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1 Introduction

Throughout this semester of the directed reading program, we had the chance to explore different topics
related to stochastic processes and see how Monte-Carlo (MC) methods could help address some of these
mathematical problems, where deterministic methods fail due to their intractability or high computational
cost. MC methods have numerous applications in various fields of science, such as nuclear engineering,
quantitative finance, cybersecurity, and many others.

We started by looking at integration problems and how Monte-Carlo simulations can help approximate in-
tractable integrals, including integrals of functions over domains in R and R2. In fact, Monte-Carlo numerical
integration is computationally expensive and is typically adapted to very high-dimensional problems.

We continued the DRP by examining how we can generate continuous random variables. This is crucial for
MC simulations, where sampling from distributions like Gaussians is needed. This applies, for example, to
quantitative finance, where the price of an asset can be modelled as a Brownian Motion. It was assumed
in this section that our program (or computer) can generate continuous uniform random variables (U ∼
U [a, b], a, b ∈ R). This is required for generating variables using the Inversion method (covered in section
3.1) and for 2-dimensional random walks (covered in section 4).

Finally, we explored the behavior of 2-dimensional random walks on finite grids (see figure 5) and observed
how Monte-Carlo simulations were able to approximate the true solution derived in section 4.1. We also
looked at how the number of functions could impact the precision of the solution.

Before diving into the content, some refresher on MC methods may be needed to understand why they are
such useful tools. MC methods are closely related to the Law of Large Numbers (LLN), which states that for
a sequence of independent and identically distributed sample points X1, X2, ... with mean µ < ∞, we have

lim
n→∞

X1 +X2 + · · ·+Xn

n
= µ with probability 1

In simpler words, the LLN states that if we know the distribution of some random process, we can compute
the mean of this process by taking a sequence of the same distribution and calculating its mean.

Take the tossing of a fair coin as an example. You toss a coin 100 times, and you want to know the fraction
of tails that you can expect to get (0.5 in this case). One way to approach this problem would be to toss
a coin 100 times and count the tails. You would get a fraction somewhat close to 0.5, but chances are you
could also get a fraction much larger or smaller than 0.5 (like 0.3, or 0.75 for example). The LLN tells us
that if we want to know precisely the fraction of tails in n throws that one can expect, we should make n
very large, and count the number of tails obtained. As n goes to infinity, the fraction of tails we obtain will
converge to the true fraction we can expect (0.5 in this case) with probability 1.

This example is a bit ”overkill” as we can figure out easily that the expected fraction is 0.5. But some
random processes have means that are much more complicated to calculate. In this case, we can simulate
these processes a large number of times and record their output. Then, we can look at the mean of these
outputs, which will converge to the true mean of the process thanks to the LLN.
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2 Numerical integration

In this section, we will focus on computing definite finite integrals using Monte-Carlo simulations. We will
illustrate how these simulations can be used to approximate an integral with an example.We consider an
arbitrary function f . We show how to use Monte Carlo simulations to approximate the integral

I :=

∫
[0,1]d

f(x) dx, where d ∈ N (1)

Observe that in the 1-dimensional case (d = 1), any integral of the form
∫ b

a
f(x)dx can be transformed into

an equivalent integral on the interval [0, 1] by making the substitution u(x) = 1
b−ax + a

b−a . Applying this
substitution we obtain

f̄ =
1

b− a

∫ b

a

f(x)dx =
1

1− 0

∫ 1

0

f((b− a)u+ a)du = I, (2)

This equivalence simplifies our approach, allowing us to focus solely on integrals over [0, 1].
The idea is now to find an unbiased Monte-Carlo estimator IN to approximate our integral I. Quite intuitively,
we will generate a sequence of N points uniformly distributed on [0, 1] : {x1, x2, ..., xN} and compute the
average (f̄) of the function evaluated at each xi:

IN =
1

N

N∑
i=1

f(xi). (3)

By the law of large numbers, we have that

lim
N→∞

IN =

∫ 1

0

f(x)dx (4)

2.1 2-dimensional case

We can extend this analysis to integrals in two dimensions. Suppose U = [0, 1]2. Then

f̄ =
1

Area(U)︸ ︷︷ ︸
=1

∫∫
[0,1]2

f(x, y) dx dy =

∫∫
[0,1]2

f(x, y) dx dy (5)

