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1 Introduction

It is well-know from Banach Fixed Point Theorem that for any complete metric
space (X, d) with a contraction map T : X → X on X (that is, there exists
0 ≤ q < 1 such that d(T (x), T (y)) ≤ qd(x, y) for any x, y ∈ X), T has a
unique fixed point. Naturally, this extends to ultrametric spaces (Z, d). Since
ultrametric spaces are more restrictive then usual metric spaces, it could be
interesting to see if some conditions of Banach Fixed Point Theorem on the
mapping T : Z → Z could be dropped in order to still ensure the existence of
a fixed point. The main goal of this report is to summarize a result from [1]
which presents a new class of functions with fixed points in ultrametric spaces
and also properties some of these fixed points have.

Definition 1.1. Let X be a field, a valuation on X is:

a map | · | : X → R such that for some real number C ≥ 1, the following holds:

(1) |x| ≥ 0 for any x ∈ X with equality if and only if x = 0
(2) |xy| = |x| · |y| for any x, y ∈ X
(3) for x ∈ X: if |x| ≤ 1, then |x+ 1| ≤ C

Definition 1.2. A valuation | · | on X satisfies the ultrametric inequality iff:

for any x, y ∈ X, |x+ y| ≤ max{|x|, |y|}

Definition 1.3. (X, d) is an ultrametric space iff it is a metric space and sat-
isfies the strong triangle inequality, that is:

for any x, y, z ∈ X, d(x, z) ≤ max{d(x, y), d(y, z)}

Definition 1.4. for an ultrametric space (X, d), balls in (X, d) are:

B(a, r) = {x ∈ X : d(x, a) < r} for a ∈ X and r ∈ R>0

B(a, r) = {x ∈ X : d(x, a) ≤ r} for a ∈ X and r ∈ R>0
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Figure 1: Result the strong inequality infers

2 Properties of balls

***For this section, we let X be a field and (X, d) an ultrametric space with:

d(x, y) := |x− y| for | · | a valuation

Lemma 2.1. for any a ∈ X and for any r > 0:

(1) B(a, r) = a+B(0, r) and (2) B(a, r) = a+B(0, r)

proof of (1). Let x ∈ B(a, r), then d(a, x) < r. Let y = x − a, note that
y ∈ B(0, r) as d(0, y) = |0 − y| = |y| = |x − a| < r. So, x = a + y and thus
x ∈ a + B(0, r) and B(a, r) ⊆ a + B(0, r). Now, let x ∈ a + B(0, r), then
x = a + y with y ∈ B(0, r) ⇒ |y| < r ⇒ |x − a| < r. So, x ∈ B(a, r) and
a+B(0, r) ⊆ B(a, r). We thus have, B(a, r) = a+B(0, r)

Lemma 2.2. For (X, d) an ultrametric space and x0 ∈ X:

if |x0| ≥ r, then B(x0, |x0|) ⊆ X \B(0, r)

Proof. Let z ∈ B(x0, |x0|), then (by the def. of a ball)

|z − x0| < |x0| (1)

suppose for a contradiction z ∈ B(0, r) (in particular |z| < r ≤ |x0|)
⇒ |z − x0| ≤ max{|z|, |x0|} = |x0|, we then have:

|x0| = |x0 − z + z| ≤ max{|x0 − z|, |z|} ≤ |x0| ⇒ |x0 − z| = |x0|

which contradicts (1).
We thus get, |z| ≥ r, and so z ∈ X \B(0, r) ⇒ B(x0, |x0|) ⊆ X \B(0, r)

Theorem 2.3. Every ball is both open and closed

Proof. By Lemma 2.1, we consider the open ball B(0, r) (centered at 0). We
show that X \B(0, r) is open. This will infer that B(0, r) is closed.
Let x /∈ B(0, r), then by Lemma 2.2 we have B(x, |x|) ⊆ X \B(0, r).
Then, for any x ∈ X \ B(0, r), x is contained in an open set contained in
X \B(0, r), which means that X \B(0, r) is open, and thus B(0, r) is closed.
Now, we consider the ball B(0, r).
Let x be such that |x| ≤ r. Consider y ∈ B(x, r) (i.e. |y − x| < r). Then,
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|y| = |x+ (y − x)| ≤ max{|x|, |y − x|}. We have two cases:
(1) |x| < r ⇒ |y| < r ⇒ B(x, r) ⊆ B(0, r) ⊆ B(0, r)
(2) |x| = r ⇒ |y| ≤ r ⇒ B(x, r) ⊆ B(0, r)
And so each x ∈ B(0, r) is contained in an open set contained in B(0, r), thus
B(0, r) is open.

