣∣Fn

]
= E

[
S2
n + 2SnUn+1 + X2

n+1 − n− 1
∣∣Fn

]
= S2

n + 2SnE[Un+1] − n

= S2
n − n

Hence
(
S2
n − n : n ∈ N

)
is a martingale. Let τ = inf{n ∈ N : Sn ∈ {0, n}} then

E
[
S2
τ − τ

]
= E

[
S2

0 − 0
]
= k2

= E
[
S2
τ

]
− E[τ]

= N2
(
k

n

)
− E[τ]

= Nk− E[τ]

ThereforeE[T ] = k(N−k). Assume thatp ̸= q. Let (Un : n ∈ N) i.i.d. such thatP(Un = 1) = p andP(Un = 1) = 1−p =:

q. Set F = (Fn : n ∈ N) = σ({Ui | 1 ⩽ i ⩽ n}) and consider (Sn − n(p− q) : n ∈ N) then

E[Sn+1 − (n+ 1)(p− q) | Fn] = E[Sn +Un+1 − (n+ 1)(p− q) | Fn]

= Sn + E[Un+1] − (n+ 1)(p− q)

= Sn + p− q− (n+ 1)(p− q)

= Sn − n(p− q)

Hence (Sn − n(p− q) : n ∈ N) is martingale.

E[ST − T(p− q)] = E[S0 − 0(p− q)] = E[S0] = k

= E[ST ] − E[T ](p− q)

= N · pk − E[T ](p− q)

= N ·
1 −

(
q
p

)k
1 − q

p

− E[T ](p− q)

therefore

E[T ] =
k

q− p
−

(
n

q− p

)1 −
(
q
p

)k
1 − q

p


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Definition 1.12 (Predictable). A stochastic process is predictable if X0 is fixed and Xn is Fn−1 measurable.

Remark. This is a strictly stronger condition than being adapted to a filtration.

Theorem 1.13 (Doob’s Decomposition Theorem). Let (Xn : n ∈ N0) be a process in L1 adapted to (Fn : n ∈ N0). Then it
can be uniquely decomposed as Xn = Mn + An where (Mn : n ∈ N0) is a martingale and (An : n ∈ N0) is predictable
such that A0 := 0. Furthermore,

An =
∑
k=1

E[Xk − Xk−1 | Fk−1] =
n∑

k=1
E[Xk | Fk−1] − Xk−1

and (An : n ∈ N0) is called the compensator of (Xn : n ∈ N0).

Proof. Existence: Let (An : n ∈ N0) as above and ∀n ∈ N0 :

Mn = X0 +
n∑

k=1
Xk − E[Xk | Fk−1]

First note that the sums for n = 0 are empty, and defined to be zero. Moreover, note that A adds up the expected incre-
ments of X, and M adds the part for every Xk that is not known one time step before. By definition, An+1 and Mn are Fn

measurable because the process X is adapted. Moreover, E[|An|] < ∞ and E[|Mn|] < ∞ since the process X is integrable.
Furthermore, the decomposition Xn = Mn +An holds for all n ∈ N0. Finally,

E[Mn+1|Fn] = E[Xn+1 −An+1|Fn]

= E[Xn+1|Fn] −An+1

= E[Xn+1|Fn] − E[Xn+1|Fn] + Xn −An

= Xn −An

= Mn

Hence (Mn : n ∈ N0) is a martingale.

Uniqueness: Let X = M ′ +A ′ be an additional decomposition, then Y := M−M ′ = A ′ −A is a martingale. Thus

∀n ∈ N : E[Yn | Fn−1] = Yn−1

hence Y is also predictable, thus
∀n ∈ N : E[Yn | Fn−1] = Yn

SinceY0 = A ′
0−A0 = 0, thenYn = 0 almost surely, for alln ∈ N. Therefore the decomposition is almost surely unique.

Corollary 1.14. An adapted process X in L1 is a sub-martingale if and only if it has a Doop decomposition into a martingale
M and an integrable predictable A that is almost surely non-decreasing. Similarly, X is a super-martingale if and only if A is
almost surely non-increasing.

Proof. If X is a sub-martingale then

X is a sub-martingale ⇐⇒ E[Xk | Fk−1] ⩾ Xk−1

⇐⇒
n∑

k=1
(E[Xk | Fk−1] − Xk−1) ⩾ 0

⇐⇒ A is almost surely non-decreasing

The equivalence for super-martingales is proved similarly.

Definition 1.15. For a martingale (Mn : n ∈ N) in L2, the bracket process ([Mn] : n ∈ N0) is defined as the compensator
of
(
M2

n : n ∈ N0
)

, i.e.,

[Mn] = E
[
M2

0
]
+

n∑
k=1

E
[
M2

k −M2
k−1

∣∣Fk−1
]

= E
[
M2

0
]
+

n∑
k=1

E
[
(Mk −Mk−1)

2
∣∣∣Fk−1

]
7



Definition 1.16. (Mn : n ∈ N) is bounded in Lp if

sup
n∈N

∥Xn∥p < ∞
Definition 1.17. Let (Xn : n ∈ N) be a supermartingale. Fix a < b, define T0 = 0 and let

T2k+1 = inf{n ⩾ T2k : Xn ⩽ a} T2k+2 = inf{n ⩾ T2k+1 : Xn ⩽ b}

for all k ∈ N. The number of upcrossings is then defined as

u(a,b) := sup{k ∈ N | T2k < ∞}

Remark. In other words, the number of upcrossings is the number of times the supermartingale goes from below a to
above b. Due to stochasticity, there may be some accidents, i.e., the presence of upcrossings, but since a supermartingale
is expected to decrease, these upcrossings have a cost and it can be proved that the number of upcrossings is almost surely
finite. The fact that the supermartingale is bounded in L1 also prevents the sample paths from drifting off to minus infinity;
therefore, almost all the sample paths must converge. We now turn this heuristic argument into a proof, starting with the
upcrossing inequality.

Lemma 1.18 (Upcrossing Inequality). In the context of the above,

∀ k ∈ N : P(u(a,b) > k) ⩽ P
1

b− a
E
[
(X∞ − a)−1{u(a,b)=k}

]
Remark. X−

n denotes the negative part of Xn, i.e., X−
n = −min{Xn, 0}. X+

n is defined analogously.

Proof. Since the process (Xn − a : n ∈ N) is also a supermartingale, it suffices to show the result holds when a = 0. Let
(σ1,σ2) = (T2k+1, T2k+2), then

{u(a,b) > k} = {σ2 < ∞} ⊆ {σ1 < ∞} ∩ {Xσ2 ⩾ b}

=⇒ P(u(0,b) > k) = E
[
1{u(0,b)>k}

]
⩽

1
b
E
[
Xσ21{u(0,b)>k}

]
⩽

1
b
E
[
X+
σ21{u(0,b)>k}

]
⩽

1
b
E
[
X+
σ21{σ1<∞}

]
Since (Xn : n ∈ N) is a supermartingale andXσ1 ⩽ 0 on the event {σ1 < ∞}, it follows from the optional stopping theorem
that

E
[
X+
σ21{σ1<∞}

]
− E

[
X−
σ21{σ1<∞}

]
= E

[
Xσ21{σ1<∞}

]
⩽ E

[
Xσ11{σ1<∞}

]
⩽ 0

Hence

P(u(0,b) > k) ⩽
1
b
E
[
X−
σ21{σ1<∞}

]
⩽

1
b
E
[
X−
σ21{σ1<∞,Xσ2⩽0}

]
⩽

1
b
E
[
X−
σ21{σ1<∞,σ2=∞}

]
⩽

1
b
E
[
X−∞1{u(0,b)=k}

]

Theorem 1.19 (Martingale Convergence Theorem). Let (Xn : n ∈ N) be a supermartingale bounded in L1, i.e.,

sup
n∈N

E[|Xn|] < ∞
then

Xn
n→∞−−−−→

a.s.
X∞ < ∞
∈ L1

8



Proof. Set n ∈ N and denote by un(a,b) the number of upcrossings that occur by time n. Applying the upcrossing in-
equality to the process stopped at time n, we obtain

E[un(a,b)] =
∑
k∈N

P(un(a,b) > k)

⩽
1

b− a

∑
k∈N

E
[
(Xn − a)−1{un(a,b)=k}

]
=

1
b− a

E
[
(Xn − a)−

]
From the monotone convergence theorem, it follows that

E[u(a,b)] = lim
n→∞E[un(a,b)]

⩽
1

b− a
lim

n→∞E
[
(Xn − a)−

]
⩽

1
b− a

sup{E[(Xn + |a|)] |n ∈ N}

< ∞
hence P(u(a,b) < ∞) = 1 for all a < b. Since Q is countable, we also have

P
(

lim inf
n→∞ Xn < lim sup

n→∞ Xn

)
= P

({
lim inf
n→∞ Xn < a < b < lim sup

n→∞ Xn

∣∣∣∣a,b ∈ Q
})

= P({u(a,b) = ∞ |a,b ∈ Q : a < b})

which proves almost sure convergence
Xn

n→∞−−−−→
a.s.

X∞
where

E[|X∞|] ⩽ sup
n∈N

E[|Xn|] < ∞
Lemma 1.20. Let (Mn : n ∈ N0) be a martingale in L2, and let s < t ⩽ u < v then

E[(Mt −Ms)(Mv −Mu)] = 0

Proof. Since Mu = E[Mv | Fu] and Mt −Ms ∈ Fu then

E[(Mt −Ms)(Mv −Mu)] = E[E[(Mt −Ms)(Mv −Mu) | Fu]]

= E

(Mt −Ms) (E[Mv | Fu] −Mu)︸ ︷︷ ︸
= 0


= 0

Theorem 1.21. An L2 martingale (Mn) is bounded in L2 if and only if

∞∑
k=1

E
[
(Mk −Mk−1)

2
]
< ∞

In this case, Mn
n→∞−−−−→

a.s.
M∞ ∈ L2.

Proof. Due to the orthogonal increments as above, all cross terms of the square below have zero mean, and thus the fol-
lowing holds:

E
[
M2

n

]
= E

(M0 +
n∑

k=1
(Mk −Mk−1)

)2


= E
[
M2

0
]
+

n∑
k=1

E
[
(Mk −Mk−1)

2
]

n→∞−−−−→ E
[
M2

0
]
+

∞∑
k=1

E
[
(Mk −Mk−1)

2
]

9



Hence Mn is bounded in L2 if and only if
∑∞

k=1 E
[
(Mk −Mk−1)

2
]
< ∞. Moreover, since Mn is bounded in L2 it follows

that it is also bounded in L1. Thus by the martingale convergence theorem in L1,

Mn
a.s.−−−−→

n→∞ M∞ ∈ L1

To see the L2 convergence, use Fatou’s lemma as

E
[
(M∞ −Mn)

2
]
= E

[
lim
r→∞(Mn+r −Mn)

2
]

⩽ lim inf
r→∞ E

[
(Mn+r −Mn)

2
]

= lim inf
r→∞

n+r∑
k=n+1

(Mk −Mk−1)
2

=

∞∑
k=n+1

E
[
(Mk −Mk−1)

2
]

n→∞−−−−→ 0

due to finiteness of the infinite sum.

Corollary 1.22. For a martingale (Mn : n ∈ N) in L2, consider [Mn]. Since ([Mn] : n ∈ N) is a.s. non-decreasing, [M∞] :=

lim
n→∞[Mn] exists a.s. and may be infinite. On the event, {[M∞] < ∞}, we have that

Mn
a.s.−−−−→

n→∞ M∞ < ∞
Proof. Let k ⩾ 0 and

τk = inf{n ∈ N0 | [M]n ⩾ k}

Note that since [M] is predictable then τk is a stopping time. Thus[
Mmin{n,τk}

]
= [M]min{n,τk}

is bounded by k so
E
[(
Mmin{n,τk}

)2
]
⩽ k

hence
(
Mmin{n,τk} : n ∈ N0

)
is bounded in L2, thus it bounded in L1, and therefore it converges almost surely as n → ∞

in L1. In particular, on
{[M]∞ < k} ⊆ {τk = ∞}

we have

Mmin{n,τk}
a.s.−−−−→

n→∞ Mn
a.s.−−−−→

n→∞ M∞ < ∞
∈ L2

Therefore M∞ exists almost surely on ∞⋃
k=0

{[M]∞ < k} = {[M]∞ < ∞}

Definition 1.23 (Stochastic Approximation). Let (Xn : n ∈ N) be a stochastic process in the euclidean space Rn adapted
to a filtration (Fn : n ∈ N). Suppose that Xn satisfies

Xn+1 − Xn =
1
n
(F(Xn) + ξn+1 + Rn)

where

• F : Rn → Rn

• E[ξn+1 | Fn] = 0

• and the remainder terms Fn ∋ Rn
n→∞−−−−→ 0 and satisfy

∑∞
n=1

|Rn|
n < ∞ almost surely.

then such a process is known as a stochastic approximation process.

