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Introduction: 

 As an undergraduate student, one learns about various mathematical structures such as 

sets, groups, vector spaces, graphs, and so on. More specifically, one studies functions between 

sets in Analysis, homomorphism of groups and linear transformation between vector spaces in 

Algebra, edges between vertices of a graph in Combinatorics, just to name a few. In fact, all the 

above can be viewed as categories. And therein lies the beauty of category theory. Even when 

confronted with a new mathematical structure, one can apply concepts of category theory to 

understand it with ease. And the reason for this is that in category theory, one considers objects 

(sets, groups, vector spaces, vertices) as atomic entities and focuses primarily on morphisms 

(functions, homomorphisms, linear transformation, edges) between those objects. With that, we 

are ready to define categories: 

A category is a collection of objects (𝐴, 𝐵, 𝐶,…) and morphisms/arrows between those objects 

(𝑓, 𝑔, ℎ,… ) such that: 

 There is an identity morphism 1: 𝐴 → 𝐴 which maps an object to itself for each object in 

the category. Also, for a morphism 𝑓: 𝐴 → 𝐵, we have 1𝑓 = 𝑓1 = 𝑓. 

 Whenever there are morphisms 𝑓: 𝐴 → 𝐵 and 𝑔: 𝐵 → 𝐶, there is the composition 

morphism (𝑔 ∘ 𝑓): 𝐴 → 𝐶, namely, 𝑓 and 𝑔 are composable. 

 For any composable morphisms 𝑓, 𝑔, ℎ, there is an associativity rule: 𝑓(𝑔ℎ) = (𝑓𝑔)ℎ. 

One question that arises from the above definition is: When is 𝐴 "=" 𝐵 ? Just like with 

groups or vector spaces, we consider that 𝐴 "=" 𝐵 when 𝐴 and 𝐵 are isomorphic to one another. 

And one defines an isomorphism between objects as follows:  
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An isomorphism 𝑓: 𝐴 → 𝐵 is such that there exists a morphism 𝑔: 𝐵 → 𝐴 such that 𝑓𝑔 = 1 and 

𝑔𝑓 = 1. Then, we say that 𝐴, 𝐵 are isomorphic, which we denote by 𝐴 ≅ 𝐵.  

 Moreover, we call a morphism 𝑓: 𝐴 → 𝐴 an endomorphism (domain is equal to 

codomain). If 𝑓 happens to be an isomorphism, then we call it an automorphism. 
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Duality: 

 One of the core concepts of category theory is that of dual of a category. Indeed, the dual 

of a category helps us to understand more about the category we are interested in. More 

specifically, a statement about a category C is true if and only if the dual statement for the dual 

category is also true. We call this the duality principle. In category theory, one defines the dual of 

a category as follows: 

  The dual/opposite category 𝐶 of a category 𝐶 is such that: 

 𝐶 and 𝐶 have the same objects. 

 For every morphism 𝑓: 𝐴 → 𝐵, we define a morphism 𝑓: 𝐵 → 𝐴. 

This definition shows how 𝐶 and 𝐶 “mirror” each other, as we simply “reverse” the arrows 

when going from one to the other. Note that for every object 𝐴 in 𝐶, we have the identity 

morphism 1
: 𝐴 → 𝐴. Moreover, we can derive a composition rule as follows: 

Consider the morphisms 𝑓: 𝐴 → 𝐵 and 𝑔: 𝐵 → 𝐶 in a category 𝐷. By our definition of category, 

we also have a morphism (𝑔 ∘ 𝑓): 𝐴 → 𝐶. Now consider the dual category 𝐷. In this category, 

we have morphisms 𝑓: 𝐵 → 𝐴 and 𝑔: 𝐶 → 𝐵. But note that by composing 𝑔 and 𝑓, we 

get the morphism 𝑓 ∘ 𝑔: 𝐶 → 𝐴. It follows that (𝑔 ∘ 𝑓) = 𝑓 ∘ 𝑔. 