As for the one-dimensional case, we generate a sequence {(xm, ym)}N≥1 for which all xi’s and all yi’s are
uniformly distributed on [0, 1] and compute the average of the function evaluated at all points (xi, yi) of this
sequence, that is

IN =
1

N

N∑
i=1

f(xi, yi) (6)

Once again, by the Law of Large Numbers, we have that this estimator converges to the value of the double
integral we wish to compute, i.e:

lim
N→∞

IN =

∫∫
U

f(x, y) dx dy (7)

Observe that any double integral over the interval [a, b] × [c, d] where a, b, c, d < ∞ can be converted into
an integral over the interval [0, 1]2 via an appropriate change of variables given by g(x, y). If g : [0, 1]2 →
[a, b]× [c, d] is a differentiable bijection, and Jg denotes its Jacobian, we have:∫∫

[a,b]×[c,d]

f(x, y) dx dy =

∫∫
[0,1]2

f(g(x, y))|det(Jg)| dx dy,
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Exactly as for the one-dimensional case, this allows us to focus exclusively on double integrals over the
interval [0, 1]. Note that we showed the analysis for simple and double integrals, but numerical integration
using Monte-Carlo methods can be extended to any higher dimensions. In fact, it turns out that this method
is typically used when dealing with high-dimensional domains, where other numerical integration techniques
fail to apply.
Now that we know more about the theory, we will investigate the error analysis of these computations.

2.2 Error analysis

One drawback of relying on random techniques is the error of the approximation to the true value of the
integral. We hope to find an estimator that is as accurate as possible, so it may be important for us to
know ”how well” the estimator does. Luckily, we can quantify this error using the Koksma-Hlawka inequality
(section 1.2.3).

2.2.1 Discrepancy

To investigate our bounds of error given by our Monte-Carlo estimator IN , let us introduce a new notion.
The discrepancy D({xi}Ni=1) of a sequence {xi}Ni=1 in Rd is given by:

D({xi}Ni=1) = sup
y∈[0,1]d

∣∣∣∣∣ 1N
N∑
i=1

(
1[0,y1]×...×[0,yd](xi)

)
−

d∏
k=1

yk

∣∣∣∣∣
The discrepancy of the sequence previously defined on [0, 1]2 is a measure of ”how well” the sequence fills in
the square [0, 1]2 uniformly. The lower the value of the discrepancy, the better the sequence fills the cube
uniformly, and the more accurate will be our estimator as we will see later.

2.2.2 Hardy Variation of a function

Another important notion needed to find an upper bound is the following : the Hardy Variation of a function
f on [a, b]. It is denoted by Vf and defined as:

Vf = sup

{
n∑

i=1

|f(xi)− f(xi−1)| : a ≤ x0 < x1 < . . . < xn ≤ b

}

Note however that this quantity is in fact quite complicated to compute, especially in higher dimensions.
Therefore, we will not delve into the details about this definition, and we will see that since Vf is a constant
which we have no control over unlike the discrepancy of our sequence, it does not matter that much.

2.2.3 A bound of error: the Koksma-Hlawka inequality

Tying together the 2 previously introduced notations (discrepancy of a sequence and Hardy variation of
a function), the Koksma-Hlawka inequality can give us an upper bound of the error of the Monte-Carlo
estimator : ∣∣∣∣∣ 1N

N∑
i=1

f(xi)−
∫
[0,1]

f(x) dx

∣∣∣∣∣ ≤ Vf ·D({xi}Ni=1) (8)

As long as the function f is sufficiently regular, the variation of f denoted by Vf is a finite constant. However,
it turns out to be difficult to compute or bound Vf . By (8), to make the desired estimator more accurate,
one tries to come up with a sequence {xn} with really low discrepancy.
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2.3 Example

Consider the following integral :

I =

∫ 1

0

√
xex

2

dx

It is very likely that f(x) =
√
xex

2

does not have an elementary anti-derivative making the use of the
fundamental theorem of calculus impossible here. Therefore, we will try to calculate I using a Monte-
Carlo estimator and compare it with the result obtained with Gauss-Legendre quadrature. Using NumPy, we
approximated I with 20 weights and nodes and obtained

I =

∫ 1

0

√
xex

2

dx =
1

2

∫ 1

−1

√
x+ 1

2
e(

x+1
2 )2dx ≈

20∑
i=1

ωif̃(xi) = 1.070752088 (9)

In Table 1 we reported the values computed with the Monte-Carlo estimator, for 10 points up to 10 000
000 points in [0, 1]. The error is relative to the Gauss-Legendre quadrature value calculated in (9).