Remark. Such processes are commonly used to approximate the root of an unknown function in the setting where evalua-
tion queries may be made but the answers are noisy.
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2 Galton-Watson Branching Processes

These notes are compiled from [16], [11], [19], [9] and [2].

Percolation on a tree breaks up the tree into random subtrees. Historically, the first random trees to be considered were a
model of genealogical (family) trees. Since such trees will be an important source of examples and an important tool in later
work, we too will consider their basic theory before turning to percolation. They are also beautiful processes in themselves.

Galton-Watson branching processes are most often defined as Markov chains (Zn : n ∈ N0), where Zn represents the size
of the nth generation of a family, but we will be interested as well in the underlying family trees. Given numbers pk ∈ [0, 1]
with

∑
k⩾0 pk = 1, the process is defined as follows. We start with one particle Z0 ≡ 1, unless specified otherwise. It has

k children with probability pk. Then each of these children (should there be any) also has children with the same progeny
(or “offspring”) distribution (pk : k ∈ N0), independently of the others and of its parent. This continues forever or until
there are no more children. To be formal, let L be a random variable with P(L = k) = pk, and let

(
L
(n)
i : n, i ∈ N

)
be

independent copies of L. The generation sizes of the branching i process are then defined inductively by

Zn+1 :=

Zn∑
i=1

L
(n+1)
i

The probability generating function (p.g.f.) of L is defined as

f(s) := E
[
sL
]
=

∑
k∈N0

pks
k

Note that unless specified otherwise f is defined on [0, 1]. Note that we interpret 00 = 1 such that f(0) = P(L = 0) = p0.
We call the event {∃n ∈ N0 : Zn = 0} the extinction, which of course is the same as the event

{
Zn

n→∞−−−−→ 0
}

. We will often
omit the superscripts onLwhen not needed. The family (or genealogical) tree associated to a branching process is obtained
simply by having one vertex for each particle ever produced and joining two by an edge if one is the parent of the other. We
will give a formal definition later (in section 3) of trees and the associated probability measures on them. The first basic
result on Galton-Watson processes is that on the event of non-extinction, the population size explodes, except in the trivial
case that p1 = 1,

Proposition 2.1. On the event of non-extinction, Zn
n→∞−−−−→

a.s.
∞ provided that p1 = 1.

Proof. We want to see that 0 is the only non-transient state of the Markov chain (Zn : n ∈ N0). If p0 = 0, it is clear, whereas
if p0 > 0, then from any state k ⩾ 1, eventually returning to k requires not immediately becoming extinct, whence it has
probability ⩽ 1 − pk

0 < 1.

What is q := P(extinction)? To find out, we use the following property of the p.g.f.

Proposition 2.2.
∀ s ∈ [0, 1] : E

[
sZn

]
= (f ◦ · · · ◦ f)︸ ︷︷ ︸

n times

(s) =: f(n)(s)

Proof.
E
[
sZn

]
= E

[
E
[
s
∑Zn−1

i=1 Li

] ∣∣∣∣Zn−1

]

= E

E
Zn−1∏

i=1
sLi

∣∣∣∣∣∣Zn−1


= E

Zn−1∏
i=1

E[exp(Li)]


= E

[
E
[
sL
]Zn−1

]
= E

[
f(s)Zn−1

]
where the random variables Li := L

(n)
i are independent of each other and of Zn−1 and have the same distribution as L.

Iterate this equation n times.
11



Remark. Note that within this proof is the identity

E
[
sZn

∣∣Z0 :n−1
]
= f(s)Zn−1

Corollary 2.3 (Extinction Probability). The extinction probability is q = lim
n→∞ f(n)(0).

Proof. Since extinction is the increasing union of the events {∃n ∈ N0 : Zn = 0}, it follows that

q = lim
n→∞P(Zn = 0) = lim

n→∞ f(n)(0)

We finally discover the most used result in the field and value of q,

Proposition 2.4 (Extinction Criterion [16] (Proposition 5.4)). Provided p1 ̸= 1, we have

• q = 1 ⇐⇒ f ′(1) ⩽ 1, and

• q is the smallest root of f(s) = s ∈ [0, 1], the only other possible root being 1.

Remark. When we differentiate f at 1, we mean the left-hand derivative. Note that

f ′(1) = E[L] =: m =
∑
k∈N0

kpk

is the mean number of offspring. We call m simply the mean of the branching process.
By the proposition above, a branching process is called subcritical if m < 1, critical if m = 1, and supercriticial otherwise.

How quickly does Zn
n→∞−−−−→ ∞ on the event of non-extinction? The most naive guess would be that it grows approxi-

mately like mn. This is essentially correct. Our first result is that a martingale appears when we divide Zn by mn.

Proposition 2.5. If m is finite then
(

Zn

mn : n ∈ N0
)

is a martingale.

Proof.

E
[
Zn+1
mn+1

∣∣∣∣Zn

]
= E

[
1

mn+1

Zn∑
i=1

Li

∣∣∣∣∣Zn

]
=

1
mn+1

Zn∑
i=1

E[Li |Zn] =
1

mn+1

Zn∑
i=1

m =
Zn

mn

Remark. Actually, we have not verified that we are computing conditional expectations of integrable random variables.
One way to avoid calculating (in a similar manner) the unconditional expectation first is to note that all random variables
are non-negative. Another way is to use the fact that Zn takes only countably many values, so that we may work with
expectations conditioned on events, rather than on a random variable.
Since the martingale above is non-negative, it has a finite limit a.s. denoted W. Thus, when W > 0 the generation sizes Zn

grow as expected, i.e., like mn up to a random factor. Otherwise, they grow more slowly. Our attention is thus focused on
the following two questions

1. When is W > 0?

2. When W = 0 and the process does not become extinct, what is the rate at which Zn
n→∞−−−−→∞?

To answer these questions, we first note a general zero-one property of Galton-Watson branching processes. Call a property
of trees inherited if every finite tree has this property and if whenever a tree has this property, so do all the descendant trees
of the children of the root.

Proposition 2.6. Every inherited property has conditional probability either 0 or 1 given non-extinction.

Proof. Let A be the set of trees possessing a given inherited property. For a tree T with k children from the root, denote
T (1), . . . , T (k) as the descendant trees of these children. Then

P(A) = E[P(T ∈ A |Z1)] ⩽ E
[
P
(
T (1), . . . , T (Z1) ∈ A

∣∣∣Z1
)]

by definition of inheritance. Since T (1), . . . , T (Z1) are i.i.d. given Z1, the last quantity in the display is equal to

E
[
P(A)Z1

]
= f(P(A))

Thus, P(A) ⩽ f(P(A)). On the other hand, P(A) ⩾ q, since every finite tree is in A. Hence P(A) ∈ {q, 1}, from from which
the desired conclusion follows.
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Corollary 2.7. Suppose m is finite, then W = 0 or W > 0 a.s. on non-extinction. In other words, P(W = 0) ∈ {q, 1}.

Proof. The property thatW = 0 is clearly inherited, whence this is an immediate consequence of the previous proposition.

In answer to the preceding two questions, we have the following two theorems.

Theorem 2.8 ([11] (Kesten-Stigum Theorem, 1966)). The following are equivalent provided 1 ⩽ m < ∞
1. P(W = 0) = q

2. E[W] = 1

3. E
[
L log+ L

]
< ∞

Remark. Since (3) requires barely more than the existence of a mean, generation sizes typically do grow as expected. How-
ever, when (3) fails the means mn overestimate the rate of growth. Yet there is still an essentially deterministic rate of
growth, as shown by Seneta (1968) [19] and Heyde (1970) [9], which is only slightly less than mn.

Theorem 2.9 (Seneta-Heyde Theorem). If 1 ⩽ m < ∞ then ∀n ∈ N0 ∃ cn ∈ R such that

1. lim
n→∞ Zn

cn
exists a.s. in [0,∞)

2. P
(

lim
n→∞ Zn

cn
= 0
)
= q

3. cn+1
cn

= m

Proof. We will find another martingale to do our work. Choose s0 ∈ (q, 1) and set sn+1 := f−1(sn) for n ⩾ 0. Then sn ↑ 1.
By proposition 4.2, we have that

(
sZn : n ∈ N0

)
is a martingale. Being positive and bounded, it converges a.s. and in L1

to a limit Y ∈ [0, 1] such that E[Y] = E
[
sZ0

0

]
= s0. Now we can re-formulate these exponentials. Set cn := − 1

logsn then

sZn = exp
(
−Zn

cn

)
, so that lim

n→∞ Zn

cn
exists a.s. in [0,∞). By l’Hopital’s Rule and the fact that lim

s↑1
f ′(s) = m,

lim
s↑1

− log f(s)
− log s = lim

s↑1

f ′(s)s

s
= m

Considering this limit along the sequence (sn : n ∈ N0) we get (3). It follows form (3) that the property that Zn

cn
= 0 is

inherited, whence by proposition 4.5 and the fact that E[Y] = s0 < 1, we deduce (ii). Likewise, the property that Zn

cn
< ∞

is inherited and has probability 1 since E[Y] > q, which implies (1).

Remark. The proof of the Seneta-Heyde theorem gives a prescription for calculating the constants cn but does not im-
mediately provide estimates for them. Another approach gives a different prescription that leads sometimes to an explicit
estimate (see Asmussen and Hering (1983) [2], pages 45 to 49).
We will often want to consider random trees produced by a Galton-Watson branching process. Up to now, we have avoided
that by giving theorems just about the random variables Zn (except for proposition 4.5, but that was used so far only for
studying the limiting behavior of Zn). One approach to formalize tree-valued random variables is as follows. A rooted
labeled tree T is a nonempty collection of finite sequences of positive integers such that if (i1, . . . , in) ∈ T then

1. ∀ k ∈ [0,n], also the initial segment (i1, . . . , ik) ∈ T , here the case k = 0 is interpreted as the empty sequence, and

2. ∀ j ∈ [1, in] the sequence (i1, . . . , in−1, j) ∈ T .

The root of the tree is the empty sequence, ∅. Thus if (i1, . . . , in) is the ith
n child of the in−1 of . . . of the ith

1 child of the
root. If x = (i1, . . . , in) ∈ T then we define Tx := {(j1, . . . , jk) | (i1, . . . , in, j1, . . . , jk) ∈ T } to be the descendant tree of
the vertex x in T . The height of a tree is the supremum of the lengths of the sequences in the tree. If T is a tree and n ∈ N,
denote the truncation of T to its first n levels as T (n) := {(i1, . . . , ik) ∈ T |k ⩽ n}. This is a tree of height of at most n. A
tree is called locally finite if its truncation to every finite level is finite. Let T be the space of rooted labeled locally finite
trees. Finally, we define a metric on T by setting

d
(
T , T̃

)
:=
(

1 + sup
{
n ∈ N0

∣∣∣ T (n) = T̃ (n)
})−1
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3 Stochastic Processes on Trees

These notes are compiled from [12], unless specified otherwise.

3.1 Motivation: Broadcasting on Trees

Let Tn = (VN, EN) be a binary tree of depth N, rooted at 0. Note that ∀ x,y ∈ Vn there exists a unique self-avoiding path
x = x0 ∼ x1 ∼ · · · ∼ xn = y of neighboring vertices x1, . . . , xn ∈ V , where ∀a,b ∈ VN : a ∼ b ⇐⇒ (a,b) ∈ EN.
The path length n =: d(x, y) defines the tree metric. Define the finite-volume state of the model to be ΩN := {−1, 1}|VN|.
Together with the product sigma algebra (which is simply the power set on our finite set) this defines our probability space.
Denote by σ ∈ Ωn a configuration. We define a probability measure µ on ΩN in two steps. First, the distribution of the
spin at the origin is chosen to be a symmetric Bernoulli, i.e.,

µ(σ0 = 1) = µ(σ0 = −1) = 1
2

Next, we pass on information from the root to the outside of the tree by putting for all pairs of neighboring vertices v→ w,
meaning v is the parent of w, i.e., v is closer to the root than w,

µ(σw = −1 | σv = 1) = µ(σw = 1 | σv = −1) = ε ∈
[

0, 1
2

]
where ε is an error parameter, and the full probability distribution is obtained by applying this rule from the root to the
outside of the tree. In this way, we have the following probability distribution on our finite-volume state space.