Figure 2: Theorem 2.3

Remark. It is not necessarily the case that B(a, r) = B(a, r). Look at X = Z+

and d : Z+ × Z+ → [0, 1] defined as:

d(m,n) :=

{
0 if m = n

max
{

1
m , 1

n

}
if m ̸= n

Then, for the ball B(1, 1) in (X, d):

B(1, 1) = {n ∈ Z+ : d(n, 1) < 1} = {1} ≠ Z+ = {n ∈ Z+ : d(n, 1) ≤ 1} = B(1, 1)

Theorem 2.4. Let Y ⊂ X and B ⊂ X where B is a ball, then

if B ∩ Y ̸= ∅, then it is a ball in the subspace (Y, d)

Proof. Let B = B(b, r) Suppose B ∩ Y ̸= ∅, then consider a ∈ B ∩ Y . Denote

BY (a, r) := {y ∈ Y : d(a, y) ≤ r}

with
s := sup{r : By(a, r) ⊆ B ∩ Y }

We show that B ∩ Y = BY (a, s) (and so B ∩ Y is a ball in (Y, d)). Note that,
by definition of s, we already have BY (a, s) ⊆ B ∩ Y . Now, let x ∈ B ∩ Y , but
suppose d(a, x) > s.
claim: BY (x, d(a, x)) ⊆ B ∩ Y

for z ∈ BY (x, d(a, x)), d(z, b) ≤ max{d(z, x), d(x, a), d(a, b)}. But we also have:

d(x, a) ≤ max{d(x, b), d(b, a)} < r

since a, b, x ∈ B. And so, d(z, b) < r ⇒ z ∈ B ∩ Y
But this contradicts the definition of s, and so we have d(a, x) ≤ s, in particular,
x ∈ BY (a, s). So

BY (a, s) = B ∩ Y

as desired.
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Proposition 2.5. For any ball B(a, r), for any x ∈ B(a, r),

B(a, r) = B(x, r)

Proof. Since x ∈ B(a, r), |x− a| < r.
Now look at y ∈ B(x, r), then |y − x| < r. So, |y − a| = |y − x + x − a| ≤
max{|y − x|, |x− a|} < r.This gives us: B(x, r) ⊆ B(a, r).
For y ∈ B(a, r), |y−a| < r. So, |y−x| = |y−a+a−x| ≤ max{|y−a|, |x−a|} < r.
Thus, B(x, r) = B(a, r) as desired.

Remark. The proof of Theorem 2.4 becomes trivial by 2.5. For B = B(a, r),
we can assume a ∈ Y ,

B ∩ Y = {x ∈ X : d(a, x) < r} ∩ Y = {x ∈ Y : d(a, x) < r} = BY (a, r)

In particular, B ∩ Y is a ball in (Y, d).

Proposition 2.6. Every two balls are either disjoint or contained one in an-
other.

Proof. For B(a1, r1) ∩B(a2, r2) ̸= ∅. Consider x ∈ B(a1, r1) ∩B(a2, r2). Then,
by Proposition 2.5, B(a1, r1) = B(x, r1) and B(a2, r2) = B(x, r2). In the case
where r1 ≤ r2 we get B(a1, r1) ⊆ B(a2, r2), otherwise B(a2, r2) ⊂ B(a1, r1).

Figure 3: Proposition 2.6

3 Spherical completeness

Definition 3.1. (X, d) is said to be spherically complete iff:

for any decreasing sequence of nested balls (Bn)n∈N in (X, d),
⋂

n∈N Bn ̸= ∅

Theorem 3.1. Let X ̸= ∅ be spherically complete, and let (Z, d) be an ultra-
metric space such that X ⊂ Z, then

for any z ∈ Z,there exists x0 ∈ X such that
d(z, x0) = d(z,X) = inf{d(z, x) : x ∈ X}