Number of points in [0,1] Monte-Carlo estimator Relative Error
10 0.676271 36.841413 %
102 1.075085 0.404684 %
103 1.091594 1.946525 %
104 1.052200 1.732590 %
105 1.073763 0.281199 %
106 1.070650 0.009580 %
107 1.070727 0.002314 %

Table 1: Values of our estimator and relative error with respect to Gauss-Legendre quadrature result

It seems clear that as the number of points increases, the Monte-Carlo estimator converges to the value
obtained using the Gauss-Legendre quadrature method (which must be extremely accurate using 20 nodes
and weights). The graph in Fig. 1 below indeed confirms this result. Notice however that we obtained a
better accuracy of the estimator with 100 points than using 10 000 points. This turns out to be a coincidence,
and it is just that the 100 randomly chosen points happen to estimate the integral more accurately than the
random sample of 10 000 points.

The graph below shows the accuracy of our estimator for this specific integral in function of the number
of points in [0, 1] chosen at random (going from 1 to 3000). Observe that we indeed get more variance (larger
errors) when the estimator is calculated using a small number of points in [0, 1]

Figure 1: Accuracy of the estimator as a function of the number of points, compared with the Gauss-Legendre
quadrature result.
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3 Generation of continuous random variables

We investigated how to generate continuous random variables such as Gaussians, exponentials, and Cauchy
variables. Generating random variables is crucial for processing many different types of Monte-Carlo simula-
tions since they rely on randomness.

3.1 Inversion Method

Theorem 3.1. Let U ∼ U [0, 1]. Let X be a continuous random variable, with support I ⊆ R. If the
cumulative distribution function of X, given by FX(x) has a continuous inverse function F−1

X (x), then:

F−1
X (U) ∼ X

Proof. F and F−1 are both increasing functions on R. Moreover, ∀ u ∈ R, F−1(F (u)) = u if F is continuous
at u. Thus, ∀ a ∈ I, we have:

P(F−1
X (U) ≤ a) = P(FX(F−1

X (U)) ≤ FX(a))

= P(U ≤ FX(a))

=

∫ FX(a)

0

du

= FX(a)

Therefore, the CDF of F−1
X (U) is equal to FX(x), which implies that F−1

X (U) ∼ X.

Thus, to generate a continuous random variable whose c.d.f. is continuous and can be expressed as a closed-
form bijective function, it is sufficient to be able to generate a uniform variable on [0, 1].

3.1.1 Examples

Several common continuous random variables can be generated using the inversion method. Below are a few
of them

Exponential

For X ∼ exp(λ), the density function and the cumulative distribution function are given respectively by

fX(x) = 1(0,∞)(x)λe
−λx and FX(x) =

∫ x

0

λe−λtdt = 1− e−λx.

From this, we deduce that

F−1
X (x) =

−1

λ
ln(1− x).

By Theorem 3.1, in order to generate an exponential variable, we generated a sequence of 15 000 points
uniformly distributed on [0, 1] using NumPy, and applied the function F−1

X to the sequence. We then plotted
the frequency barplot of the observations in Figure 2.
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Figure 2: Distribution of the exponential variable (λ = 2) using the inversion method

One can see that the generated points indeed seem to follow an exponential distribution.

Cauchy Variable

We can use the same inversion method to generate points that follow a Cauchy distribution. Its p.d.f is given

by f(x) = 1
π

[
σ

(x−µ)2+σ2

]
∀x ∈ R. This distribution has 2 parameters: σ ∈ R>0 and µ ∈ R. The parameter

µ is the median of the distribution, while σ is said to be the scale parameter which determines how quickly
the tails of the distribution decay. Larger values of σ result in wider distributions with heavier tails, while
smaller values of σ result in narrower distributions with lighter tails.

The Cauchy distribution has the particularity that it does not have a finite expectation and variance. We
will omit this proof and jump straight to the computation of the inverse of the cumulative distribution.

For X ∼ Cauchy(µ, σ), the density function and the cumulative distribution function are given respectively
by

fX(x) = 1(R)(x)
1

π

[
σ

(x− µ)2 + σ2

]
and FX(x) =

1

π

∫ x

−∞

σ

(t− µ)2 + σ2
dt =

1

π

[
arctan

(
x− µ

σ

)]
+

1

2

We deduce that

F−1
X (x) = σ tan

[(
x− 1

2

)
π

]
+ µ.