Definition 3.1. The probability measure defined by

µ(σ) =
1
2

∏
v,w :v→w

(1 − ε)1σv=σw · ε1σv ̸=σw

=
1
2

∏
v,w :v→w

Pσv,σw

with
P =

(
1 − ε ε

ε 1 − ε

)
is called the symmetric channel on the binary tree.

Remark. This is a specific example of a tree-indexed Markov chain.
We can imagine to replace P by another transition matrix to obtain a different distribution, and we can generalize the local
state space. Note that ε = 1

2 ⇐⇒ the σv’s are independent. Using simple calculations with±1-valued variables we can
put our probability measure in the exponential form

µ(σ) =
1
2

∏
v,w :v→w

(1 − ε)1σv=σw · ε1σv ̸=σw

=
1

ZN(β)
exp
(
β

∑
v,w :v→w

σvσw

)

with β := 1
2 log 1−ε

ε called the inverse temperature, or equivalently ε = 1
exp(2β)+1 , and

ZN(β) =
∑

σ∈ΩN

exp
(
β

∑
v,w :v∼w

σvσw

)

is a normalizing constant, called the partition function. We have recovered here the finite-volume Gibbs measure for the
Ising model on a tree (with open boundary conditions). We would like to understand this measure. In which way is possibly
information persevered over long distances? Such distances will set the tone for subsequent investigations. For v ∈ VN, |v|
is defined to be the distance to the root. For |w| = N define

FN := σ = (σ0σw = −1)

This is a meaningful quantity for all N, so we may take a limit.
14



Proposition 3.2.

FN
N→∞−−−−→ 1

2

i.e., an observation of a single spin at the boundary at distance N does not allow us to deduce anything about the state at the
root when N tends to infinity.

Proof. The problem is reduced to the study of a Markov chain along the path which connects the root 0 to the vertex w.
Such a problem is elementary and can be treated by diagonalization. With the transition matrix

P =

(
1 − ε ε

ε 1 − ε

)
we get

F(N) =
∑

σ1, ...,σN−1

P1σ1 Pσ1 σ2 . . . PσN−1 −1

P has eigenvalues 1 and 1 − 2ε, with eigenvectors (1, 1)⊤ and (1,−1)⊤ respectively. Hence

O⊤ PO =

(
1 0
0 1 − 2ε

)
with

O =
1√

2

(
1 1
1 −1

)
= O⊤

which yields

PN = O

(
1 0
0 (1 − 2ε)N

)
O =

1
2

(
1 + (1 − 2ε)N 1 − (1 − 2ε)N

1 − (1 − 2ε)N 1 + (1 − 2ε)N

)

=⇒ F(N) =
1
2

(
1 − (1 − 2ε)N

)
N→∞−−−−→ 1

2

Remark. In general one dimensional models have no long range order, unless the interactions are long-range. Markov
chains on finite state spaces loose their memory exponentially fast.
A more interesting question now is the following, and this is a typical tree question. When does the information at all of
the boundary sites allow us to deduce the state at the origin? The chances are much better now, as there are exponentially
many sites in N, and the boundary sites constitute a non-vanishing fraction of all sites of a tree of depth N. Define

∂TN := {v ∈ V | |v| = N}

for the boundary of the tree of depth N. Consider the conditional probability that the variable at the origin is 1, if we con-
dition on any configuration at distance N from the origin, that is

πN(ξ) = µ(σ(0) = 1 | σ∂TN
= ξ)

Claim (Question 1). Is it always true that a conditioning of the boundary spins to take their maximal value has no predictive
power for the spin at the origin, for large volumes? That is, do we have

πN(1∂TN
)

N→∞−−−−→ 1
2 ?

Claim (Question 2). Is it true that
πN(1∂TN

)
N→∞−−−−→ 1

2
for typical realizations of the boundary spins ξ? For which value of ε?

Remark. What do we mean by typicality? More precisely, let us consider the variance of the random variable πN obtained
feeding it random boundary spins ξ distributed according to µ. Then the question above reformulated reads then: When
do we have

V
(
πN
) N→∞−−−−→ 0 N→∞←−−−− Eµ

[(
πN −

1
2

)2
]
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Theorem 3.3. LetT be a regular tree where every vertex has preciselyd children then Question 1 holds if and onlyd(tanhβ) ⩽
1.

Theorem 3.4. LetT be a regular tree where every vertex has preciselyd children then Question 2 holds if and onlyd(tanhβ)2 ⩽
1.

Remark. Note that β is the second largest eigenvalue of the transition matrix. The above is in accordance with the intuition
that the value of the parameterβ (which can be considered as a coupling strength) needs to be bigger to ensure propagation
of a typical boundary condition. The questions above have been formulated in a pedestrian way, in the sense that we made
statements in terms of limits of finite-volume quantities. We did not need any measure theory. However, the appropriate
setting to discuss them is the formalism of infinite-volume Gibbs measures to which will come now.

3.2 Gibbsian theory on countable vertex sets

3.2.1 Gibbsian specifications

Let V be a countably infinite set, and let Ω0 be a Polish space with sigma algebra F0. We call Ω0 the local state space, the
simplest non-trivial example we previously discussed is Ω = {−1, 1}. V could appear as the vertex set of some graph, e.g.,
V = Zd with d ∈ N. For any sub-volume Λ ⊆ V (possibly infinite) define

ΩΛ = ΩΛ
0 =

{
(ωx)x∈Λ | ∀ x ∈ Λ : ωx ∈ Ω0

}
When Λ = V , denote Ω = ΩV . The measurable structure on ΩΛ is given by the product sigma algebra

BΛ =
⊗
i∈Λ

F0 =: FΛ
0

For any x ∈ V , the projection onto the xth coordinate is denoted by

σx : Ω→ Ω0 ω 7→ ωx

The restriction of a configuration in the infinite volume, ω ∈ Ω, to sub-volumeΛ ⊆ V , can be given by using the projection
σΛ : Ω→ ΩΛ with σΛ(ω) = ωΛ. Similarly, if Λ ⊆ ∆ ⊆ V , we will use the same notation σΛ for the projection from Ω∆

0
to ΩΛ

0 . The concatenation of two configurations ω ∈ ΩΛ
0 and ρ ∈ Ω

∆\Λ
0 is denoted as ωρ ∈ Ω∆

0 and is defined by having
the properties σΛ(ωρ) = ω and σ∆\Λ(ωρ) = ρ. Denote Λ ⋐ V is Λ is a finite subset of V . For any sub-volume Λ ⋐ V

define the sigma-algebra of cylinders with base in Λ as

C(Λ) := σ−1
Λ (BΛ)

For any (possibly infinite) ∆ ⊆ V , consider the algebra of cylinders with base in ∆, i.e.,

C∆ :=
⋃

Λ⋐∆

C(Λ)

For each ∆ ⊆ V , the sigma algebra F∆, of all events occurring in ∆, is then by definition generated by C(Λ), i.e.,

F∆ := σ(C∆)

When ∆ = V , we simply denote F = FV , and we have by the previous definition that F is the smallest sigma-algebra on Ω

containing the cylinder events, i.e.,
F = σ(CV ) =

⊗
i∈V

F0

A spin model is then simply a probability measure on the product space (Ω, F). We call Ω0 the local state space and Ω the
configuration space of the spin model. In the following sections, we will work towards the introduction of a spin model in
the infinite volume.

Definition 3.5. Let Λ ⋐ V . A probability kernel from FΛc to F is a map

πΛ : F ×Ω→ [0, 1]

such that

• πΛ(· | ω) is a probability measure on (Ω, F) for any ω ∈ Ω.
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• πΛ(A | ·) is FΛc measurable for any A ∈ F.

Moreover, if
∀A ∈ FΛc ∀ω ∈ Ω : πΛ(A | ω) = 1A(ω)

then πΛ is called proper.

A probability kernel pulls functions back and pushes measures forward in the following sense: If µ is a probability measure
on the measurable space (Ω, FΛc) and πΛ is a probability kernel from FΛc to F then

∀A ∈ F : µπΛ(A) =

∫
πΛ(A | ω)µ(dω)

defines a probability measure on (Ω, F). Also, if f : Ω→ R is F measurable then the function πΛf : Ω→ R given by

∀ω ∈ Ω : πΛ(f | ω) =

∫
πΛ(dξ | ω)f(ξ)

is measurable with respect to FΛc . The composition of kernels πΛ and π∆ is defined as

∀A ∈ F ∀ω ∈ Ω : πΛπ∆(A | ω) :=

∫
π∆(A | ω)πΛ(dρ | ω)

and is itself a kernel from FΛc to F.

Assume that we have a proper probability kernel πΛ : FΛc → F, then the probability measure πΛ(· | ω) is supported
on the set Ωω

Λ := σ−1
Λc(ω) for any ω ∈ Ω as

πΛ(Ωω
Λ | ω) = 1Ωω

Λ
(ω) = 1

sinceΩω
Λ ∈ FΛc . Therefore one can interpret the configurationω ∈ Ω as the boundary condition of the measureπΛ(· | ω).

In the following all kernels πΛ to be considered will be proper and therefore they will be entirely determined by all the
numbers

πΛ(ηΛωΛc | ω) = πΛ(ηΛ | ωΛc)

As it turns out, it will be necessary to use an infinite family of probability kernels, {πΛ | Λ ⋐ V} to describe Gibbs measures
in the infinite volume directly. The key concept in that regard is that of a (local) specification.

Definition 3.6 (Specification). A specification is a family of proper probability kernels γ = {γΛ : FΛc → F | Λ ⋐ V} which
satisfies the consistency relation, i.e.,

∀Λ, ∆ ⋐ V : Λ ⊆ ∆ =⇒ γ∆γΛ = γ∆

A measure µ ∈M1(Ω) is said to be compatible (or specified by) γ if

∀Λ ⋐ V : µ = µγΛ

The set of measures which are compatible with γ is denoted by G(γ).

A first natural question that arises with regard to this definition is if there is a way to construct specifications. Before we
answer this question, consider the following lemma.

Lemma 3.7. Suppose that πΛ is a proper probability kernel from FΛc to F.

1. We have that
πΛ(A ∩ B | ·) = πΛ(A | ·)1B(·)

for all A ∈ F and all B ∈ FΛc .

2. Let µ ∈M1(Ω) then
µπΛ = πΛ ⇐⇒ µ(A | FΛc)

a.s.
= πΛ(A | ·)

for all A ∈ F.
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Proof. (1) First, assume that ω /∈ B then

πΛ(A ∩ B) ⩽ πΛ(B | ω) = 1B(ω) = 0

Now suppose ω ∈ B then
πΛ(A ∩ B) = πΛ(A | ω) − πΛ(A ∩ Bc | ω) = πΛ(A | ω)

(2) If it holds then for all Λ ⋐ V and for all A ∈ F, we have

µπΛ(A) =

∫
πΛ(A | ω)µ(dω) =

∫
µ(A | FΛc)(ω)µ(dω) = µ(A)

Now suppose that µπΛ = µ then

µ(A ∩ B) = µπΛ(A ∩ B) =

∫
πΛ(A ∩ B | ω)µ(dω) =

∫
B

πΛ(A | ω)µ(dω)

for all A ∈ F and for all B ∈ FΛc . By conditional probability it follows that

µ(A ∩ B) =

∫
B

µ(A | FΛc)(ω)µ(dω)

for all B ∈ FΛc . And by the almost surely uniqueness of the conditional expectation we see that

µ(A | FΛc)(·) = πΛ(A | ·)

µ - a.s. for all A ∈ F.

Remark. The second part of the lemma tells us that for a given specification (γΛ : Λ ⋐ V) the measures µ ∈ G(γ) are
characterized by having a regular conditional distribution provided by γΛ, when conditioning with respect to FΛc . The
most important class of specifications are the so-called Gibbsian specifications which we will introduce in the following
definition.

Definition 3.8. Let Φ = {ΦΛ}Λ⋐V be a family of real-valued functions on the configuration space Ω. We call Φ an inter-
action potential if it has the following properties:

1. The functions ΦΛ are FΛ measurable for any Λ ⋐ V .

2. For all Λ ⋐ V and ω ∈ Ω the series
HΦ

Λ(ω) =
∑
A⋐V

A∩Λ̸=∅

ΦΛ(ω)

exists.

We call HΦ
Λ the Hamiltonian in the finite sub-volume Λ associated to the potential Φ.