 Now, how can one use the duality principle to prove statements about categories? In 

Algebra and Analysis, one studies injective and surjective functions. In fact, injectivity and 

surjectivity are dual properties (as shown later), so one can prove injectivity of a function in a 

space by proving surjectivity of this function in the dual space. Category theory generalizes the 

notions of injectivity and surjectivity as follows: 
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A morphism 𝑓: 𝑋 → 𝑌 in a category is said to be: 

 A monomorphism if for any two morphisms 𝑔, ℎ: 𝑊 → 𝑋, 𝑓ℎ = 𝑓𝑔 ⇔ ℎ = 𝑔 

 An epimorphism if for any two morphisms 𝑔, ℎ: 𝑌 → 𝑍, ℎ𝑓 = 𝑔𝑓 ⇔ ℎ = 𝑔 

Note that the definitions of monomorphism and injectivity are equivalent in the category of sets.  

Indeed, given two maps 𝑥, 𝑥′: 1 → 𝑋 in the category of sets, with the domain being the singleton 

set, and a monomorphism 𝑓: 𝑋 → 𝑌, 𝑓𝑥 = 𝑓𝑥′ ⇒ 𝑥 = 𝑥′.  

Similarly, the definitions of epimorphism and surjectivity are equivalent in the category of sets. 

Indeed, given an epimorphism 𝑓: 𝑋 → 𝑌 and maps 𝑔, ℎ: 𝑌 → 𝑍, we have ℎ𝑓 = 𝑔𝑓 ⇒ ℎ = 𝑔. But 

saying that ℎ𝑓 = 𝑔𝑓 is only saying that 𝑔, ℎ are equal on the image of 𝑓. So, it must be that the 

image of 𝑓 is the domain 𝑌 of 𝑔, ℎ, namely, 𝑓 must be surjective. 

 We first show that injectivity and surjectivity are indeed dual statements. Namely, we 

show that 𝑓: 𝑋 → 𝑌 is a monomorphism in a category C if and only if 𝑓: 𝑌 → 𝑋 is an 

epimorphism in the dual category 𝐶. 

Let 𝑓: 𝑋 → 𝑌 be a monomorphism in a category C. Then, for morphisms 𝑔, ℎ: 𝑊 → 𝑋, we have 

that 𝑓ℎ = 𝑓𝑔 ⇔ ℎ = 𝑔 ⇔ ℎ = 𝑔.  

But 𝑓ℎ = 𝑓𝑔 ⇔ (𝑓ℎ) = (𝑓𝑔) ⇔ ℎ ∘ 𝑓 = 𝑔 ∘ 𝑓. 

It follows that ℎ ∘ 𝑓 = 𝑔 ∘ 𝑓 ⇔ ℎ = 𝑔, so 𝑓 is indeed an epimorphism. □ 

 Now, we use these notions to prove part b) of the following lemma using duality: 

a) If 𝑓: 𝑋 → 𝑌 and 𝑔: 𝑌 → 𝑍 are monomorphisms, then so is (𝑔 ∘ 𝑓): 𝑋 → 𝑍. 

b) If 𝑓: 𝑋 → 𝑌 and 𝑔: 𝑌 → 𝑍 are epimorphisms, then so is (𝑔 ∘ 𝑓): 𝑋 → 𝑍. 
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Proof of a): 

Let ℎ, 𝑘: 𝑊 → 𝑋 be such that 𝑔𝑓ℎ = 𝑔𝑓𝑘. Then, since 𝑔 is a monomorphism, we have 

that 𝑓ℎ = 𝑓𝑘. Since 𝑓 is a monomorphism, we then have that ℎ = 𝑘. So, we have shown that 

(𝑔𝑓)ℎ = (𝑔𝑓)𝑘 ⇔ ℎ = 𝑘, so (𝑔 ∘ 𝑓): 𝑋 → 𝑍 is indeed a monomorphism.  □ 

Proof of b): 

 By duality, 𝑓: 𝑋 → 𝑌 and 𝑔: 𝑌 → 𝑍 are epimorphisms if and only if 𝑓: 𝑌 → 𝑋 and 

𝑔: 𝑍 → 𝑌 are monomorphisms. 

By part a), it follows that 𝑓 ∘ 𝑔: 𝑍 → 𝑋  is a monomorphism, thus, (𝑔 ∘ 𝑓) is a 

monomorphism. 

Then, applying duality again, we get that 𝑔 ∘ 𝑓: 𝑋 → 𝑍  is an epimorphism.  □ 

 Now that we have introduced what categories are and the concept of duality, it is time to 

study the maps between categories, which we call functors. 
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Functors: 

 Functors are to categories what morphisms are to objects in a category. Namely, we can 

define a covariant functor 𝐹: 𝐶 → 𝐷 between categories 𝐶, 𝐷 such that: 

 Every object 𝑐 ∈ 𝐶 has an image 𝐹𝑐 ∈ 𝐷 by the functor 𝐹. 