As for the previous example, we generated 100 000 points uniformly distributed on [0, 1] and applied the
inverse cumulative distribution function to this sequence, for different values of µ and σ. On the histograms
in Figure 3, we restricted the support of our generated distribution to [−20, 20] in order to avoid displaying
histograms over large intervals which would make them hard to read. For each of the distributions shown
below, the sequences of 100 000 points are independent. The maximum value and minimum values for each
sequence were added underneath the graphs, to ”highlight” the fact that Cauchy distributions are heavy-
tailed.

The histogram of the distribution on the truncated interval [−20, 20] corresponds to the conditional
probability P(X ∈ · |X ∈ [−20, 20]). In particular, by the formula for conditional probability,

P(X ∈ · |X ∈ [−20, 20]) =
P(X ∈ · , X ∈ [−20, 20])

P(X ∈ [−20, 20])
. (10)
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To obtain the histograms in Figure 3, this implies that we have to scale the p.d.f. of the Cauchy distribution
over the interval [−20, 20] by the scalar P(X ∈ [−20, 20])−1 where X ∼ Cauchy(µ, σ).
This value corresponds to the inverse of the integral of the Cauchy p.d.f. on [−20, 20], which we automatically
calculate using the integrate.quad method from the library SciPy.

(a) Maximum value generated : 62 993.74
Minimum value generated : -43 252.64

(b) Maximum value generated : 188 983.25
Minimum value generated : -129 755.93

(c) Maximum value generated : 377 964.49
Minimum value generated : -259 513.88

(d) Maximum value generated : 692 942.23
Minimum value generated : -475 768.11

Figure 3: A few Cauchy distributions generated using the inverse method function, on the interval [−20, 20].
In red, fX(x)× P(X ∈ [−20, 20])−1.
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3.2 Box-Muller Method

One drawback of the inversion method is that it does not allow us to generate normal variables. This is because
the Gaussian integral does not have a closed-form solution, which makes it impossible to compute the inverse
of the c.d.f of a normally distributed random variable. The Box-Muller method is another technique used to
generate normally distributed random variables.

Theorem 3.2. Let Θ and R2 be two independent random variables, such that Θ ∼ U [0, 2π] and R2 ∼ exp( 12 ).
Then, we have that R cos(Θ) ∼ N (0, 1) and R sin(Θ) ∼ N (0, 1).

Proof. Suppose X,Y ∼ N (0, 1), X and Y are independent . Then, we can write the 2-dimensional vector
(X,Y ) in polar coordinates, i.e. (X,Y ) = (R cos(Θ), R sin(Θ)). Since X and Y are random, independent
quantities, R and θ are also random (and independent, although this is not obvious at first glare, but we’ll
come to it).
The joint p.d.f of X and Y is given by

fX,Y (x, y) = fX(x)fY (y) =
1√
2π

e
−x2

2
1√
2π

e
−y2

2 =
1

2π
e

−(x2+y2)
2

Observe that the change to polar coordinates gives us the following relations:

R2 = X2 + Y 2, Θ = arctan

(
Y

X

)

Our goal is now to find the p.d.f. of the joint distribution of R2 and Θ. Let us denote this p.d.f. by fR2,Θ(r, θ).
Let us make the following substitutions:

r = x2 + y2, θ = arctan

(
y

x

)

In order to make these substitutions, we need to multiply fX,Y by the determinant of the Jacobian J = ∂(x,y)
∂(r,θ) .

We have,

|J | = ∂(x, y)

∂(r, θ)
=

[
∂(r, θ)

∂(x, y)

]−1

=

∣∣∣∣∣ ∂r∂x ∂r
∂y

∂θ
∂x

∂θ
∂y

∣∣∣∣∣
−1

= 2−1 =⇒ |J | = 1

2
,

where θ ∈ [0, 2π) and r ≥ 0.