Remark. By existence, we mean that for any increasing sequence of volumes ∆n which converges to V , we have that

lim
n↑∞

∑
A⊆∆n

A∩Λ ̸=∅

ΦΛ(ω)

exists and does not depend on the volume sequence.
Since the sum above contains possibly infinitely many terms there is no guarantee that it converges. However, for an im-
portant class of interaction potentials this is not an issue. Let dG denote the graph distance on V , which is the number of
edges in the shortest path connecting two vertices. We define the diameter of a finite set Λ by

diam(Λ) := sup
x,y∈Λ

dG(x, y)

Let
r(Φ) := inf {R > 0 | ∀Λ ⋐ V : diam(Λ) > R =⇒ ΦΛ ≡ 0}

If r(Φ) is finite, the interaction potential Φ is said to be of finite range and clearly the Hamiltonian HΦ
Λ is well defined for

any finite sub-volume Λ in this case.
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In the following we will assume that the local state space is equipped with a so-called a prior measure λ ∈ M1(Ω0) and
denote for any Λ ⋐ V the product measure on

(
ΩΛ

0 , FΛ
0
)

by λΛ. The (conditional) partition function is then defined as

ZΦ
Λ(ω) =

∫
exp
(
−HΦ

Λ(ζΛωΛc)
)
λΛ(dζΛ)

A potential Φ is said to be λ-admissible if the partition function ZΦ
Λ(ω) is a finite number in the open interval R+, for all

Λ ⋐ V and all ω ∈ Ω.

Proposition 3.9 ([12] (Proposition 2.1.5)). Suppose that Φ is an λ-admissible interaction potential. Then the family of prob-
ability kernels

γΦ =
{
γΦ
Λ : FΛc → F | Λ ⋐ V

}
defined by

γΦ
Λ(A | ω) =

1
ZΦ
Λ(ω)

∫
exp
(
−HΦ

Λ(ζΛωΛc)
)
1A(ζΛωΛc)λΛ(dζΛ)

constitutes a specification and it is called the Gibbs specification for Φ. A probability measure µ ∈ G
(
γΦ
)

is called an infinite-
volume Gibbs measure (or simply a Gibbs measure) associated to the potential Φ.

To verify the specification properties note that the measurability properties are evident, while the consistency is obtained
by a rearrangement of sums, see [8] (Proposition 2.5). The measures γΦ(· | ω) ∈ M1(Ω) are also called finite- volume
Gibbs measures under boundary condition ω. The way we have defined them they actually are measures on the infinite
volume. However, recall that they are supported on the set Ωω

Λ which consists only of configurations that are equal to ω

outside the finite volume Λ.

3.2.2 Extremal Gibbs measures

One basic observation is that as the DLR equation is linear, G(γ) is a convex set: ifµ1, . . . , µN ∈ G(γ) then so does any con-
vex combination of them. This makes the extremal elements of this set, which we denote by exG(γ), especially interesting.
The following questions arise naturally:

1. What properties, if any, distinguish the elements of exG(γ) from the non-extremal ones?

2. What is the physical interpretation of these extremal points of G(γ)?

Before we answer these questions we will give a condition under which the set of extremal Gibbs measures is non-empty.
Let Cb(Ω) be the set of bounded real-valued functions on Ω that are continuous w.r.t. the product topology obtained from
the topology on the Polish local state space Ω0. A particular class of specifications is given in the following definition.

Definition 3.10. A specification γ = (γΛ)Γ⋐V is said to be Feller-continuous if for all Λ ⋐ V , f ∈ Cb(Ω) implies γΛf ∈
Cb(Ω).

An important example of Feller-continuous specifications is provided by the Gibbsian specifications γΦ where the interac-
tion potential Φ is continuous and uniformly convergent (and λ-admissible) [20]. An interaction is by definition uniformly
convergent if for everyΛ ⋐ V the sum in (2.1.2) converges uniformly inω. Note that this is always the case if the interaction
is of finite range which will be the case for all models considered in these notes.

Let (Λn)n∈N be any sequence of finite subsets of V . We say that (Λn)n∈N exhausts V if

∀ v ∈ V ∃N ∈ N : n ⩾ N =⇒ v ∈ Λn

Proposition 3.11. [20] (Proposition 2.22) Suppose γ is a Feller-continuous specification and let (Λn)n∈N be any sequence
of finite subsets of V that exhausts V . If (νn)n∈N, a sequence of measures in M1(Ω), converges weakly to some µ ∈M1(Ω)

then µ ∈ G(γ).

Note that if Ω0 is compact, so is Ω = ΩV
0 w.r.t. the product topology. Also, Ω is Polish since it is the countable product of

Polish spaces. Hence M1(Ω) is weakly compact. Therefore, in the case of a Feller-continuous specification every sequence
(νnγΛn

) has a convergence subsequence, and hence G(γ) is not empty. In general this might not be true; the question
of whether or not |G(γ)| = 0 is a non-trivial one. There indeed exist physically reasonable models for which there are no
infinite-volume Gibbs measures. Examples are the massless discrete Gaussian free field on the lattice Zd in dimensions
d ⩽ 2 and the solid-on-solid in d = 1 [8]. In both cases, the local state space equals the set of all integers.

One nice property of Feller-continuous specifications is that they allow the identification of Gibbs measures as weak limits,
at least the extremals. To be more specific, we have the following statement [20] (Proposition 2.23):
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Proposition 3.12. LetΩ0 be a compact metric space and let (γΛ : Λ ⋐ V)be a Feller-continuous specification. Furthermore,
let µ ∈ exG(γ). Then for µ-a.s. w,

γΛn
(· | ω)

n→∞−−−−→ µ

in the weak limit for any sequence of finite sub-volumes (Λn : n ∈ N) that exhausts V .

Let us assume a Feller-continuous specification is given. Then the previous two propositions show the connection between
the DLR-approach to the Gibbs theory in infinite-volume and the classical approach using the thermodynamic limit of finite-
volume Gibbs measures under boundary condition (see Chapter 3 of [7] for a detailed exhibition of this ansatz). Recall that
any weak limit of finite-volume Gibbs measures is in fact an infinite-volume Gibbs measure. Conversely, the proposition
above states that if we have an extremal Gibbs measure µ and sample any typical configuration from µ and use it as a
boundary condition, in the infinite-volume limit we will recover µ itself. The following theorem follows immediately from
the proposition, and gives a condition for which there is a unique Gibbs measure.

Theorem 3.13 ([12] (Theorem 2.2.4)). Let Ω0 be a compact metric space and let (γΛ : Λ ⋐ V) be a Feller-continuous speci-
fication. Suppose that for all sequences of finite sub-volumes (Λn : n ∈ N) exhausting V , and every ω ∈ Ω, all the possible
weak limits of γΛn

(· |ω) are identical. There there exists exactly one Gibbs measure.

Recall that for any Λ ⋐ V , we defined FΛc as the σ-algebra which consists of all the events that only depend on the spins
outside the finite set Λ. Now the tail σ-algebra (or tail field) T is defined as the σ-algebra which only depends on the spins
outside any finite region Λ, i.e.,

T :=
⋂

Λ⋐V

FΛc

The extremal elements of G(γ) are characterized by the following properties [20] (Proposition 2.20):

Proposition 3.14. Let µ ∈ G(γ) then the following are equivalent.

• The measure µ is an extremal element of G(γ).

• The measure µ is trivial on T, i.e.,
∀A ∈ T : µ(A) ∈ {0, 1}

• The measure µ has short-range correlations, i.e., for each A ∈ F we have

lim
Λ↑V
Λ⋐V

sup {µ(A ∩ B) − µ(A)µ(B) | B ∈ FΛc} = 0

Physical systems can in general have one or more possible macrostates, depending on the values of some internal free pa-
rameters of the system. For example water can be in a gaseous, liquid or solid macrostate depending on the temperature
and pressure. While the microscopic quantities change rapidly, the macroscopic quantities remain constant. To turn this
into a mathematical exact statement we define the macroscopic quantities or macroscopic observables as the functions on
Ω that are measurable w.r.t the tail field T, i.e., the function that do not depend on spins in any finite volume Λ ⋐ V . The
physical relevance of the preceding theory presented in this chapter lies in the assumption that the statistical mechanical
information of the physical system can be obtained from a suitable specification γ, that is, the space of measures G(γ) de-
scribes the macrostates of the system. Proposition 2.2.5 tells us that these macrostates are given by the extremal elements
of G(γ).

What is then the interpretation of the non-extremal elements ofG(γ)? Suppose that the local state space (Ω0, F0) is Polish.
Then every non-extremal measure µ ∈ G(γ) in an (integral) convex combination of extremal ones. This decomposition is
even unique, that is, G(γ) is a simplex [8] (Theorem 7.26).

This means that a non-extremal Gibbs measure corresponds simply to the preparation of randomly chosen extremal Gibbs
measures. The probabilities for this choice are given by the coefficients of the convex combination. This extra randomness
can be interpreted as the uncertainty in the experiment regarding the true nature of the systems macrostate (for a more
detailed discussion, see Chapter 6 of [7]).

Therefore the non-extremal Gibbs measures do not lead to new physics: Everything that we can observe under such a mea-
sure is typical for one of the extremal ones that appear in its (unique) decomposition. Hence the extremal Gibbs measures
are the physically important ones, which is why they are also called the pure states. This is the reason why we say that a
physical system exhibits a phase transition when there exist multiple extremal Gibbs measures for the model.
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Finally, we want to point out that the extremal Gibbs measures are suitable to describe the different phases of the sys-
tem as it is possible to distinguish those measures by looking at macroscopic observables only. This is important since we
should be able to tell macrostates apart by looking at macroscopic measurements:

Theorem 3.15 ([8] (Theorem 7.7)). Let µ1, µ2 be two distinct extremal Gibbs measures w.r.t a specification (γΛ : Λ ⋐ V).
Then there exists some tail-measurable event A ∈ T such that µ1(A) = 1 and µ2(A) = 0, that is, µ1 and µ2 are mutually
singular.

3.2.3 Uniqueness

Please refer to [12] (section 2.3), on a criterion for the uniqueness of Gibbs measures on any graph.

3.3 Gibbs measures on trees

We specialize the index set to be the vertex set of a countably infinite tree. We discuss several Markov properties. There is the
notion of a (spatially) Markov specification which means that the finite-volume Gibbs measures depend on their boundary
condition only via a boundary layer of thickness one. This notion is meaningful on any graph. Similarly, an infinite-volume
measure is called a (spatially) Markov field if its finite-volume conditional probabilities depend on the boundary condition
only via the boundary layer of thickness one.

To be distinguished from the above notion, there is the notion of a tree- indexed Markov chain. This is meaningful only
on trees. It relies on the definition of past and future vertices relative to a given oriented edge. While each tree-indexed
Markov chain is a (spatially) Markov field, the converse statement is ensured only for extremal Gibbs measures. Indeed,
the non-trivial part is that any extremal Gibbs measure for a Markov specification is a tree-indexed Markov chain. We will
explain in detail why this is true, using conditioning arguments involving future-tail triviality.

Then we come to describe the one-to-one correspondence between boundary laws and tree-indexed Markov chains. Bound-
ary laws are families of positive measures on the local state space, indexed by the set of oriented edges which satisfy a
consistency equation (tree-recursion). There is also a one-to-one correspondence between boundary laws and transition
matrices of the tree-indexed Markov chain, given the specification. We conclude with a discussion of all homogeneous
boundary laws on the Cayley tree for concrete examples of the Ising model and the Potts model in zero magnetic field.

3.3.1 Construction of Gibbs measures via boundary laws

One of the most important classes of stochastic processes are Markov chains. A Markov chain in its most elementary form
is a sequence of random variables indexed by N0 (which is usually interpreted as time) which has the property that future
events are independent of the past given the information about its present state, i.e.,

∀n ∈ N0 ∀ xn+1, . . . , x0 ∈ Ω0 : µ(Xn+1 = xn+1 | Xn = xn, . . . , X0 = x0) = µ(Xn+1 = xn+1 | Xn = xn)

There is a natural way to generalize this definition to the situation where the stochastic process is no longer indexed by N0
but by the vertices V of a tree. To formulate this we need some more notation. For any vertex w ∈ V the set of the directed
edges pointing away from w is given by

Ew = {(x, y) ∈ E | d(w,y) = d(w, x) + 1}

This is an orientation of the set of edges induced by the vertex w. Furthermore we define the past of any oriented edge
(x, y) ∈ E by

(−∞, xy) = {w ∈ V | (x, y) ∈ Ew}

This is the set of sites w from which the oriented edge (x,y) is pointing away. The definition of the future of an oriented
edge is analogous. Note that the tree property, i.e., the absence of loops, is clearly needed to give a meaningful definition
of the past and future of an oriented edge. In the following we will always restrict ourselves to the case where the local state
space Ω0 is finite. This simplifies the analysis but still allows the occurrence of phase transitions on trees.