Proof. Fix z0 ∈ Z, d(z0, X) = inf{d(z0, x) : x ∈ X} does exist. Therefore, there
exists a decreasing sequence (rn)n∈N in R such that limn→∞ rn = d(z0, X).
Let Bn = B(z0, rn) = {z ∈ Z : |z0 − z| < rn}. Then, Bi ⊃ Bi+1 for all i ∈ N.
So, B1 ∩X ⊃ B2 ∩X ⊃ ... is a sequence of nested balls in X (by Theorem 2.4).
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Since X is spherically complete, we have that there is some a ∈ ∩n∈NBn ∩X.
⇒ |z0 − a| < rn for any n ∈ N and in particular, |z0 − a| = d(z0, X).
Since a ∈ X, we indeed have that there exists some a ∈ X such that d(z0, a) =
d(z0, X) = inf{d(z0, x) : x ∈ X}.

Proposition 3.2. A sequence (xn)n∈N in ultrametric space (X, d) is Cauchy iff

lim
n→∞

d(xn, xn+1) = 0

Example (⋆). Define d : Z+ × Z+ → R as:

d(n,m) =

{
0 if n = m

max
{
1 + 1

n , 1 +
1
m

}
if n ̸= m

Then, (Z+, d) is an ultrametric space which is complete but not spherically com-
plete:
(i) d(n,m) ≥ 0 with equality iff n = m, and d(n,m) = d(m,n) are easy, we
show the strong triangle inequality.
Let k,m, n ∈ Z+, then

max{d(k,m), d(m,n)} = max

{
max

{
1 +

1

k
, 1 +

1

m

}
,max

{
1 +

1

m
, 1 +

1

n

}}
= max

{
1 +

1

k
, 1 +

1

m
, 1 +

1

n

}
≥ max

{
1 +

1

k
, 1 +

1

n

}
= d(k, n)

as desired. We thus have (Z+, d) is indeed an ultrametric space.
(ii) We want to show that for (xn)n∈N a Cauchy sequence, its limit exists and is
in Z+. By Proposition 3.2, consider a sequence such that limn→∞ d(xn, xn+1) =
0. So there exists N ∈ N such that for any n > N , xn = xn+1 = k ∈ Z+. In
particular, limn→∞ xn = k ∈ Z+. So (Z+, d) is indeed complete.
(iii) To show that (Z+, d) is not spherically complete, we find a sequence of
nested balls (Bn)n∈N such that ∩n∈NBn = ∅.
Let Bn := B(n, 1 + 1

n ), then

Bn =

{
m ∈ N : d(m,n) ≤ 1 +

1

n

}
=

{
m ∈ N : max

{
1 +

1

m
, 1 +

1

n

}
≤ 1 +

1

n

}
=

{
m ∈ N : 1 +

1

m
≤ 1 +

1

n

}
= {m ∈ N : n ≤ m}
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Note that indeed, Bn ⊃ Bn+1 for all n ∈ N. But then if there exists n0 ∈
∩n∈NBn, for all n ∈ N we have n0 ≥ n, a contradiction. So

∩n∈NBn = ∅

Thus, (Z+, d) is not spherically complete

Definition 3.2. Let (X, d) be an ultrametric space. A subset A ⊂ X is said to
be proximinal if given any x ∈ X, there exists a0 ∈ A such that:

d(x, a0) = d(x,A) = inf{d(x, a) : a ∈ A}

Such an a0 ∈ A is called a best approximation to x in A.

Remark. Theorem 3.1 can be reformulated as:
Let X ̸= ∅ be spherically complete and (Z, d) be an ultrametric space containing
X, then, X is proximinal in Z.

Definition 3.3. For A,B ⊂ X, we define the distance between A and B:

d(A,B) = inf{d(a, b) : a ∈ A and b ∈ B}

The diameter of A is : δ(A):= sup{d(a1, a2) : a1, a2 ∈ A}

Remark. For any ball B = B(a, r) in (X, d), δ(B) ≤ r.

Proof. Let x, y ∈ B, then

d(x, y) ≤ max{d(a, x), d(a, y)} ≤ r ⇒ δ(B) ≤ r

The following two sets will be very useful in results to come.