Thus, the joint p.d.f. of R2 and Θ is now given by fR2,Θ(r, θ) = fX,Y (x, y)|J |1{θ∈[0,2π)}1{r≥0}. Hence,

fR2,Θ(r, θ) = fX,Y (x, y)|J | =
1

2π
e

−(x2+y2)
2

1

2
=

1

2π
1{θ∈[0,2π)}︸ ︷︷ ︸

A

· 1
2
e

−r
2 1{r≥0}︸ ︷︷ ︸

B

Observe that B is the p.d.f of R2, which happens to be the p.d.f of an exponential distributed variable with
parameter λ = 2. Similarly, A is exactly the p.d.f of a uniformly distributed variable on [0, 2π] which we
could assign to the p.d.f of Θ. Since the joint p.d.f of Θ and R2 is the product of both probability distribution
functions, this shows that R2 and Θ are independent. Since X = R cos(Θ) then X ∼ N (0, 1). Similarly,
Y = R sin(Θ), and hence Y ∼ N (0, 1).

In Figure 4 are some plots of histograms of distributions generated using the Box-Muller method. To do
this, we used the module numpy.random to generate one sample of 20 000 points uniformly distributed on
[0, 2π], as well as a sample of 20 000 points distributed exponentially with parameter λ = 1

2 . We proceeded
to compute two sequences of 20 000 points, the first one using R cos(θ) and the second one using R sin(θ).
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(a) N (0, 1), using R cos(θ)
Maximum value generated : 4.14
Minimum value generated : -3.66

(b) N (0, 1), using R sin(θ)
Maximum value generated : 3.71
Minimum value generated : -3.99

(c) N (2, 4), using R cos(θ)
Maximum value generated : 10.21
Minimum value generated : -5.71

(d) N (2, 4), using R sin(θ)
Maximum value generated : 11.62
Minimum value generated : -5.43

(e) N (100, 225), using R cos(θ)
Maximum value generated : 160.44
Minimum value generated : 45.16

(f) N (100, 225), using R cos(θ)
Maximum value generated : 157.76
Minimum value generated : 40.74

Figure 4: Different normal distributions obtained using the Box-Muller method. For each distribution, the
two histograms plotted are computed using the same sequence of values for θ

11



4 2D random walk

Finally, we concluded this semester of DRP by investigating the 2-dimensional random walk on a 50 × 50
grid. This grid that we will refer to as ”C” has a boundary and we investigate how the initial point of a
random walk impacts the location of the exit point on the boundary.

Precisely, let us look at a subset of the boundary that we denote by A, that consists of half of the bottom-right
corner, ranging from entry 25 to 50. The entire boundary of C is denoted by ∂C. The graph below shows a
grid exactly formatted as the one we are studying, except it is 10 × 10 in terms of dimensions, rather than
50 × 50. The boundary here ranges from points (5, 0) to (10, 0) and from (10, 0) to (10, 5), where it would
range from (25, 0) to (50, 0) and from (50, 0) to (50, 25) on our studied grid.

Figure 5: A grid of the same format as the one that we will be studying. Notice the red boundary A in the
bottom right corner.

4.1 True solution

We will come up with a system of equations that will help us get the probability for each point that a random
walk starting at this specific point leaves the grid through A.

Let S denote the random walk on the grid. Let us define the function r : {(x, y) : (x, y) ∈ C} 7→ [0, 1] which
maps the point (x, y) to the probability that a random walk on S starting at (x, y) would leave C through A.
So far, we do not know the closed form of this function but we’ll manage to compute it in a recursive way:

Derivation By the Law of Total Probability:

r(x, y) = P(S exits C through A | S0 = (x, y))

=
∑

i∈{−1,+1}

P(S exits C through A,S1 = (x+ i, y) | S0 = (x, y))

+
∑

j∈{−1,+1}

P(S exits C through A,S1 = (x, y + j) | S0 = (x, y))

Let B denote the event ”S exits C through A”. Then,
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∑
i∈{−1,+1}

P(B,S1 = (x+ i, y) | S0 = (x, y))

+
∑

j∈{−1,+1}

P(B,S1 = (x, y + j) | S0 = (x, y))

=
∑

i∈{−1,+1}

P(B,S1 = (x+ i, y), S0 = (x, y))

P(S0 = (x, y))

+
∑

j∈{−1,+1}

P(B,S1 = (x, y + j), S0 = (x, y))

P(S0 = (x, y))

We can multiply the first fraction by

P(S1 = (x+ i, y), S0 = (x, y))

P(S1 = (x+ i, y), S0 = (x, y))

and the second fraction by

P(S1 = (x, y + j), S0 = (x, y))

P(S1 = (x, y + j), S0 = (x, y))

in order to get ∑
i∈{−1,+1}

P(B,S1 = (x+ i, y), S0 = (x, y))