Definition 3.16. Let Ω0 be the local state space and Ω = ΩV
0 . A measure µ ∈M1(Ω) is called a tree-index Markov chain if

µ
(
σy = ωy

∣∣F(−∞,xy)
)
= µ

(
σy = ωy

∣∣F{x}

)
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µ-a.s. for all (x,y) ∈ E and any ωy ∈ Ω0. Any stochastic matrix P on Ω0 with

µ
(
σj = y

∣∣F{i} = Pij(σi,y)
)

µ-a.s. for all y ∈ Ω0 is then called a transition matrix from i to j for µ. Moreover, a Markov chain is said to be completely
homogeneous with transition matrix P if

µ
(
σj = y

∣∣F{i} = P(σi,y)
)

µ-a.s. for y ∈ Ω0 and (i, j) ∈ E.

Remark. Every tree-indexed Markov chainµwith transition matrices
(
Pij : (i, j) ∈ E

)
and marginal distributionαk at vertex

k ∈ V has the following representation

µ(σΛ = ζ) = αk(ζk) =
∏

(i,j)∈E
i,j∈Λ

Pij
(
ζi, ζj

)

for all finite connected sets Λ ⋐ V , ζ ∈ ΩV
0 and k ∈ Λ. The above can be proved by induction on the number of vertices in

Λ. If µ is completely homogeneous it follows from the equation above that µ is invariant under the group I(E), the group
of graph automorphisms of V .
Besides the one-sided Markov property there is also the notion of a spatial Markov property:

Definition 3.17. A a specification γ for Ω0 and V is said to be a Markov specification if γΛ(σΛ = ζ | ·) is F∂Λ-measurable
for all ζ ∈ ΩV

0 and Λ ⋐ V .

Note that ∂Λ = {i ∈ V |d(i, Λ) = 1} is the outer boundary layer of thickness one. If γ is a Markov specification, then every
µ ∈ G(γ) is a Markov field, i.e., µ satisfies the spatial Markov property

µ(σΛ = ζ | FΛc) = µ(σΛ = ζ | F∂Λ)

µ-a.s. for all ζ ∈ ΩV
0 and Λ ⋐ V . Note that every Gibbsian specification which is defined by a nearest-neighbor potential is

Markov.

Theorem 3.18. Every tree-index Markov chain is a Markov field.

Proof. Assume that µ is a Markov chain. For Λ ⋐ V let ∆ ⋐ V be some finite connected set such that Λ ∪ ∂Λ ⊆ ∆. The
explicit form of the finite volume marginals, applied in the bigger volume ∆, shows that

µ(σ∆ = ζωη)µ
(
σ∆ = ζ̃ ω η̃

)
= µ

(
σ∆ = ζ̃ ωη

)
µ(σ∆ = ζω η̃)

for all ζ, ζ̃ ∈ ΩV
0 , ω ∈ Ω∂Λ

0 , η, η̃ ∈ Ω
∆\(Λ∪∂Λ)
0 . Summing over ζ̃ and η̃, we obtain

µ(σ∆ = ζωη)µ(σ∂Λ = ω) = µ
(
σ∆\Λ = ωη

)
µ(σΛ∪∂Λ = ζω)

If µ
(
σ∆\Λ = ωη

)
> 0, we have

µ
(
σΛ = ζ

∣∣σ∆\Λ = ωη
)
= µ(σΛ = ζ |σ∂Λ = ω)

which means that
µ
(
σΛ = ζ

∣∣F∆\Λ

) a.s.
= µ(σΛ |σ∂Λ = ω)

Since FΛc is generated by the union of all F∆\Λ, we conclude that

µ(σζ | FΛc)
a.s.
= µ(σζ | F∂Λ)

Hence µ is a Markov field.

Theorem 3.19. Let γ be a Markov specification, then each µ ∈ exG(γ) is a tree-indexed Markov chain.
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Proof. Set an oriented edge (i, j) ∈ E and let∆(n) be the ball of radiusn around j andΛ(n) = ∆(n)∩ (ij,∞) be the future
in this ball relative to the oriented edge. As µ is assumed to be extremal, we know that µ is trivial on the tail-σ-algebra
T =

⋂
n∈N F∆(n)c (see proposition 2.2.5), Hence µ is also trivial on the smaller σ-algebra⋂

n∈N
F(ij,∞)\Λ(n)

The above is the future tail σ-algebra relative to the oriented edge. This future-tail triviality implies that

F{i} =
⋂

n∈N
F{i}∪ ((ij,∞)\Λ(n)) µ− a.s.

Indeed, the σ-algebra on the left is clearly contained in that on the right. Conversely, if f : Ω→ R is bounded and measur-
able with respect to the latter σ-algebra then f

(
xσV \ {i}

)
is measurable w.r.t.

⋂
n∈N F(ij,∞)\Λ(n) and hence

f
(
xσV \ {i}

)
=

∫
f
(
xωV \ {i}

)
µ(dω) µ− a.s.

Therefore f is also measurable w.r.t. F{i}. As
(
F{i}∪ ((ij,∞)\Λ(n)) : n ∈ N

)
is a decreasing sequence of σ-algebras we can

apply the backward martingale convergence theorem, which yield

µ
(
σj = y

∣∣F{i}∪ ((ij,∞)\Λ(n))

) n→∞−−−−→
a.s.

µ
(
σj = y

∣∣F{i}

)
By the tower property of conditional expectation, the term under the limit on the l.h.s. equals

µ
(
σj = y

∣∣F{i}∪ ((ij,∞)\Λ(n))

)
= µ

(
µ
(
σj = y

∣∣FΛ(n)c
) ∣∣F{i}∪ ((ij,∞)\Λ(n))

)
Since µ is a Gibbs measure, we have inside the conditional expectation on the r.h.s.

µ
(
σj = y

∣∣FΛ(n)c
) a.s.
= γΛ(n)

(
σj = y

∣∣ ·)
Note that {i} ∪ ((ij,∞) \Λ(n)) ⊇ ∂Λ(n). Hence, by the Markov specification property for µ we may pull this out of the
conditional expectation and arrive at the µ-a.s. equality

µ
(
σj = y

∣∣F{i}∪ ((ij,∞)\Λ(n))

)
= γΛ(n)

(
σj = y

∣∣ ·)
=⇒ µ

(
σj = y

∣∣F{i}∪ ((ij,∞)\Λ(n))

) n→∞−−−−→ lim
n→∞γΛ(n)

(
σj = y

∣∣ ·)
n→∞−−−−→ lim

n→∞µ
(
σj = y

∣∣FΛ(n)c
)

= µ

(
σj = y

∣∣∣∣∣ ⋂
n∈N

FΛ(n)c

)

where the second equality follows from the DLR-equation and where the last equation follows again from the backward
martingale theorem. Hence,

µ
(
σj = y

∣∣F{i}

)
= µ

(
σj = y

∣∣∣∣∣ ⋂
n∈N

FΛ(n)c

)
and by the inclusion ⋂

n∈N
FΛ(n)c ⊇ F(ij,∞) ⊇ F{i}

it follows by the tower property that
µ
(
σj = y

∣∣F(ij,∞)

)
= µ

(
σj = y

∣∣F{i}

)
Therefore µ is a Markov chain.

LetΦbe some nearest-neighbor interaction potential which may contain also single-site terms. Recall that the correspond-
ing Gibbsian specification (the specification kernel) γΦ is then given by

γΦ
Λ(σΛ = ωΛ |ω) = ZΛ(ω)−1 exp(−HΛ(ω)) = ZΛ(ω)−1 exp

−
∑

b :b∩Λ ̸=∅

Φb(ωb)


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where the sums runs over all non-oriented edges b touching the finite volume Λ. When we define transfer operators (or
transfer matrices) by

Qb(ωb) = exp
(
−Φb(ωb) − |∂i|−1Φ{i}(ωi) − |∂j|−1Φ{j}

(
ωj

))
where b = {i, j} ∈ E and ωb ∈ Ωb

0 , we can rewrite the specification kernel as

γΦ
Λ(σΛ = ωΛ |ω) = ZΛ(ω)−1 ∏

b :b∩Λ ̸=∅

Qb(ωb)

Note that by definition the transfer matrices are symmetric, i.e.,

Qij(x,y) = Qji(y, x)

for all {i, j} ∈ E and x,y ∈ Ω0.

In the following we will work towards a representation of tree-indexed Gibbs measures via the notion of so-called boundary
laws [4], [8], [22].

Definition 3.20. A family of vectors
{
lij

∣∣∣ (i, j) ∈ E, lij ∈ (0, ∞)Ω0
}

is called a boundary law for the transfer operators
{Qb |b ∈ E} if for each (i, j) ∈ E there exists a constant cij > 0 such that the consistency relation

lij = cij
∏

k∈∂i\{j}

∑
ωk ∈Ω0

Qki(ωi, ωk)lki(ωk)

holds for every ωin ∈ Ω0.

Boundary laws are maps from the oriented edges (k, i) to the positive measures on the single-site spin space at the site k.

For any boundary law, the family
{
αij lij

∣∣ (i, j) ∈ E
}

for any fixed choice of strictly positive numbers αij is trivially also
a boundary law.

We will now give the main theorem of this section, which shows the equivalence of boundary laws and tree-indexed Markov
chains, which are Gibbs measures for the given set of transfer operators.

Theorem 3.21. Consider a Markov specification γΦ
Λ of the form

γΦ
Λ(σΛ = ωΛ |ω) = ZΛ(ω)−1 ∏

b :b∩Λ ̸=∅

Qb(ωb)

and let {Qb |b ∈ E} be its associated family of transfer matrices.

1. Each boundary law
{
lij
∣∣ (i, j) ∈ E

}
for a given family of transfer matrices defines a unique tree-indexed Markov chain

µ ∈ G(γ) via the equation

µ(σΛ∪∂Λ = ωΛ∪∂Λ) = Z−1
Λ

∏
y∈∂Λ

lyyΛ
(ωy)

∏
b :b∩ Λ̸=∅

Qb(ωb)

where Λ ⋐ V is a finite connected set, ωΛ∪∂Λ ∈ ΩΛ∪∂Λ
0 and ZΛ is a suitable normalizing constant. yΛ is the unique

nearest neighbor of y which lies inside Λ.

2. Conversely, every tree-indexed Markov chain µ ∈ G(γ) admits a representation of the form above in (1) in terms of a
boundary law. This representation is unique in the sense that every boundary law is unique up to a positive factor.

Proof. (1) In the first step we will use Kolmogorov’s extension theorem to show that the expressions on the r.h.s. describe
the marginals of a unique measure µ ∈M(Ω). This holds if the expressions are consistent, i.e.,∑

wV ∈ΩV
0

Z−1
∆

∏
k∈∂∆

lkk∆
(ωk)

∏
b :b∩∆ ̸=∅

Qb(ωb) = Z−1
Λ

∏
k∈∂∆

lkk∆
(ωk)

∏
b :b∩∆ ̸=∅

Qb(ωb)
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whenever Λ,∆ ⋐ V are connected sets with Λ ⊆ ∆, V = (∆ ∪ ∂∆) \ (Λ ∪ ∂Λ) and ωΛ∪∂Λ ∈ ΩΛ∪∂Λ
0 (note that in

this proof, we deviate from the previous use of the symbol V to denote the infinite vertex set of the tree). By induction, it is
enough to check the above when ∆ = Λ = {i} for any i ∈ ∂Λ. In this case, we have V = ∂i \ {iΛ} and we find that∑

wV ∈ΩV
0

Z−1
∆

∏
k∈∂∆

lkk∆
(ωk)

∏
b :b∩∆ ̸=∅

Qb(ωb)

= Z−1
Λ

∏
k∈∂Λ\ {i}

lkk∆
(ωk)

∏
b :b∩∆ ̸=∅

Qb(ωb) ×
∑

ωV ∈ΩV
0

( ∏
k∈V

lki(ωk)Qki(ωk,ωi)

)

where ∑
ωV ∈ΩV

0

( ∏
k∈V

lki(ωk)Qki(ωk,ωi)

)
=

∏
k∈V

 ∑
ωk ∈Ω0

lki(ωk)Qki(ωk,ωi)


Thus by the boundary law property,∑

wV ∈ΩV
0

Z−1
∆

∏
k∈∂∆

lkk∆
(ωk)

∏
b :b∩∆ ̸=∅

Qb(ωb) = Z−1
∆ciiΛ

∏
k∈∂Λ

lkk∆
(ωk)

∏
b :b∩∆ ̸=∅

Qb(ωb)