Definition 3.4. For (X, d) a metric space and A,B ⊂ X nonempty, we define:

A0= {x ∈ A: there is some y ∈ B with d(x, y) = d(A,B)}
B0= {y ∈ B: there is some x ∈ A with d(x, y) = d(A,B)}

(x, y) ∈ A0 ×B0 is called a best proximity pair for A and B if d(x, y) = d(A,B)
We say (A, B) is proximinal if A and B are proximinal

Definition 3.5. Let (X, d) be an ultrametric space. For a map f : X → X and
B = B(x, r), r > 0 a ball in (X, d). We say that B is a minimal f-invariant ball
iff:

(1) f(B) ⊆ B and

(2) for any b ∈ B, d(b, f(b)) = r

Remark. {x0} for x0 ∈ X is not minimal f-invariant as, by (1), we would have
f({x0}) = {x0}, and by (2) d(x0, f(x0)) = d(x0, x0) = 0 = r which contradicts
the assumption that r > 0.
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Definition 3.6. Let A ⊂ X, f : A → A is said to be nonexpansive iff:

d(f(x), f(y)) ≤ d(x, y) for all x, y ∈ A

Proposition 3.3. For (X, d) spherically complete and f : X → X nonexpan-
sive, let BT be the set of all balls B that are f-invariant, that is f(B) ⊆ B,
then:

B ∈ BT is minimal f-invariant iff for every B0 ∈ BT, B0 ⊆ B implies B0 = B

Proof. We only show (⇒), the proof of the other implication is very similar to
that of Theorem 3.4 using Proposition 3.5.
Let B ∈ BT be minimal f -invariant and B0 be f -invariant with B0 ⊆ B. Con-
sider x ∈ B0, then B0 = B(x, r) and B = B(x, d(x, f(x))), with r ≤ d(x, f(x)).
Suppose r < d(x, f(x)), then f(x) /∈ B0 ⇒ f(B0) ⊈ B0, a contradiction. We
thus have r = d(x, f(x)), and so B = B0.

Theorem 3.4. (from [3]) Suppose (X, d) is spherically complete and f : X → X
is a nonexpansive map, then:

every ball B(x, d(x, f(x))) = {y ∈ X : d(x, y) ≤ d(x, f(x))}

contains either a fixed point of f or a minimal f-invariant ball.

Proof. We denote for any a ∈ X,

Ba = B(a, d(a, f(a)))

Consider the collection of all such balls

A = {Ba : a ∈ X}

and define the partial order, for a, b ∈ X

Ba ≤ Bb iff Bb ⊆ Ba

Fix a chain C of balls in A, which corresponds to a decreasing sequence of nested
balls, denote

B :=
⋂

Ba∈C

Ba ̸= ∅

(such B exists by spherical completeness). Let b ∈ B, then for some a ∈ X,
b ∈ Ba (and so d(a, b) ≤ d(a, f(a))). If x ∈ Bb, then

d(b, x) ≤ d(b, f(b)) ≤ max{d(b, a), d(a, f(a)), d(f(a), f(b))} ≤ d(a, f(a))

(since d(f(a), f(b)) ≤ d(a, f(a)), because f is nonexpansive), and so

d(x, a) ≤ max{d(x, b), d(b, a)} ≤ d(a, f(a)) ⇒ x ∈ Ba

In particular, for any Ba ∈ C, Bb ⊆ Ba, so Bb is a maximal element of C. By
Zorn’s Lemma, A has a maximal element (w.r.t ≤), call it Bz for z ∈ X (i.e. for
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all a ∈ X, Bz ⊆ Ba). We now show that for any b ∈ Bz, d(b, f(b)) = d(z, f(z))
and that f(Bz) ⊆ Bz. Consider b ∈ Bz,

d(b, f(b)) ≤ max{d(b, z), d(z, f(z)), d(f(z), f(b))} ≤ d(z, f(z))

Then f(b) ∈ Bz, which means that f(Bz) ⊆ Bz. Suppose, for a contradiction,
that d(b, f(b)) < d(z, f(z)). By the maximality of Bz (w.r.t. ≤), z ∈ Bb and so
d(z, b) ≤ d(b, f(b)). We have

d(b, f(b)) < d(z, f(z)) ≤ max{d(z, b), d(b, f(b)), d(f(b), f(z))} ≤ d(b, f(b))

a contradiction. We conclude that it must be that for all b ∈ Bz, d(b, f(b)) =
d(z, f(z)).

