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ABSTRACT. The developments in fractal geometry during the 20th century have achieved a feat quite rare in

modern mathematics: they are known by normal people. That is, some of the public at least has a vague idea

of what a fractal is. But as we venture down the spiraling, self-similar nature of these beautiful behemoths, a

variety of complications arise that challenge conventional understandings. This paper is subsequently divided

into two parts. The first is an overview of the basic mathematics behind two of the most popular fractals: the

Mandelbrot Set and the Sierpinski Triangle. The second introduces a construction that illustrates some of the

seemingly paradoxical properties that fractals can have, along with a connection to the coastline problem.
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1. FRACTALS: THE BASICS

If one were to ask a normal person what they knew about fractals, there is a decent chance that they would

mention something about beautiful images or certain fractals they may have come across, such as the Man-

delbrot Set. It is also likely that they could tell you little about the mathematical formulation of these fractals

or various properties they may hold. It is thus necessary to lay down the fundamental definitions and the

key mathematical ideas behind what makes a fractal. This section will do so through explorations into two

popular fractals: the aformentioned Mandelbrot set and the Sierpinski Triangle.

Date: June 2024.
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1.1. The Mandelbrot Set: An Exploration Into Self-Similarity.

The Mandelbrot Set is a bizarre creation. The beautiful image (see Figure 1) makes one think of the fractal as

a piece of art, not a set per se. Yet many fractals are merely a collection of numbers or points. The Mandelbrot

Set exemplifies this and is constructed in the following way:

First, let c P C. Consider the function fcpzq “ z2 ` c. Start at z “ 0, and then iterate the function ad

infinitum. That is, consider fcp0q, fpfcp0qq, fpfpfcp0qqq, and so on. A point c is in the Mandelbrot set if the

sequence of iterations does not diverge to infinity! Thus, the Mandelbrot Set is just a collection of points that

satisfy a certain property. Indeed, we get the beautiful image by color coding regions based upon how soon

the sequence of absolute values of the function iterations cross a threshold value, e.g. two iterations until the

modulus (length) of the complex number is larger than 3.

FIGURE 1. The Mandelbrot Set

What we get is an image that exhibits an important feature of fractals, that being self-similarity. Informally,

self-similarity means that when you ‘zoom in’ on one part of the fractal, the fractal starts to ‘repeat itself’. If

we consult the following figures, we can see how when zooming in on the boundary of the Mandelbrot set,

the image start to occur again, although in a slightly different way.
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(A) (B)
FIGURE 2. Zoomed In Images of the Mandelbrot Set

With this intuitive understanding in mind, we can now give a formal definition of self-similarity.

Definition 1.1 (Self-Similarity). Let X be a compact, topological space. We say that X is self-similar if there

exists an indexing set S and a set tfs : s P Su of non-surjective homeomorphisms such that X “
Ť

sPS

fspXq.

Recall that a homeomorphism is a bijective, continuous function between topological spaces with a contin-

uous inverse. Basically, what this formal definition is saying is that a fractal is self-similar if we can write

it as a collection of bijective, continuous transformations of itself. Although seemingly complicated, this

definition makes sense: the fractal is constructed from transformations of itself, so some parts of the fractal

can ‘look like’ the whole or other parts.

1.2. The Sierpinski Triangle: How Can We Make Fractals?

The next object we will look at is the Sierpinski Triangle (see Figure 3). One reason to study it is due to

its interesting construction. Indeed, it is common for fractals to be made in the way the Sierpinski Triangle

is, where we begin with an initial object, the initiator, and replace parts of the object with new objects, the

generators. If we refer to Figure 4, we see that the Sierpinski Triangle is made by starting with a normal

triangle and then removing the ‘middle’ triangle, repeating this process ad infinitum for each remaining

triangle at each stage. The Sierpinski Triangle is the part of the original triangle that is left over.
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FIGURE 3. Sierpinski Triangle

FIGURE 4. Generation Process for the Sierpinski Triangle

Before concluding this section, I would like to ask the following question: What exactly is a fractal? We

discussed the property of self-similarity and the initiator-generator process that can be used when talking

about fractals, but we actually have not defined what a fractal is!