Summing overωΛ∪∂Λ shows thatZ∆ciiΛ
= ZΛ. This establishes the consistency. In the next step, we will show that every

measure constructed in this way is a tree-indexed Markov chain. Let (i, j) ∈ E and Λ ⋐ (−∞, ij) be any finite connected
set in the past of this edge with j ∈ ∂Λ. Furthermore, let x,y ∈ Ω0 and ω(Λ∪∂Λ)\ {j} ∈ Ω

(Λ∪∂Λ)\ {j}
0 . Substituting the

finite-volume representation formula in terms of the boundary law, we obtain

µ
(
σj = y

∣∣σ(Λ∪∂Λ)\ {j} = ω(Λ∪∂Λ)\ {j}

)
µ
(
σj = x

∣∣σ(Λ∪∂Λ)\ {j} = ω(Λ∪∂Λ)\ {j}

) =
lji(y)Qji(y,ωi)

lji(x)Qji(x,ωi)

Summing over y ∈ Ω0 yields

µ
(
σj = x

∣∣σ(Λ∪∂Λ)\ {j} = ω(Λ∪∂Λ)\ {j}

)
=

lji(x)Qji(x,ωi)∑
y∈Ω0

lji(y)Qji(y,ωi)

The expression on the r.h.s. of the above depends on ω via ωi only. Taking a limit of a sequence of finite sets Λn ↑ V yields

µ
(
σj = x

∣∣F(−∞,ij)
) a.s.
= µ

(
σj = x

∣∣F{i}

)
and therefore µ is indeed a Markov chain. In the third step, we show that µ is a Gibbs measure. Let Λ ⋐ V be any finite
subset of the infinite-volume vertex set V and take any two configurations ζ,ω ∈ Ω such that ζV \Λ = ωV \Λ. Let ∆ ⋐ V

be any connected set such that Λ ⊆ ∆, then

µ
(
σΛ = ζΛ

∣∣σ(∆∪∂∆)\Λ = ω(∆∪∂∆)\Λ

)
µ
(
σΛ = ωΛ

∣∣σ(∆∪∂∆)\Λ = ω(∆∪∂∆)\Λ

) =
µ(σ∆∪∂∆ = ζ∆∪∂∆)

µ(σ∆∪∂∆ = ω∆∪∂∆)

=
∏

b :b∩∆ ̸=∅

Qb(ζb)

Qb(ωb)

=
∏

b :b∩Λ ̸=∅

Qb(ζb)

Qb(ωb)

=
γΛ(σΛ = ζΛ |ω)

γΛ(σΛ = ωΛ |ω)

Finally we can sum over ζΛ ∈ ΩV
0 and take the limit ∆ ↑ V . This way we get µ ∈ G(γ).

(2) Now we assume that some Markov chain µ ∈ G(γ) is given. On the one hand, we can condition from the inside to
the outside using the Markov property. On the other hand we can also condition from the outside to the inside using the
Gibbs property. For any (i, j) ∈ E we define transition probabilities in the usual way by Pij(x,y) = µ

(
σj = y

∣∣σi = x
)

. Let
Λ ⋐ V by any finite connected set, ζ ∈ Ω and a ∈ Ω0 be some fixed reference state. Then

µ(σΛ∪∂Λ = ζΛ∪∂Λ) = µ(A)µ(B |A)µ(C |B) /µ(A |B)

where
A = {σΛ = a} B = {σ∂Λ = ζ∂Λ} C = {σΛ = ζΛ}
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By the Markov property it follows that
µ(B |A) =

∏
k∈∂Λ

PkΛk(a, ζk)

On the other hand, we get from the Gibbs property that

µ(C |B)

µ(A |B)
=

µ(C | ζ)

µ(A | ζ)
=

∏
b :b∩Λ ̸=∅Qb(ζb)∏

b :b⊆ΛQb(a,a)
∏

k∈∂ΛQkΛk(a, ζk)

Hence
µ(σΛ∪∂Λ = ζΛ∪∂Λ) =

µ(σΛ = a)∏
b :b⊆ΛQb(a,a)

∏
k∈∂Λ

PkΛk(a, ζk)
QkΛk(a, ζk)

∏
b :b∩Λ ̸=∅

Qb(ζb)

Therefore the finite-volume representation of the marginals as in the original equation in part (1) of the theorem holds with

Z−1
Λ =

µ(σΛ = a)∏
b :b⊆ΛQb(a,a)

and the candidate for a boundary law
lij(x) =

Pji(a, x)
Qji(a, x)

for all (i, j) ∈ E and x ∈ Ω0. If we set ∆ = Λ ∪ {i} with i ∈ ∂Λ we can see the defining equation of the boundary by the
consistency of µ, if we consider the steps of the proof for part (1) in the opposite direction. To prove the uniqueness of the
boundary law we assume that µ admits a second representation for the form as in part (1) of the theorem with a boundary
law

{
l̃ij

∣∣∣ (i, j) ∈ E
}

and normalizing constants z̃Λ > 0. Apply part (1) to the singleton Λ = {i} and a configuration ω with
ωj = x for some j ∈ ∂i and ωk = a for all k ∈ i ∪ (∂i \ {j}). We obtain

Z̃i

Zi
=

l̃ji(x)

lji(x)

∏
k∈∂i\ {j}

l̃ik(a)

lik(a)

and hence l̃ = l up to a positive pre-factor (in general depending on the directed edge). This completes the proof of the
theorem.

Remark. If l = 1 is a solution to the boundary law equation we find that this representation is the marginal distribution
distribution of a Markov chain µfree ∈ G(γ), called the free Gibbs measure For a boundary law l ̸= 1, we get a Gibbs
measure that is different from this free solution. As every extremal Gibbs measure is a Markov chain theorem 2.7 gives us
that |G(γ)| = 1 if and only if there exists a unique solution to the boundary law equation.

3.3.2 Completely homogeneous tree-indexed Markov chains on Cayley trees: the Ising and Potts models

In the following we will take a closer look at completely homogeneous Markov chains µ ∈ G(γ) on Cayley trees. A Cayley
tree of order k ∈ N, denoted by CT(k), is an infinite tree where each vertex has k + 1 nearest neighbors. The same object
is equivalently called a k+ 1-regular tree. In the case k = 2, one commonly speaks of a binary tree. A Markov specification
γ on CT(k) is said to be completely homogeneous with transfer matrix Q if γ can be expressed as this representation with
Qb = Q for allb ∈ E. Recall that in the proof of part (2) of theorem 2.7, we have not only shown that everyµ ∈ G(γ) admits
a representation in the form of part (1) of theorem 2.7, but also that the boundary law is given by lij =

Pji(a,x)
Qji(a,x) (up to an

(i, j)-dependent constant).

Therefore µ is completely homogeneous if and only if lij = l (up to edge-dependent multiplicative constants) for all
(i, j) ∈ E and some l ∈ (0, ∞)Ω0 .

As every boundary law is only unique up to a factor we may normalize at a reference state a ∈ Ω0. We say that a boundary
law

{
lij

}
(i,j)∈E

is normalized at a if lij(a) = 1 for all (i, j) ∈ E. If l corresponds to a completely homogeneous Markov
chain it has to meet

l(x) =

 ∑
y∈Ω0

Q(x,y)
Q(a,y)

k
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The Ising model in zero magnetic field

In the Ising model the local state space is Ω0 = {−1, 1}. We have some interaction strength J > 0, which is fixed and a
nearest-neighbor interaction potential Φ such that

Φi,j
(
ωi,ωj

)
= −Jωiωj

The corresponding Markov specification γ is completely homogeneous and the transfer matrix Q is given by

Q(−, −) = Q(+, +) = exp(J) Q(−, +) = Q(+, −) = exp(−J)

According to our previous discussion there is a one-to-one correspondence be- tween the completely homogeneous Markov
chains µ ∈ G(γ) and the positive solutions s > 0 of(

Q(−,+) + sQ(+,+)

Q(−,−) + sQ(+,−)

)k

=

(
s exp(J) + exp(−J)

exp(J) + s exp(−J)

)k

Above, we normalize at a = −1 and hence may look for boundary laws of the form l = (1, s). Introducing a new variable
t = 1

2 log s, the equation above is equivalent to

t =
k

2 log cosh(J+ t)

cosh(J− t)
=: fJ(t)

The r.h.s. of the above is an odd function in t which is concave for t > 0 and convex for t < 0. Hence the equation has only
the trivial solution s = 1 if and only if f ′j(0) = k tanh(J) ⩽ 1. If f ′J(0) > 1 then we find two additional solutions±s∗ to the
trivial one. Hence, there is a phase transition in this case as every solution s corresponds to a completely homogeneous
Markov chain µs ∈ G(γ). We only know that there is one completely homogeneous Markov chain µ ∈ G(γ) if f ′J(0) =

k tanh(J) ⩽ 1. It can be shown that there actually is only one Gibbs measure overall in this case, which means that J =

a tanh(1/k) is the sharp threshold for phrase transition in this model [8] (Theorem 12.31). This provides a proof of theorem
2.1.

The Potts model

In the Potts model the local state space is given byΩ0 = {1, . . . , q} ≃ Zq and the nearest-neighbor potential isΦi,j
(
ωi, ωj

)
=

β 1{ωi=ωj}
, which gives us for the transfer matrix,

Q
(
ωi, ωj

)
= exp

(
β 1{ωi=ωj}

)
= θ

1
{ωi=ωj}

with θ = exp(β). The homogeneous boundary law equation is

l(s) = c

(∑
s̃

l(s̃)Q(s̃, s)
)k

and hence for all s ∈ {1, . . . , q− 1}

l(s)

l(q)
=

(
l(s)(θ− 1) +

∑q−1
s̃=1 l(s̃) + l(q)

l(q) θ+
∑q−1

s̃=1 l(s̃)

)k

For zs :=
l(s)
l(q) ∈ (0, ∞), the above yields

zs =

(
zs(θ− 1) +

∑q−1
s̃=1 zs̃ + 1

θ+
∑q−1

s̃=1 zs̃

)k

The solutions to this (q − 1)-dimensional fixed-point equation are in a one-to-one correspondence with the completely
tree-indexed Markov chains µ ∈ G(γ).

Proposition 3.22. For any solution z = (z1, . . . , zq−1) of the equation above, there exists a set M ⊆ {1, . . . , q − 1} and
some z∗ > 0 such that

zs =

{
z∗ s ∈M

1 s /∈M
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Proof. Assume that we have a solution of the boundary law equation. Define the set M to be the set of indices for which
the entry of the boundary is different from 1. We will show the boundary law entries will have to be the same for all indices
in M. Indeed, take θ ̸= 1 and assume w.l.o.g. that |M| = m with M = {1, . . . , m}. Define xs := z

1/k
s then

xs =
(θ− 1)xks +

(∑m
j=1 x

k
j + q−m

)
∑m

j=1 x
k
j + (q−m− 1) + θ

where zs = 1 for s /∈M and zs ̸= 1 if s ∈M. When we set R :=
∑m

j=1 x
k
j + q−m we get

xs =
(θ− 1)xks + R

R+ θ− 1 ⇐⇒
(
xks − xs

)
(θ− 1) = (xs − 1)R

⇐⇒ xs
(
xk−2
s + xk−3

s + · · ·+ 1
)
(θ− 1) = R

The polynomial on the l.h.s. has positive coefficients and is monotone increasing in xs, hence injective. Therefore xs = xs̃
for all s, s̃ ∈ {1, . . . , m}.

Corollary 3.23. Any completely homogeneous tree-indexed Markov chain µ ∈ G(γ) corresponds to a solution of

z = fm(z) :=

(
z(θ+m− 1) + q−m

mz+ q−m− 1 + θ

)k

for some m ∈ {1, . . . , q− 1}.

Proof. (Sketch) We focus on the binary case. For x =
√
z, we have

x =
x2(θ+m− 1) + q−m

mx2 + q−m+ θ

Divide out the root x = 1 and solve the resulting quadratic equation. Set θm = 1 + 2
√

m(q−m) for all 1 ⩽ m ⩽ q − 1,
and note that θm = θq−m. We have that θ1 < θ2 < · · · < θ⌊q/2⌋−1 < θ⌊q/2⌋ ⩽ q+ 1 and the boundary law solutions are
given by

x1,2(m, θ) =
θ− 1±

√
(θ− 1)2 − 4m(q−m)

2m
which exists for θ ⩾ θm.

4 Neural Tangent Kernel

The notes from section 5.1 to 5.4 are compiled from [21], unless specified otherwise.

Neural networks are well known to be over-parameterized and can often easily fit data with near-zero training loss with
decent generalization performance on a test dataset. Although all these parameters are initialized at random, the optimiza-
tion process can consistently lead to similarly good outcomes. And this is true even when the number of model parameters
exceeds the number of training data points.