Definition 3.7. For (X, d) an ultrametric space and a map f : X → X,
(1) f is strictly contractive iff

d(f(x), f(y)) < d(x, y) for x ̸= y

(2) f is strictly contractive on orbit iff

f(x) ̸= x implies d(f2(x), f(x)) < d(f(x), x) for any x ∈ X

Proposition 3.5. For (X, d) an ultrametric space, and a ball B(a, r) in (X, d),

if B(a, r) is f -invariant, then B(a, d(a, f(a))) ⊆ B(a, r)

Proof. Since f(a) ∈ B(a, r), d(a, f(a)) ≤ r. By Proposition 2.6, B(a, d(a, f(a))) ⊆
B(a, r).

The following Theorem will ensure the existence of a fixed point for a map-
ping f in an ultrametric space without requiring it to be a contraction. Note
that the fixed point is not necessarily unique.

Theorem 3.6. (from [1]) Let X be spherically complete with f : X → X a
nonexpansive map satisfying:

if x ∈ X and x ̸= f(x), then lim infn→∞ d(fn(x), fn+1(x)) < d(x, f(x))

Then f has a fixed point in any f-invariant closed ball

Proof. Consider B an f -invariant ball such that for any x ∈ B, x ̸= f(x).
By Proposition 3.5, for a ∈ B, B(a, d(f(a), a)) ⊆ B, and so by Theorem 3.4, B
contains a minimal f-invariant ball B0 with radius r > 0, with 0 < r = d(x, f(x))
(by definition of minimal f -invariant ball) and since f(x) ∈ B0, we actually have:

0 < r = d(x, f(x)) = d(f(x), f2(x)) = ... = lim inf
n→∞

d(fn(x), fn+1(x)) < d(x, f(x))

in particular, d(x, f(x)) < d(x, f(x)), which is a contradiction. So it must be
that B actually had a fixed point.

Remark. Theorem 3.6 implies that any f : X → X which is strictly contractive
on orbit, with X spherically complete, will admit a fixed point.
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4 Other results

The following results are from [1] and will be useful in order to characterize
certain fixed points.

Lemma 4.1. Let (A,B) be proximinal w.r.t. (X, d) nonempty (i.e. for any
x ∈ X there are a0 ∈ A and b0 ∈ B such that d(x, a0) = d(x,A) and d(x, b0) =
d(x,B)):

if δ(B) ≤ d(A,B), then A0 ̸= ∅ and B0 = B

Proof. We first show that for any a ∈ A and b1, b2 ∈ B

d(a, b1) = d(a, b2) (2)

d(a, b2) ≤ max{d(a, b1), d(b1, b2)} (by strong triangle inequality)

≤ max{d(a, b1), δ(B)} (by def. of δ )

≤ max{d(a, b1), d(A,B)} (by assumption)

≤ d(a, b1) (by def. of d(A,B))

d(a, b1) ≤ d(a, b2) is proved as above by interchanging b1 and b2.
Now, let b0 ∈ B, then we have:

d(A,B) = inf
a∈A,b∈B

d(a, b) = inf
a∈A

d(a, b0) = d(A, b0)

Since A is proximinal, there is a0 ∈ A such that d(A, b0) = d(a0, b0). In partic-
ular by the above equation, d(A,B) = d(a0, b0).
That is for any b0 ∈ B, there is a0 ∈ A such that d(a0, b0) = d(A,B). And so,
a0 ∈ A0 and b0 ∈ B0, in particular A0 ̸= ∅ and B0 = B

Remark. In the previous theorem, if we had δ(B) > d(A,B) instead, then A0

and B0 could have both been empty. We show this by the following example:
Let X = Z+ and d : Z+ × Z+ → [0, 1] be defined as:

d(n,m) =

{
0 if n = m

max
{

1
n ,

1
m

}
otherwise

(X, d) is indeed an ultrametric space. Consider A = 2Z+ and B = 2Z+ − 1.
note that both A and B are proximinal:
consider x ∈ X, if x ∈ A, then there exists a ∈ A (x itself) such that d(x,A) =
inf{d(x, z) : z ∈ A} = 0, otherwise x ∈ B, so d(x,A) = inf{d(x, z) : z ∈ A} = 1

x
which is attained by any z > x, z ∈ A. Similarly we prove B is proximinal.
We also have δ(B) = 1 > δ(A) = 1

2 > 0 = d(A,B).
We can now observe that A0 = B0 = ∅.
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Lemma 4.2. Let (A,B) be proximinal w.r.t. (X, d) nonempty satisfying δ(B) ≤
d(A,B). Let b0 ∈ B and write r := d(A,B), then we have:

A0 = A ∩ S(b0, r)

where S(b0, r) := {x ∈ X : d(x, b0) = r} (i.e. the sphere centered at b0 with
radius r).