To do so, we will need to distinguish between two different definitions: the topological dimension and the

Hausdorff dimension of a space. This is because a fractal is defined in relation to these two ideas of dimen-

sion. As a motivation, consider the Sierpinski Triangle: What is its dimension? On the one hand, it is a

geometric object embedded in R2 and could be two dimensional. But at the same time, we can also view it

as one-dimensional given that the continual removal of triangles effectively removes a notion of area from

the object, making it akin to a collection of lines more than a two-dimensional object. This is all informal

and general, so to hone down precise metrics of dimensionality, mathematicians have defined a variety of

definitions of dimension. These may give different values for the dimension, however.

We consider a topological space X that can be written as the union of a collection of open sets (an open

cover), e.g., if I is an index set and tOiu is the family of open sets, then X “
Ť

iPI

Oi. Furthermore, we define

the order of an open cover as the smallest n for which every point in the space belongs to at most n open sets
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in the cover. Finally, recall that a refinement of an open cover is another open cover for which each open set

in the refinement is contained in some open set of the original cover.

We can now state the definition of the topological dimension:

Definition 1.2 (Lebesque Covering Dimension (Topological Dimension)). The Lebesque Covering Dimen-

sion of a topological space X is the minimum value d such that every finite open cover of X has an open

refinement with order d+1. If no such d exists, the space is said to have an infinite covering dimension.

As a brief aside, we can think of the order of open covers as a kind of maximum thickness, and a refinement

is a more precise cover of a space. Thus, the Lebesque Covering Dimension is such that there is at least one

refinement of every open cover that has a ‘maximum thickness’ of d ` 1.

We will now compare this with the Hausdorff dimension. To do so, however, we first have to define the

Hausdorff metric:

Definition 1.3 (Hausdorff Metric). Let X be a metric space. Consider a subset S Ă X , and let d P r0,8q.

Further, let I be a countable index set, and consider an arbitrary countable open cover tUiu of S. Then we

can construct the following outer measure: Hd
δ pSq “ inft

ř8

i“1pdiampUiqqd :
Ť

iPI

Ui Ě S, diampUiq ă δu. To

construct the d-dimensional Hausdorff metric, we consider the limit of the above quantity as δ collapses to

0: HdpSq “ lim
δÑ0

Hd
δ pSq.

Before proceeding to the definition of the Hausdorff dimension, a quick explanation of the Hausdorff metric

is in order. We first establish a countable open cover of the metric space. We calculate the diameter of each

part of the cover such that the diameter is less than a pre-specified miniscule δ and calculate the infinite sum

over these diameters, raised to the dimensional power d. We take the infimum over all possible covers for

the prespecified delta and d. To get the d-dimensional Hausdorff metric, we let δ go to 0. For each d, this

represents a kind of ‘minimum metric’ on the space, so to speak. Now that we understand what’s happening

in this definition, we can now define the Hausdorff dimension:

Definition 1.4 (Hausdorff Dimension). The Hausdorff dimension dimHpXq of the metric space X is dimHpXq “

inftd ě 0 : HdpXq “ 0u.

The Hausdorff dimension d is just the infimum over all d such that the Hausdorff metric is 0. That is, it

is the minimum power needed to raise the miniscule diameters to in order to ensure the Hausdorff metric

is 0. Note that this number does not have to be an integer. As we can see, the Hausdorff dimension is

incredibly complicated! Actually calculating it is quite challenging, so one approach to (over) approximate

this dimension is as follows:
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Definition 1.5 (Box-Counting Dimension). Let (X,d) be a metric space. Suppose we can cover a fractal S

Ă pX, dq with a set of boxes. WLOG, say the side length of each box is r, and there are N boxes that cover

the fractal. The Box-Counting Dimension is

dimboxpSq “ lim
rÑ0

lnpNq

lnp
1

r
q

.(1.1)

For our purposes, we can now define a fractal the same way Benoit Mandelbrot defined a fractal:

Definition 1.6 (Fractal). A fractal is a set whose Hausdorff dimension strictly exceeds its topological dimen-

sion.