4.1 Background

4.1.1 Kernel & Kernel Method

Consider a dataset X = {xi ∈ Rp | 1 ⩽ i ⩽ n}. A kernel is a positive-semidefinite symmetric function of two data points,
K : X× X→ R. It describes how sensitive the prediction for one data sample is to the prediction for the other; or in other
words, how similar two data points are.

Depending on the problem structure, some kernels can be decomposed into the inner product of the features of the two
data points:

K(x, x̃) = ⟨ϕ(x), ϕ(x̃)⟩

where ϕ : Rp → Rp̃ is a feature map (note that p̃ is not necessarily less than p).
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Kernel methods are a type of non-parametric, instance-based machine learning algorithms. For example, consider this
dataset,

X× Y = {(xi, yi) ∈ Rp × {−1, 1} | 1 ⩽ i ⩽ n}

then a kernelized binary classifier typically computes the label for a new input x ∈ Rp by a weighted sum of similarities,

ŷ = sgn
(

n∑
i=1

wi yiK(xi, x)
)

where {wi | 1 ⩽ i ⩽ n} are weights determined by the learning algorithm.

4.1.2 Gaussian Processes

A Gaussian process (GP) is a non-parametric method by modeling a multivariate Gaussian probability distribution over a
collection of random variables. We assume a prior over functions and then updates the posterior over functions based on
what data points are observed.

Given a dataset, we assume that the data points follow a joint multivariate Gaussian distribution, defined by a mean µ,
and a covariance matrix Σ, such that Σij = K

(
xi, xj

)
, where K is known as a covariance function. The core idea is that if

two data points are deemed similar by the kernel, the function outputs should be close, too. Making predictions with a GP
for unknown data points is equivalent to drawing samples from this distribution, via a conditional distribution of unknown
data points given observed ones.

4.1.3 Notation

Consider a fully-connected neural network with parameter θ, f(· | θ) : Rn0 → RnL . Layers are indexed from 0 (input)
to L (output), each containing n0, . . . , nL neurons, including the input of size n0 and the output of size nL. There are
P =

∑L−1
l=0 (nl + 1)nl+1 parameters in total and thus we have θ ∈ RP.

Define the training dataset is defined as D = X× Y = {(xi, yi) | 1 ⩽ i ⩽ n}.

Now consider the forward pass in every layer. For all 0 ⩽ l ⩽ L − 1, each layer l defines an affine transformation A(l)

with a weight matrix W(l) ∈ Rnl×nl+1 and a bias term b(l) ∈ Rnl+1 , as well as a pointwise non-linearity function σ, which
is Lipschitz continuous.

A(0) = x

Ã(l+1)(x) =
1
√
nl

W(l)⊤A(l) + βb(l) ∈ Rnl+1 pre-activations

A(l+1)(x) = σ
(
Ã(l+1)(x)

)
∈ Rnl+1 post-activations

Note that the NTK parameterization applies a rescale weight 1√
nl

on the transformation to avoid divergence with infinite-
width networks. The constant scalar β ⩾ 0 controls how much effort the bias terms have.

All the network parameters are initialized as i.i.d standard Gaussians in the following analysis.

4.2 Basics

The neural tangent kernel (NTK) [10], is a kernel to explain the evolution of neural networks during training via gradient
descent. It leads to great insights into why neural networks with enough width can consistently converge to a global min-
imum when trained to minimize an empirical loss. Below, we will do a deep dive into the motivation and definition of the
NTK, as well as the proof of a deterministic convergence at different initializations of neural networks with infinite width by
characterizing the NTK in such a setting.

Let’s start with the intuition behind NTK..

The empirical loss function L : RP → R+ to minimize during training is defined as follows, using a per-sample cost
function ℓ : Rn0 × RnL → R+,

L (θ) =
1
n

n∑
i=1

ℓ(f(xi | θ), yi)
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and according to the chain rule, the gradient of the loss is

∇θL (θ) =
1
n

n∑
i=1
∇θf(xi | θ)︸ ︷︷ ︸

P×nL

· ∂ℓ
(f(xi | θ), yi)

∂f(xi | θ)︸ ︷︷ ︸
nL×1

When tracking how the network parameterθ evolves over time, each gradient descent update introduces a small incremen-
tal change of an infinitesimal step size. Since the update step is small enough, it can be approximately viewed as a derivative
on the time dimension:

∂θ

∂t
= −∇θL (θ)

Again, by the chain rule, the network output evolves as

∂f(x | θ)

∂t
=

∂f(x |θ)

∂θ

∂θ

∂t
= −

1
n

n∑
i=1
∇θf(x |θ)⊤∇θf(x | θ)

∂ℓ(f(xi | θ), yi)

∂f(xi | θ)

The NTK is thus defined as
K : Rp × Rp → R K(x, x̃ | θ) = ∇θf(x |θ)⊤∇θf(x̃ | θ)

where each entry in the Gram matrix induced from the dataset is

Kmn(x, x̃ | θ) =

P∑
p=1

∂fm(x | θ)

∂θp

∂fn(x̃ | θ)

∂θp

Note that the feature map is given by ϕ(x) = ∇θf(x | θ),

4.3 Infinite Width Networks

To understand why the effect of one gradient descent is so similar for different initializations of network parameters, several
pioneering theoretical work starts with infinite width networks. We will consider how the NTK guarantees that infinite width
networks can converge to a global minimum when trained to minimize an empirical loss.

4.3.1 Connection with Gaussian Processes

Deep neural networks have deep connection with gaussian processes [17]. The output functions of an L-layer network,
fi(x | θ) for i = 1, . . . , nL are i.i.d. centered Gaussian processes of covariance Σ(L), defined recursively as

Σ(1)(x, x̃) =
1
n0

x⊤x̃ + β2

λ(l+1)(x, x̃) =
[
Σ(l)(x, x̃) Σ(l)(x, x̃)
Σ(l)(x, x̃) Σ(l)(x, x̃)

]
Σ(l+1)(x, x̃) = E

(X, X̃)∼N(0,λ(l))

[
σ(f(X)) · σ(f(X̃))

]
+ β2

We proceed by induction [14]:

(1) Let’s start with L = 1, when there is no non-linearity function and the input is only processed by a simple affine trans-
formation

f(x | θ) = Ã(1)(x) =
1
√
n0

W(0)⊤x + βb(0)

where ∀ 1 ⩽ m ⩽ n1

Ã
(1)
m (x) =

1
√
n0

n0∑
i=1

W(0)
imxi + βb(0)

m

Since the weights and biases are initialized i.i.d., all the output dimensions of this network Ã
(1)
m (x), . . . , Ã(1)

n1 (x) are also
i.i.d. Given different inputs, the mth network outputs Ã(1)

m (·) have a joint multivariate Gaussian distribution, equivalent to
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a Gaussian process with covariance function (with mean µw = µb = 0 and variance σ2
w = σ2

b = 1).

Σ(1)(x, x̃) = E
[
Ã

(1)
m (x)Ã(1)

m (x̃)
]

= E

[(
1
√
n0

n0∑
i=1

W(0)
imxi + βb(0)

m

)(
1
√
n0

n0∑
i=1

W(0)
imx̃i + βb(0)

m

)]

=
1
n0

σ2
w

n0∑
i=1

n0∑
j=1

xix̃j +
βµb√
n0

n0∑
i=1

Wim(xi + x̃i) + σ2
bβ

2

=
1
n0

x⊤x̃ + β2

(2) We first assume the proposition holds for L = l, an l-layer network, and thus Ã(l)
m (·) is a Gaussian process with covari-

ance Σ(l) and
{
Ã

(l)
i

∣∣∣ 1 ⩽ I ⩽ nl

}
are i.i.d.

Then we need to prove the proposition also holds for L = l+ 1. We compute the outputs by

f(x |θ) = Ã(l+1)(x) =
1
√
nl

W(l)⊤σ
(
Ã(l)(x)

)
+ βb(l)

where ∀ 1 ⩽ m ⩽ nl+1

Ã
(l+1)
m (x) =

1
√
nl

nl∑
i=1

W(l)
imσ

(
Ã

(l)
i (x)

)
+ βb(l)

m

We can infer that the expectation of the sum of contributions of the previous hidden layers is zero:

E
[
W(l)

imσ
(
Ã

(l)
i (x)

)]
= E

[
W(l)

im

]
E
[
σ
(
Ã

(l)
i (x)

)]
= µwE

[
σ
(
Ã

(l)
i (x)

)]
= 0

E
[(

W(l)
imσ

(
Ã

(l)
i (x)

))2
]
= E

[(
W(l)

im

)2
]
E
[
σ
(
Ã

(l)
i (x)

)2
]
= σ2

wΣ(l)(x, x) = Σ(l)(x, x)

Since
{
Ã

(l)
i

∣∣∣ 1 ⩽ I ⩽ nl

}
are i.i.d., according to the CLT, when the hidden layer gets infinitely wide, i.e., nl →∞, it follows

that Ã(l+1)
m (x) is Gaussian distributed with variance β2 + V

(
Ã

(l)
i (x)

)
. Note that Ã(l+1)

1 (x), . . . , Ã(l+1)
nl+1 (x) are still i.i.d.

Ã
(l+1)
m (·) is equivalent to a Gaussian process with covariance function,

Σ(l+1)(x, x̃) = E
[
Ã

(l+1)
m (x) · Ã(l+1)

m (x̃)
]

=
1
nl

σ
(
Ã

(l)
i (x)

)⊤
σ
(
Ã

(l)
i (x̃)

)
+ β2

When nl →∞, according to the CLT,

Σ(l+1)(x, x̃)→ E
(X, X̃)∼N(0,λ(l))

[
σ(f(X))⊤σ(f(X̃))

]
+ β2

The form of Gaussian processes in the above process is referred to as the Neural Network Gaussian Process (NNGP) [14]

4.3.2 Deterministic Neural Tangent Kernel

Finally we are now prepared enough to look into the most critical proposition from the NTK paper:

When ∀ 1 ⩽ l ⩽ L : nl →∞ (i.e., network with infinite width), the NTK converges to be

1. deterministic at initialization, meaning that the kernel is irrelevant to the initialization values and only determined
by the model architecture, and

2. stays constant during training.

The proof relies on mathematical induction as well:
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(1) First, note that K(0) = 0. When L = 1, we can get the representation of the NTK directly. It is deterministic and does not
depend on the network initialization. There is no hidden layer, so there is nothing to take to the infinite width.

f(x | θ) = Ã(x) =
1
√
n0

W(0)x + βb(0)

K(1)(x, x̃ | θ) =

(
∂f(x̃ |θ)

∂W(0)

)⊤
∂f(x |θ)

∂W(0) +

(
∂f(x̃ | θ)

∂b(0)

)⊤
∂f(x | θ)

∂b(0)

=
1
n0

x⊤x̃ + β2

= Σ(1)(x, x̃)

(2) When L = l, we assume that an l-layer network with P̃ parameters, θ̃ =
(
W(0), . . . , W(l−1), b(0), . . . , b(l−1)) ∈ RP̃,

has a NTK converging to a deterministic limit when n1, . . . , nl−1 →∞.

K(l)(x, x̃ | θ) = ∇θ̃Ã
(l)(x)⊤∇θ̃Ã

(l)(x̃) −→ K(l)∞ (x, x̃)

Note that K(l)∞ has no dependency on θ.

Now let’s consider the case where L = l + 1. Compared to an l-layer network, an (l + 1)-layer network has additional
weight matrix W(l) and bias b(l), and thus the total parameters contain θ =

(
θ̃, W(l), b(l)

)
. The output of this (l + 1)-

layer network is
f(x | θ) = Ã(l+1)(x | θ) =

1
√
nl

W(l)⊤σ
(
Ã(l)(x)

)
+ βb(l)

And we know its derivatives with respect to a different set of parameters. Denote Ã(l) = Ã(l)(x) for brevity in the following.

∇W(l)f(x |θ) =
1
√
nl

σ
(
Ã(l)

)⊤
∈ R1×nl

∇b(l)f(x |θ) = β

∇θ̃f(x |θ) =
1
√
nl
∇θ̃σ

(
Ã(l)

)
W(l)

=
1
√
nl


σ̇
(
Ã

(l)
1

)
∂Ã

(l)
1

∂θ̃1
. . . σ̇

(
Ã

(l)
nl

)
∂Ã

(l)
nl

∂θ̃1
...

...