 Every morphism 𝑓: 𝑥 → 𝑦 in a category 𝐶 has an image 𝐹𝑓: 𝐹𝑥 → 𝐹𝑦 by the functor 𝐹. 

 Composition: 𝐹(𝑔𝑓) = (𝐹𝑔)(𝐹𝑓). 

 Identity: For every 𝑐 ∈ 𝐶, 𝐹(1) = 1ி 

Note that we call 𝐹: 𝐶 → 𝐷 a covariant functor to differentiate it from a contravariant functor 

from 𝐶 to 𝐷, which is a functor 𝐺: 𝐶 → 𝐷 such that: 

 Every object 𝑐 ∈ 𝐶 has an image 𝐺𝑐 ∈ 𝐷 by the functor 𝐺. 

 Every morphism 𝑓: 𝑥 → 𝑦 in the category 𝐶 has an image 𝐺𝑓: 𝐺𝑦 → 𝐺𝑥 by 𝐺. 

 Composition: 𝐺(𝑔𝑓) = (𝐺𝑓)(𝐺𝑔). 

 Identity: For every 𝑐 ∈ 𝐶, 𝐺(1) = 1ீ 

One of the most fundamental properties of functors is the fact that they preserve 

isomorphisms. Namely, if 𝑓: 𝑥 → 𝑦 is an isomorphism in 𝐶 and 𝐹: 𝐶 → 𝐷 is a covariant functor, 

then the image 𝐹𝑓: 𝐹𝑥 → 𝐹𝑦 of 𝑓 is an isomorphism in 𝐷. The proof of this lemma follows from 

the axioms of functors and goes as follows: 

 Let 𝐹: 𝐶 → 𝐷 be a covariant functor between the categories 𝐶 and 𝐷, and let 𝑓: 𝑥 → 𝑦 be 

an isomorphism in 𝐶. Then, there exists a map 𝑔: 𝑦 → 𝑥 such that 𝑓𝑔 = 1௬ and 𝑔𝑓 = 1௫. Now, 

we claim that (𝐹𝑔)(𝐹𝑓) = 1ி௫ and (𝐹𝑓)(𝐹𝑔) = 1ி௬ and thus that 𝐹𝑓 is also an isomorphism 

with inverse 𝐹𝑔. Indeed, by functoriality axioms, we have that: 
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(𝐹𝑔)(𝐹𝑓) = 𝐹(𝑔𝑓) = 𝐹(1௫) = 1ி௫ 

(𝐹𝑓)(𝐹𝑔) = 𝐹(𝑓𝑔) = 𝐹൫1௬൯ = 1ி௬ 

This concludes the proof.  □ 

 Now, we can apply our knowledge to study functors between categories. In this section, 

for simplicity and conciseness, we will restrict ourselves to functors 𝐹: 𝐵𝐺 → 𝐶 where the 

domain 𝐵𝐺 is a group regarded as a one object category (the group is the object 𝐺, and the 

morphisms are the elements of that group), and the codomain is a general category 𝐶. 

Let 𝑋 = 𝐹𝐺 ∈ 𝐶 be the image of the group object in 𝐶. Then, we can say that 𝐹 is a left action of 

𝐺 on 𝑋, where 𝑋 is under the action of the images 𝐹𝑔: 𝑋 → 𝑋 of the morphisms 𝑔: 𝐵𝐺 → 𝐵𝐺 

(namely, 𝑔 ∈ 𝐺). In contrast, we can say that 𝐹: 𝐵𝐺 → 𝐶 is a right action of 𝐺 on 𝑋. But 

categorically speaking, every 𝑔 ∈ 𝐺 is an isomorphism in the one object category 𝐵𝐺, since in a 

group, every element has its inverse. So, by the above lemma, for every 𝑔 ∈ 𝐺, 𝐹𝑔: 𝑋 → 𝑋 is an 

isomorphism in the category 𝐶, with inverse 𝐹(𝑔ିଵ), where 𝑔ିଵ is the inverse of 𝑔 in 𝐺 (in fact, 

𝐹𝑔 is an automorphism, since the domain and codomain are the same). In summary, every 

morphism in the image of the functor 𝐹 is an automorphism in the category 𝐶. 