Proof. case 1: r = 0
We have δ(B) = 0, and so B = {b0}. By definition,

A0 = {a ∈ A : d(a, b0) = 0}

Note that by Lemma 4.1, A0 ̸= ∅ ⇒ A0 = {b0}.
Also, S(b0, 0) = {b0} and so A ∩ S(b0, r) = {b0} = A0 as desired.
case 2: r > 0
Consider the following sets

C(b0, r) := {x ∈ X : d(x, b0) < r}

E(b0, r) := {x ∈ X : d(x, b0) > r}

Then, X = C(b0, r) ∪ S(b0, r) ∪ E(b0, r) and, so

A0 = [A0 ∩ C(b0, r)] ∪ [A0 ∩ S(b0, r)] ∪ [A0 ∩ E(b0, r)]

We thus show A0 ∩ C(b0, r) = ∅ = A0 ∩ E(b0, r).
First note that for a ∈ A,

d(a, b0) ≥ d(a,B) ≥ d(A,B) = r

and thus for all a ∈ A, d(a, b0) ≮ r, in particular, A0 ∩ C(b0, r) = ∅
Now, suppose A0 ∩ E(b0, r) ̸= ∅, then there is a0 ∈ A0 such that

d(a0, b0) > r = d(A,B)

By Lemma 4.1 (2), we have that for any b ∈ B, d(a0, b) = d(a0, b0).
But recall that as a0 ∈ A0, by definition, there is b1 ∈ B such that d(a0, b1) =
d(A,B). Which implies:

d(A,B) = d(a0, b1) = d(a0, b0) > d(A,B)

a contradiction.

Lemma 4.3. Let B = B(a, r) be a ball in (X, d), then for any x ∈ X \ B and
for any b1, b2 ∈ B:

d(x, b1) = d(x, b2)
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Proof. Note that d(x, b) ≥ r for any x ∈ X \B and b ∈ B, and d(b1, b2) < r (so
d(b1, b2) < d(x, b) for any b ∈ B). Then

d(x, b1) ≤ max{d(x, b2), d(b1, b2)}
= d(x, b2)

d(x, b2) ≤ max{d(x, b1), d(b1, b2)}
= d(x, b1)

⇒ d(x, b1) = d(x, b2)

Theorem 4.4. Let (A,B) be proximinal w.r.t. (X, d) nonempty. The following
are equivalent:
(1) there is a0 ∈ A such that for every b ∈ B,

d(a0, b) = d(A,B)

(2) δ(B) ≤ d(A,B)
(3) The following hold:

(i) A0 and B0 are proximinal w.r.t. (X, d)

(ii) B = B0

(iii) for any (a0, b0) ∈ A0 ×B0, d(a0, b0) = d(A0, B0) = d(A,B)

Proof. (3)⇒(1) : let b ∈ B, then b ∈ B0 by assumption. Take any a0 ∈ A0,
then d(a0, b) = d(A,B), as desired.
(1)⇒(2) : fix a0 ∈ A such that for any b ∈ B, d(a0, b) = d(A,B). Consider
b1, b2 ∈ B, then

d(b1, b2) ≤ max{d(b1, a), d(a, b2)} = d(A,B)

and so δ(B) ≤ d(A,B)
(2)⇒(3) : assume δ(B) ≤ d(A,B), by Lemma 4.1 B = B0 and since B is
proximinal, so is B0. We show that A0 is also proximinal (i.e. for all x ∈ X,
there exists a0 ∈ A0 such that d(x, a0) = d(x,A0)). Let b0 ∈ B0 = B, by
Lemma 4.2,

A0 = A ∩ S(b0, r) where r = d(A,B)

but, from the proof we also had A ∩B(b0, r) = ∅, so

A0 = A ∩B(b0, r)