2. NOT-SO PERFECT SQUARES

We have just covered a lot of content. We reviewed some of the approaches to generating fractals and some

overarching ideas and definitions of the math behind fractal geometry, namely self-similarity, topological

dimension, and the Hausdorff dimension. We saw how self-similarity worked within the Mandelbrot Set and

how the Sierpinski Triangle raises questions of dimension, what a fractal even is, and how fractals are often

constructed. In this section, I explore an example of a construction I thought of when talking with my other

members of the Directed Reading Program.1 This example explores some of the paradoxes that can arise

when thinking of the infinite nature of fractals and how it connects to a major area of focus in the literature

on fractals, the Coastline Problem.

The construction is as follows. First, we start with a unit square defined over the interval r0, 1s. This will act

as the initiator. Note that this square has an area of 1 and a perimeter of 4. For the first iteration, we divide

this unit square into four smaller squares in each quadrant of the original unit square (see the figure). Remove

the top left and bottom right squares. We are now left with two squares, one defined over the interval r0,
1

2
s

and the other defined over r
1

2
, 1s, both with an area of

1

4
and a perimeter of 2. Note that this implies the total

area of this second construction is now one-half but that the total perimeter is still 4.

We can repeat this process of removing top left and bottom right squares from each newly generated square.

Doing so continually adds to an ascending staircase of squares, with each square getting smaller and smaller.

Nonetheless, it is easy to show that while the total area collapses toward zero, the perimeter is constantly equal

to 4. That is, we have constructed an object that continually loses area but maintains the same perimeter, along

with the object ‘collapsing towards’ the line y “ x defined over the unit interval.

1I thank them for their help in refining the construction.
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FIGURE 5. Generator Process

To elucidate this example I present a quick proof of these two interesting properties of the construction.2

Theorem 2.1. @n P N, let Pn denote the sum of the perimeters and An the sum of the areas of all squares at

the nth stage. Then @n P N, Pn “ 4 and lim
nÑ8

An “ 0.

Proof. To prove the claim concerning the perimeter, we will manually calculate the perimeter of each square

at an arbitrary stage and sum over the number of squares at that stage. We see that the length of each side of

the square at each stage is
1

2n´1
since the length falls by a half at each stage and starts at 1 for n “ 1. This

means that the perimeter of each square is
4

2n´1
. However, we also see that the number of squares grows at an

‘exponential’ rate, with the number of squares doubling after each stage (each square becomes two smaller

ones), so the number of squares at any stage is 2n´1. Thus, Pn “
4

2n´1
˚ 2n´1 “ 4.

For the area, since the side length at each stage is
1

2n´1
, then the area of each square is

1

22pn´1q
and An “

1

22pn´1q
˚ 2n´1 “

1

2n´1
so lim

nÑ8
An “ 0 trivially. □

Recall the intuition that this construction collapses toward the line y “ x. However, we have not defined our

notion of ‘collapses’, or for a set of points to ‘approach’ another set. Before moving onto the next section,

I briefly introduce a concept that can be used in the course of studying fractals to prove that one set can

‘converge’ to another set. This concept is called Kuratowski convergence.3

2In Euclidean geometry, the area of a square is defined as the square’s length times its width. The perimeter is likewise defined

as the sum of the side lengths of the square.
3Although not used on this construction, it is still important to see how the construction of fractals or fractal-like objects can be

a limiting process. We thus need to be equipped with abstract notions of convergence.
7



Definition 2.2 (Kuratowski Convergence). Let X be an arbitrary set, and (X,d) be a metric space. If we let

x P X and A Ă X be a non-empty subset of X, then we can define the distance between the point and the

subset as:

(2.1) dpx,Aq “ inf
yPA

tdpx, yqu, @x P X.

Moreover, let pAnq8
n“1 be a sequence of subsets of X. Then we can define the two following quantities, the

Kuratowski Limit Inferior and Kuratowski Limit Superior, respectively:

(2.2) LiAn “ tx P X : lim sup
nÑ8

tdpx,Anqu “ 0u,

(2.3) LsAn “ tx inX : lim inf
nÑ8

tdpx,Anqu “ 0u.