 We have seen in the introductory section that two objects in a category can be said to be 

“equal” when there exists an isomorphism between the objects. But when can two categories be 

considered “equal” ? The final section of this write-up will attempt to answer that question by 

introducing the notion of equivalence of categories. 
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Equivalence of categories: 

 An intuitive answer to the above question would be to say that two categories 𝐶 and 𝐷 

are “equal” when given a functor 𝐹: 𝐶 → 𝐷, one can find a functor 𝐺: 𝐷 → 𝐶 such that 𝐹𝐺 = 1 

and 𝐺𝐹 = 1, where 1  and 1 are the identity functors for 𝐶 and 𝐷 respectively. This definition 

would be analogous to the one given in introduction for two isomorphic objects. But there is still 

one problem with this definition: what does it mean for two functors to be “equal”, namely, what 

do the equalities "𝐹𝐺 = 1" and "𝐺𝐹 = 1" really mean? This provides the motivation to 

introduce isomorphisms between functors, or more generally, maps between functors, also called 

natural transformations.  

 Given categories 𝐶, 𝐷 and functors 𝐹, 𝐺: 𝐶 → 𝐷, one can define a natural transformation 

𝛼: 𝐹 → 𝐺 as follows: 

 For every object 𝑐 ∈ 𝐶, there is a map/arrow 𝛼: 𝐹𝑐 → 𝐺𝑐 in 𝐷. Those arrows define the 

components of the natural transformation 𝛼.  

 Given a morphism 𝑓: 𝑐 → 𝑐′ in 𝐶, and morphisms 𝐹𝑓: 𝐹𝑐 → 𝐹𝑐′ and 𝐺𝑓: 𝐺𝑐 → 𝐺𝑐′ in 𝐷, 

𝛼ᇱ ∘ 𝐹𝑓 = 𝐺𝑓 ∘ 𝛼. 

Now, we can define an isomorphism between functors as follows: 

A natural isomorphism 𝛼: 𝐹 → 𝐺 is such that all components 𝛼 of 𝛼 are isomorphisms. Then, 

we can consider the functors 𝐹, 𝐺 to be isomorphic, which we denote by 𝐹 ≅ 𝐺. 

 Now, we are finally ready to answer our question by defining equivalence of categories: 
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 Two categories 𝐶, 𝐷 are said to be equivalent if, given a functor 𝐹: 𝐶 → 𝐷, one can find a 

functor 𝐺: 𝐷 → 𝐶 such that 𝐹𝐺 ≅ 1 and 𝐺𝐹 ≅ 1, namely, one can find a natural 

transformation 𝛼: 𝐹𝐺 → 1 and 𝛼′: 𝐺𝐹 → 1 . Then, we can write 𝐶 ≅ 𝐷. 

 One natural property is that equivalence of categories defines an equivalence relation. 

The axiom of reflexivity, 𝐶 ≅ 𝐶, is obvious, one just considers the identity functor 1: 𝐶 → 𝐶 

which is its own inverse. The axiom of symmetry, 𝐶 ≅ 𝐷 ⇔ 𝐷 ≅ 𝐶 is also obvious from the 

definition. It remains to show the transitivity axiom, namely, 𝐶 ≅ 𝐷, 𝐷 ≅ 𝐸 ⇒ 𝐶 ≅ 𝐸. 

By definition, 𝐶 ≅ 𝐷 if and only if there exist functors 𝐹: 𝐶 → 𝐷 and 𝐺: 𝐷 → 𝐶 such that we 

have 𝐹𝐺 ≅ 1 and 𝐺𝐹 ≅ 1 . 

Likewise, 𝐷 ≅ 𝐸 if and only if there exist functors 𝐻: 𝐷 → 𝐸 and 𝐽: 𝐸 → 𝐷 such that we have 

𝐻𝐽 ≅ 1ா  and 𝐽𝐻 ≅ 1. 

We claim that (𝐺𝐽) ∘ (𝐻𝐹) ≅ 1  and that (𝐻𝐹) ∘ (𝐺𝐽) ≅ 1ா , which would prove that 𝐶 ≅ 𝐸. 