P(S0 = (x, y))

+
∑

j∈{−1,+1}

P(B,S1 = (x, y + j), S0 = (x, y))

P(S0 = (x, y))

=
∑

i∈{−1,+1}

P(B,S1 = (x+ i, y), S0 = (x, y))P(S1 = (x+ i, y), S0 = (x, y))

P(S0 = (x, y))P(S1 = (x+ i, y), S0 = (x, y))

+
∑

j∈{−1,+1}

P(B,S1 = (x, y + j), S0 = (x, y))P(S1 = (x, y + j), S0 = (x, y))

P(S0 = (x, y))P(S1 = (x, y + j), S0 = (x, y))

Observe now that first fraction fraction can be rearranged to give

P(B,S1 = (x+ i, y), S0 = (x, y))P(S1 = (x+ i, y) | S0 = (x, y))

P(S0 = (x, y))P(S1 = (x+ i, y) | S0 = (x, y))

=
P(B,S1 = (x+ i, y), S0 = (x, y))

P(S1 = (x+ i, y), S0 = (x, y))︸ ︷︷ ︸
P(B|S1=(x+i,y),S0=(x,y))

P(S1 = (x+ i, y), S0 = (x, y))

P(S0 = (x, y))︸ ︷︷ ︸
P(S1=(x+i,y)|S0=(x,y))

Since S is a Markov Chain, we have:

• 1. ∀ 0 ≤ m < n P(Sn = xn | Sm = xm, . . . , S1 = x1, S0 = x0) = P(Sn = xn | Sm = xm)
In other words, conditioned on the past, the future position of the random walk S depends on the most
recent past. Hence, P(B | S1 = (x+ i, y), S0 = (x, y)) = P(B | S1 = (x+ i, y))

• P(S1 = (x+ i, y) | S0 = (x, y)) = 1
4
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The second fraction can be rearranged in the same way. Using these 2 facts, we can simplify a lot the
expression above

r(x, y) =
∑

i∈{−1,+1}

P(B,S1 = (x+ i, y), S0 = (x, y))P(S1 = (x+ i, y), S0 = (x, y))

P(S0 = (x, y))P(S1 = (x+ i, y), S0 = (x, y))

+
∑

j∈{−1,+1}

P(B,S1 = (x, y + j), S0 = (x, y))P(S1 = (x, y + j), S0 = (x, y))

P(S0 = (x, y))P(S1 = (x, y + j), S0 = (x, y))

=
∑

i∈{−1,+1}

P(B | S1 = (x+ i, y), S0 = (x, y))P(S1 = (x+ i, y) | S0 = (x, y))

+
∑

j∈{−1,+1}

P(B | S1 = (x, y + j), S0 = (x, y))P(S1 = (x, y + j) | S0 = (x, y))

=
∑

i∈{−1,+1}

P(B | S1 = (x+ i, y))

4
+

∑
j∈{−1,+1}

P(B | S1 = (x, y + j))

4

=
1

4

[
r(x+ 1, y) + r(x− 1, y) + r(x, y + 1) + r(x, y − 1)

]
We have now found a recursive formula for the function r(x, y). Recall that r(x, y) is the function that maps
to the probability that a random walk starting at (x, y) ∈ C \ ∂C exits C through A. The region C \ ∂C
corresponds to the set of (50 − 2) · (50 − 2) = 482 = 2304 points that lie inside C and that are not on the
boundary. Hence, we can construct a system of 2304 linear equations to solve for r(x, y) at any point in
C \ ∂C, given by


4r(x, y) = r(x+ 1, y) + r(x− 1, y) + r(x, y + 1) + r(x, y − 1), If (x, y) ∈ C \ ∂C
r(x, y) = 0, If (x, y) ∈ ∂C \A
r(x, y) = 1, If (x, y) ∈ A

We built the system of 2304 equations using NumPy and solved for the value of r(x, y) at all points. We then
plotted the heat map of the solution:

Figure 6: Heat map of the values of r(x, y) at each point on C
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4.2 Approximating the true solution with Monte-Carlo simulations

We have seen in the previous section that for each initial point (x0, y0) at which a random walk would start
on a 50 × 50 grid, we can obtain the exact probability that the walk would leave the grid C through A.
However, one could also decide that the math involved is not worth the head ache and try to ”bruteforce”
this problem by simulating multiple random walks on the same grid and infer these probabilities.