Note, we are taking the lim sup and lim inf, not a limit of a sequence of suprememums and infimums. If these

two quantities are equal to each other, that set is called the Kuratowski limit of An, denoted Lim
nÑ8

An. That is,

(2.4) Lim
nÑ8

An “ LiAn “ LsAn.

Now that the technicalities are out of the way, let’s discuss what exactly this construct shows. We can

continually remove and keep squares from an original initiator square such that we preserve the perimeter but

shrink the area. Intuitively, the resulting staircase shrinks towards the line y “ x, and it might be possible

to prove this with different notions of convergence, including the one just defined.4 Yet the line has length
?
2. So we can in principle find subsets of the plane that are arbitrarily as close to the line y “ x as we want,

but that have a larger ‘length’! This is similar to the Coastline Problem in that, when delving into geometric

objects that are the result of an infinite generation process from some starting point, we can get quite weird

results concerning its length, volume, and so on, even if the resulting objects are nearly indistinguishable

from other, more simple objects. Here, two objects can converge but have different lengths.5 In the Coastline

Problem, we will see that fractal-like objects in nature can get ever more complex as our measurements get

more precise, potentially extending the measured length of a coastline to infinity, implying that the coastline

of many countries do not have a well-defined length!

4One can also show this by seeing how, for a given ϵ tube around the line, we can find a step along the generation such that the

staircase lies entirely within that tube. This is similar to uniform converge of the staircase.
5After looking into this construction, me and other DRP members in my group found that it was coincidentally similar to the

staircase paradox from geometry. For those unfamiliar with this, the staircase paradox starts with the top half of the unit square

and thus concerns itself with the fact that at each stage, the length of the top half of our staircase is 2 but converges to a line with

length
?
2.
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2.1. The Coastline Problem.

But what is the Coastline Problem exactly? The name derives from an analysis of the length of the coastline

of Britain by Benoit Mandelbrot and of other coastlines by other mathematicians before him. We can start

with some simple questions: How long is the coastline of Britain? We need to measure the coastline, but how

so?

One approach goes as follows. Suppose we had a ruler and started at a certain spot on the coast. We then

used this ruler as an approximation of the uneven surfaces and added up the total length this ruler gave as we

went around the entire coast. Now, further suppose we wanted a finer measurement tool than a ruler. Imagine

we had a smaller ruler that could get into some of the cracks and crevices that the larger ruler glossed over

and repeated the process with this more precise instrument. Evidently, we would get more detail and the

length of the coastline would increase! The Coastline Problem states, in an informal sense, that if we try

to acquire continually smaller rulers, the measured length of the coastline could grow without bound. For a

visual understanding, see the following figure.

FIGURE 6. The Coastline Problem Visualized

To wrap up this aside, we should note that the coastline problem is more of a theoretical issue than a practical

one. There are a variety of ways to approximate coastline lengths in real life that are useful for administrative

governance purposes. The issue theoretically is in the potentially infinite nature of many of the fractal-like

elements of a coastline, but in reality a coastline has to be finite to some level, so it has to have some kind of

finite length.6 The problem in a practical sense boils down to increased precision in measurement leading to

unbounded increases in length and exemplifies the difficulty and care needed when working with fractals.

6Philosophically, this relates to the debate over the existence of so-called ‘actual infinities’. For instance, we can ask if infinite

sets can ‘exist’ in reality. This is an unresolved debate and has wide-ranging implications, beyond the measurability of a coastline.

Interestingly, the denial of absolute infinities is used in the Kalam Cosmological argument for the existence of God!
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3. CONCLUSION

In this exploration into fractal geometry, we have defined some of the fundamental concepts of the field,

namely self-similarity, topological dimension, Hausdorff dimension, the box-counting dimension, and related

topics. We saw how these concepts played out in two popular fractals, namely the Mandelbrot Set and the

Sierpinski Triangle, while at the same time seeing the different ways fractals can be made. To reinforce the

confusing and paradoxical nature of many fractals, I presented a construction I made and analyzed some of

its properties before presenting an overview of the Coastline Problem. From all this, something should be

self-evident: while fractal geometry is confusing, it is quite an intellectually lucrative field! From beautiful

art to philosophical dilemmas and re-evaluations of our understanding of nature, the fruits of studying fractals

and the math behind them is widespread and rich.
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