Indeed, we have by the associativity rule that: 

(𝐺𝐽) ∘ (𝐻𝐹) ≅ 𝐺 ∘ (𝐽𝐻) ∘ 𝐹 ≅ 𝐺 ∘ 1 ∘ 𝐹 ≅ 𝐺𝐹 ≅ 1 

(𝐻𝐹) ∘ (𝐺𝐽) ≅ 𝐻 ∘ (𝐹𝐺) ∘ 𝐽 ≅ 𝐻 ∘ 1 ∘ 𝐽 ≅ 𝐻𝐽 ≅ 1ா  

This concludes the proof that equivalence of categories defines an equivalence relation. □ 

 The following theorem provides another definition of equivalence of categories. Though 

we will not prove this theorem, the proof being lengthy and relying on a more advanced 

technique called diagram chasing, we will define all its key terms and prove a lemma used in the 

proof. Do not worry if you do not understand the theorem when first reading it, we will take the 
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time to define all the important terms. Without further ado, here is the theorem, as stated in 

“Category Theory in Context” by Emily Riehl: 

“A functor defining an equivalence of categories is full, faithful, and essentially surjective on 

objects. Assuming the axiom of choice, any functor with these properties defines an equivalence 

of categories.” 

This theorem states three properties of functors which, combined, are equivalent to our 

above definition of equivalence of categories. The properties are as follows: 

A functor 𝐹: 𝐶 → 𝐷 is said to be: 

 Full if for any given 𝑐, 𝑐′ ∈ 𝐶, the map 𝜎: 𝐻𝑜𝑚(𝑐, 𝑐′) → 𝐻𝑜𝑚(𝐹𝑐, 𝐹𝑐′) is surjective. 

 Faithful if for any given 𝑐, 𝑐′ ∈ 𝐶, the map 𝜎: 𝐻𝑜𝑚(𝑐, 𝑐′) → 𝐻𝑜𝑚(𝐹𝑐, 𝐹𝑐′) is injective. 

 Essentially surjective on objects if for any object 𝑑 ∈ 𝐷, there exists some 𝑐 ∈ 𝐶 such 

that 𝐹𝑐 ≅ 𝑑. 

In the above definitions, 𝐻𝑜𝑚(𝑐, 𝑐′) refers to the set of morphisms from 𝑐 to 𝑐′, and 

𝐻𝑜𝑚(𝐹𝑐, 𝐹𝑐′) refers to the set of morphisms from 𝐹𝑐 to 𝐹𝑐′. The image of a morphism 𝑓: 𝑐 → 𝑐′ 

by the map 𝜎 is simply 𝜎𝑓 = 𝐹𝑓.  

 Though we will not prove this theorem, we will prove the following lemma, which is 

used in the proof of the theorem, as stated in “Category Theory in Context” by Emily Riehl: 

“Any morphism 𝑓: 𝑎 → 𝑏 and fixed isomorphisms 𝑎 ≅ 𝑎′ and 𝑏 ≅ 𝑏ᇱ determine a unique 

morphism 𝑓′: 𝑎′ → 𝑏′ so that any of—or, equivalently, all of—the following four diagrams 

commute:” 
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 For the proof, let 𝐼: 𝑎 → 𝑎′ and 𝐼: 𝑏 → 𝑏′ be the isomorphisms represented in the above 

diagrams. The first diagram then defines 𝑓′ as follows: 𝑓′ = 𝐼 ∘ 𝑓 ∘ (𝐼)ିଵ. 

It follows that 𝑓ᇱ ∘ 𝐼 = 𝐼 ∘ 𝑓, thus, the second diagram also commutes. 

Moreover, (𝐼)ିଵ ∘ 𝑓′ = 𝑓 ∘ (𝐼)ିଵ, so the third diagram also commutes. 

Finally, (𝐼)ିଵ ∘ 𝑓′ ∘ 𝐼 = 𝑓, so the fourth diagram also commutes. □ 
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Conclusion: 

 This write-up, while summarizing what I have learned this winter through the DRP 

project, has introduced fundamental ideas of category theory such as duality, functors, or natural 

transformations. Once again, I cannot thank enough the author Emily Riehl of the book 

“Category Theory in Context”, my mentor Asa Kohn, and the organizers of the DRP for what I 

have learned this winter. I hope that you, dear readers, have been able to learn from this write-up 

like I have through the DRP.  
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