σ̇
(
Ã

(l)
1

)
∂Ã

(l)
1

∂θ̃
P̃

. . . σ̇
(
Ã

(l)
nl

)
∂Ã

(l)
nl

∂θ̃
P̃

 ∈ RP̃×nl+1

where σ̇ is the derivative of σ and for all 1 ⩽ p ⩽ P̃, 1 ⩽ m ⩽ nl+1,

∂fm(x | θ)

∂θ̃p
=

nl∑
i=1

W(l)
imσ̇

(
Ã

(l)
i

)
∇θ̃p

Ã
(l)
i

The NTK for this (l+ 1)-layer network can be defined accordingly

K(l+1)(x, x̃ | θ)

=∇θf(x | θ)⊤∇θf(x̃ |θ)

=∇W(l)f(x̃ |θ)⊤∇W(l)f(x | θ) +∇b(l)f(x̃ | θ)⊤∇b(l)f(x | θ) +∇θ̃(l)f(x̃ | θ)⊤∇θ̃(l)f(x | θ)

=
1
nl

(
σ
(
Ã(l)(x)

)
σ
(
Ã(l)(x̃)

)⊤)
+ β2 +

1
nl

W(l)⊤


σ̇
(
Ã

(l)
1 (x)

)
σ̇
(
Ã

(l)
1 (x̃)

)∑P̃
p=1

∂Ã
(l)
1 (x)
∂θ̃p

∂Ã
(l)
1 (x̃)
∂θ̃p

. . . σ̇
(
Ã

(l)
1 (x)

)
σ̇
(
Ã

(l)
nl

(x̃)
)∑P̃

p=1
∂Ã

(l)
1 (x)
∂θ̃p

∂Ã
(l)
nl

(x̃)
∂θ̃p

...
...

σ̇
(
Ã

(l)
nl

)
σ̇
(
Ã

(l)
1

)∑P̃
p=1

∂Ã
(l)
nl

(x)
∂θ̃p

∂Ã
(l)
1 (x̃)
∂θ̃p

. . . σ̇
(
Ã

(l)
nl

)
σ̇
(
Ã

(l)
nl

)∑P̃
p=1

∂Ã
(l)
nl

(x)
∂θ̃p

∂Ã
(l)
nl

(x̃)
∂θ̃p

W(l)


=

1
nl

(
σ
(
Ã(l)(x)

)
σ
(
Ã(l)(x̃)

)⊤)
+ β2 +

1
nl

W(l)⊤


σ̇
(
Ã

(l)
1 (x)

)
σ̇
(
Ã

(l)
1 (x̃)

)
K

(l)
11 . . . σ̇

(
Ã

(l)
1 (x)

)
σ̇
(
Ã

(l)
nl

(x̃)
)
K

(l)
1nl

...
...

σ̇
(
Ã

(l)
nl

(x)
)
σ̇
(
Ã

(l)
1 (x̃)

)
K

(l)
nl1 . . . σ̇

(
Ã

(l)
nl

(x)
)
σ̇
(
Ã

(l)
nl

(x̃)
)
K

(l)
nlnl

W(l)


32



It follows by the above that ∀ 1 ⩽ m,n ⩽ nl+1,

K
(l+1)
mn =

1
nl

(
σ
(
Ã

(l)
m (x)

)
σ
(
Ã

(l)
n (x̃)

))
+ β2 +

1
nl

 nl∑
i=1

nl∑
j=1

W(l)
imW(l)

in σ̇
(
Ã

(l)
i (x)

)
σ̇
(
Ã

(l)
j (x̃)

)
K

(l)
ij


When nl →∞, by the previous section, the parts in blue and green converges to Σ(l+1), while the red part converges to

nl∑
i=1

nl∑
j=1

W(l)
imW(l)

in σ̇
(
Ã

(l)
i (x)

)
σ̇
(
Ã

(l)
j (x̃)

)
K

(l)∞, ij

Later, Arora et al. (2019) [1] provided a proof with a weaker limit, that does not require all the hidden layers to be infinitely
wide, but only requires the minimum width to be sufficiently large.

4.3.3 Linearized Models

From the previous section, according to the derivative chain rule, we have known that the gradient update on the output
of an infinite width network is as follows. For brevity, we omit the inputs in the following analysis

∂f(θ)

∂t
= −η∇θf(θ)

⊤∇θf(θ)∇fL

= −ηK(θ)∇fL
∗
(∗) − ηK∞∇fL

(∗) : for infinite width networks. To track the evolution of θ over time, let’s consider it as a function of a time step t. With
Taylor expansion, the network learning dynamics can be simplified as

f(θ(t)) ≈ flin(θ(t)) = f(θ(0)) +∇θf(θ(0))︸ ︷︷ ︸
(∗)

(θ(t) − θ(0))

(∗) : formally, ∇θf(x |θ)|θ=θ(0). Such formation is commonly referred to as the linearized model, given θ(0), f(θ(0)) and
∇θf(θ(0)) are constants (it is simply a linear approximation of f centered at θ(0)). Assuming that the incremental time step
t is small and the parameter is updated by gradient descent,

θ(t) − θ(0) = η∇θL (θ) = −η∇θf(θ)
⊤∇fL

flin(θ(t)) − f(θ(0)) = −η∇θf(θ(0))⊤∇θf(X | θ(0))∇fL

∂(f(θ(t)))

∂t
= −ηK(θ(0))∇fL

(∗)
= −ηK∞∇fL

(∗) : for infinite width networks. Eventually we get the same learning dynamics, which implies that a neural network with
infinite width can be considerably simplified as governed by the above linearized model [15].

In a simple case when the empirical loss is an MSE loss,∇θL (θ) = f(X | θ) − Y, the dynamics of the network becomes a
simple linear ODE and it can be solved in a closed form

∂f(θ)

∂t
= −ηK∞ (f(θ) − Y)

Let g(θ) = f(θ) − Y then
∂g(θ)

∂t
= −ηK∞ g(θ) =⇒ g(θ) = C exp(−ηK∞ t)

When t = 0, we have C = f(θ(0)) − Y and therefore

f(θ) = (f(θ(0)) − Y) exp(−ηK∞ t) + Y = f(θ(0)) exp(−K∞ t) + (I− exp(−ηK∞ t))Y

4.3.4 Lazy Training

When a neural network is heavily over-parameterized, the model is able to learn with the training loss quickly converging
to zero, but the network parameters hardly change. Lazy training refers to this phenomenon.
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Let θ(0) be the initial network parameters and θ(T) be the final network parameters when the loss has been minimized
to zero. The change in parameter space can be approximated with a first-order Taylor expansion,

ŷ = f(θ(T)) ≈ f(θ(0)) +∇θf(θ(0))(θ(T) − θ(0))

thus
∆θ = θ(T) − θ(0) ≈ ∥ŷ− f(θ(0))∥

∥∇θf(θ(0))∥
Still following the first-order Taylor expansion, we can track the change in the differential of f,

∇θf(θ(T)) ≈ ∇θf(θ(0)) +∇2
θf(θ(0))∆θ

= ∇θf(θ(0)) +∇2
θf(θ(0))∥ŷ− f(θ(0))∥

∥∇θf(θ(0))∥

Thus
∆(∇θf) = ∇θf(θ(T)) −∇θf(θ(0)) = ∥ŷ− f(x |θ(0))∥ ∇

2
θf(θ(0))

∥∇θf(θ(0))∥2

Lenaic Chizat, Edouard Oyallon and Francis Bach, proved that for a two-layer neural network, E[κ(θ0)] → 0 when the
number of hidden neurons tends to infinity [3], that is the network transitions into the lazy regime.

4.4 Project

4.4.1 Model Definition

f : Rd → R f(x) :=
1√
n

w⊤
2 σ

(
1√
d

W⊤
1 x + βb1

)
+ βb2

where

• W1 ∈ Rd×n and w2 ∈ Rn are the weights, applied with a rescale weight to avoid divergence with infinite-width
networks. They are initialized as standard Gaussians.

• b1 ∈ Rn and b2 ∈ R are the bias terms, and the constant scalar β ⩾ 0 controls much effect the bias terms have.

• σ is a pointwise non-linear function which is Lipschitz continuous and twice differentiable.

4.4.2 Inputs

Let U ∈ O(d), the group of d × d orthogonal matrices. The matrix U is sampled from the group using the Haar measure,
which ensures a uniform distribution over O(d). Define Σ as a diagonal matrix, where its diagonal elements σi are linearly
spaced between 0.01 and 1, i.e.,

∀ 1 ⩽ i ⩽ d : σi = 0.01 +
0.99 · (i− 1)

d− 1
Define K = UΣU⊤, which by construction is a symmetric positive definite matrix. Then each input x ∼ N(0, K).

4.4.3 Targets

Let W∗
1 ∼ N(0, Id×n) and w∗

2 ∼ N(0, In). Then the target of x is defined as

y =
1√
n

w⊤
2 σ

(
1√
d

W⊤
1 x
)
+ ε

where ε is Gaussian noise with standard deviation γ.
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4.4.4 NTK

Recall that the (empirical) neural tangent kernel is defined as

K : Rd × Rd → R K(x, x̃) :=
∑
θ∈Θ

∇θf(x)⊤∇θf(x̃)

where Θ = {W1, b1, w2, b2} in our model. Let

z1 =
1√
d

W⊤
1 x + βb1

h = σ(z1)

z2 =
1√
n

w⊤
2 h + βb2

ŷ = σ(z2)

then

∂f

∂b2
= β

∂f

∂w2
=

1√
n

h

∂f

∂b1
=

1√
n

w2 ⊙ σ ′(z1) · β

∂f

∂W1
=

1√
n

w2 ⊙ σ ′(z1) · x⊤

where⊙ denotes the Hadamard product.

4.4.5 SGD updates

Consider the MSE loss,
L (ŷ, y) = 1

2(ŷ− y)2

then

∂L

∂b2
= (ŷ− y) · β

∂L

∂w2
= (ŷ− y) · 1√

n
h

∂L

∂b1
= (ŷ− y) · 1√

n
w2 ⊙ σ ′(z1) · β

∂L

∂W1
= (ŷ− y) · 1√

n
w2 ⊙ σ ′(z1) · x⊤

4.4.6 Experiments

At each timestep, we generate a dataset as above and run SGD with constant learning rate 0.001. We fix the input dimension
as 10, the number of hidden neuron as 100, the noise standard deviation as 0.5, the number of samples as 1000, the bias hy-
perparameter as 0.01 and the number of timesteps as 500. We also set the vectors we evaluate the NTK at, and subsequently
generate a Gram matrix, as the canonical basis.
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Figure 1: Evolution of the spectrum of the Gram matrix

Figure 2: Evolution of the largest eigenvalue of the Gram matrix
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Figure 3: Evolution of the Gram matrix

Figure 4: Evolution of the MSE loss over time

4.4.7 Expectation of the Weight Updates

For simplicity, we now consider this network:

f : Rd → R x 7→ σ(⟨θ, x⟩)

where θ is initialized as a standard multivariate Gaussian, scaled by 1√
d

. Note that at each timestep t ∈ N, we generate
a dataset Dt = Xt × Yt, where the inputs are generated as previously and the targets analogously. Set θ∗ as a standard
multivariate Gaussian, scaled by 1√

d
, then for each input x ∈ Xt, define its target y ∈ Yt as

y := ⟨θ∗, x⟩+ ε

where ε is Gaussian noise with standard deviation γ. We now consider the SGD weight update.

θk+1 = θk + η∇θL (x, y, θk)
=⇒ E[θk+1 | θk] = θk + ηEθ [∇θL (x, y, θk)]

= θk + ηEθ

[
∇θ

(
1
2(⟨θk, x⟩− y)2

)]
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Note that
∇θ

(
1
2(⟨θk, x⟩− y)2

)
= (⟨θk, x⟩− y)x

Hence
∇θ

(
1
2(⟨θk, x⟩− (⟨θ∗, x⟩+ ε))2

)
= (⟨θk, x⟩− ⟨θ∗, x⟩− ε)x = (⟨θk − θ∗, x⟩− ε)x

Since ε is independent of x and has zero mean, it follows that

Eθ

[
∇θ

(
1
2(⟨θk, x⟩− y)2

)]
= Eθ[⟨θk − θ∗, x⟩ x]

Let ∆θ = θk − θ∗ then
Eθ[⟨∆θ, x⟩ x] = xx⊤∆θ

Where xx⊤ is the covariance matrix of x, which we’ll denote as Σ. Therefore

E[θk+1 |θk] = θk + ηΣ∆θ

It follows that averaged at timestep t,
θ̃t+1 = θ̃t + ηΣ∆θ̃

where ∆θ̃ = θ̃t − θ∗.

Below are visualizations which illustrates the above.

Figure 5: Actual vs. Prediction Weights over Time
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Figure 6: Actual vs. Prediction Weight over Time
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