We used this approach to show that the average of the Monte-Carlo simulations converge to the true solutions.
To achieve this, we created a Python function that takes as input the number of random walks to emulate
at each point of the grid. Our algorithm works as follows:

1. Select the number N of simulations to run.

2. Generate a 48× 48 matrix as a NumPy array. The matrix’ entries are 0 for the moment. Let

3. Start N random walks at each point of the grid (each entry of the matrix). When a random walk leaves
C through A, add 1 to the entry of the point at which the RW started.

4. After the RW have all exited C, divide each entry of the matrix by N . Now, each entry of the matrix
represents the frequency at which RWs starting at the corresponding point leave C through A.

We ran those simulations by making N vary, and plotted heat maps using the library Matplotlib. We let
N ∈ {3, 5, 10, 20, 50, 100}
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(a) 3 random walks initialized at each point (b) 5 random walks initialized at each point

(c) 10 random walks initialized at each point (d) 20 random walks initialized at each point

Figure 7: Heat Maps of the probabilities of leaving C through A in function of the number of random walks
started at each point on the grid.

Before looking at higher number of simulations, let’s analyze these 4 heat maps. One can easily see that
for every different value of N , the RWs started close to the region A tend leave C through A with very
high probability (this corresponds to the large yellowish or green cluster on the bottom-right corner of each
simulation).
However, we notice that for low numbers of simulations (mostly for 3 and 5), there are a few outliers, lying
in the upper half of the grids, even sometimes in the upper left half of the grids. Unsurprisingly, it turns out
that this is due to the fact that using 3 or 5 simulations is just not enough for obtaining frequencies close
to the true probabilities obtained above. As mentioned in the introduction, Monte-Carlo simulations rely
on the Law of Large Numbers, which itself requires N (here) to be large in order to approximate the true
probabilities.

Below are the same heat maps except we used much larger numbers of simulations.

Note : these heat maps were obtained by running our program locally rather than using the Google Colab
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Notebook. This was done in order to accelerate the computations (the running times are given in the
sub-captions of each heat maps below.)

(a) 300 random walks initialized at each point
Running time : 785 seconds (13m 05s)

(b) 400 random walks initialized at each point
Running time : 802 seconds (13m 22s)

(c) 500 random walks initialized at each point
Running time : 999 seconds (16m 39s)

(d) 1000 random walks initialized at each point
Running time : 2014 seconds (33m 34s)

Figure 8: Heat Maps of the probabilities of leaving C through A in function of the number of random walks
started at each point on the grid.
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4.3 Error Analysis of the Monte-Carlo simulations

The heat maps are a nice tool to visualize if our simulations from section 3.2 do well compared to the
true solution obtained in section 3.1. However, they are only visual tools, and we would prefer a metric
to quantify the error of each simulation. This will allow us to observe how the number of random walks
simulated influence the error of the simulations. The metric we introduce is the Root Mean Squared Error
(RMSE). Let yij denote the true probability of leaving C through A when the random walk S starts at (i.j)
Also, let ŷij denote the probability of the same event, but this time simulated with n random walks. We
have

RMSE =

√√√√ 1

2304

48∑
i=1

48∑
j=1

(yij − ŷij)2

Observe that if ST denotes the 48 × 48 matrix of true solutions, and S̃n denotes the 48 × 48 matrix of

probabilities estimated with n random walks, the Frobenius Norm of ST−S̃n

48 becomes the RMSE:

Let Ẽn = 1
48 (ST − S̃n)

∥Ẽn∥F =

∥∥∥∥∥ST − S̃n

48

∥∥∥∥∥
F

=

√√√√√ 1

482︸︷︷︸
=2304

48∑
i=1

48∑
j=1

(yij − ŷij)2

= RMSE

By the Law of Large Numbers, we have

lim
n→∞

RMSE = lim
n→∞

∥Ẽn∥F = 0

Below is a plot of the RMSE as a function of the number of random walks per simulation.

Figure 9: RMSE of our model as a function of the number of random walks

One can easily see that indeed, the error tends to decrease as the number of random walks increase. In
the table below, we report the RMSE for other numbers of simulations.
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n RMSE = ∥Ẽn∥F
3 0.187013
5 0.146881
10 0.105036
20 0.076647
50 0.051558
100 0.041524
300 0.030604
400 0.028538
500 0.028277
1000 0.025170

Table 2: Recorded RMSE’s in function of the number of random walks simulated
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