Now, let x ∈ X
Case 1: x /∈ B(b0, r)
d(x, b0) > r and by Lemma 4.3, for any a0 ∈ A0, d(x, b0) = d(x, a0). And so,
d(x, a0) = d(x,A0)
Case 2: x ∈ B(b0, r)
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Since A is proximinal, there exists a ∈ A such that d(x, a) = d(x,A). Note
that if a /∈ B(b0, r), d(x, a) > r, while for all a0 ∈ A0 (since a0 ∈ B(b0), r),
d(x, a0) ≤ r. We get

r < d(x, a) = d(x,A) ≤ d(x,A0) ≤ d(x, a0) ≤ r

a contradiction. So, it must be that a ∈ B(b0, r) ⇒ a ∈ A ∩B(b0, r) = A0

A0 is proximinal. Finally, by Lemma 4.2, note that for any (a0, b0) ∈ A0 ×B0,

d(a0, b0) = r = d(A,B)

Corollary 4.4.1. For (A,B) a nonempty spherically complete pair satisfying
δ(B) ≤ d(A,B), then (A0, B0) is also a nonempty spherically complete pair.

Definition 4.1. A map f : A ∪B → A ∪B is noncyclic iff:

f(A) ⊆ A and f(B) ⊆ B

Theorem 4.5. Let A and B be nonempty spherically complete subspaces of an
ultrametric space (X, d) with δ(B) ≤ d(A,B). Suppose f : A ∪B → A ∪B is a
noncyclic and a nonexpansive mapping such that for any x ∈ X with x ̸= f(x):

lim inf
n→∞

d(fn(x), fn+1(x)) < d(x, f(x)) (3)

Then, there exists a ∈ A and b ∈ B such that:

f(a) = a, f(b) = b and d(a, b) = d(A,B)

Proof. By Corollary 4.4.1, we have that A0 and B0 are spherically complete.
claim: f(A0) ⊆ A0 and f(B0) ⊆ B0

Let x ∈ A0 and y ∈ B0, then by Theorem 4.4 (2) ⇒ (3), we get :

d(x, y) = d(A0, B0) = d(A,B)

⇒ d(f(x), f(y)) ≤ d(A,B) (since f is nonexpansive)

But, we also had f noncyclic (i.e. f(A) ⊆ A and f(B) ⊆ B), so
⇒ f(x) ∈ A and f(y) ∈ B ⇒ d(A,B) ≤ d(f(x), f(y)), which gives us:

d(f(x), f(y)) = d(A,B)

and so f(x) ∈ A0 and f(y) ∈ B0 which implies f(A0) ⊆ A0 and f(B0) ⊆ B0

which proves the claim.
Recall that for a ∈ A and b ∈ B with r = d(A,B),

A0 = A ∩B(b, r) and B0 = B ∩B(a, r)

By Theorem 2.4, A0 and B0 are closed balls in (A, d) and (B, d) respectively. So
A0 and B0 are f -invariant closed balls in (A, d) and (B, d) respectively. Also,
since f is noncyclic, f : A → A and f : B → B (all conditions for Theorem 3.6
are satisfied). By Theorem 3.6 there are a ∈ A0 and b ∈ B0 such that:

f(a) = a and f(b) = b

and again, by Theorem 4.4, d(a, b) = d(A,B) as desired.
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5 Examples

5.1 σ - ultrametric

Let (X, d) be a complete ultrametric space, then (X,σ) with

σ(x, y) := inf{2−n : n ∈ Z, d(x, y) ≤ 2−n}

is spherically complete.

The following example motivates the condition of (X, d) being complete.

Example. Let X = Z+ and d : Z+ × Z+ → [0, 1] be defined as:

d(n,m) =

{
0 if n = m

max
{

1
n ,

1
m

}
otherwise

Note that d is not complete, as for the sequence (xn)n∈N where xn = n, we have

lim
n→∞

d(xn, xn+1) = lim
n→∞

1

xn
= 0

but limn→∞ n does not exist, in particular is not in Z+.
We denote

nx := sup

{
n ∈ Z :

1

x
≤ 2−n

}
Then, it can be shown that balls in the ultrametric space (X,σ) are:

B(a, r) =

{
{x ∈ X, 2−nx < r} if 2−na < r

{a} if r ≤ 2−na

or

B(a, r) =

{
{x ∈ X, 2−nx ≤ r} if 2−na ≤ r

{a} if r < 2−na

Consider the sequence Bn = B(2n, 1
2n ), then⋂

n∈N
Bn =

⋂
n∈N

{x ∈ X,x ≥ 2n} = ∅

So (X,σ) is not spherically complete.

We now consider another metric d which is complete in order to apply The-
orem 4.5.

Example. Consider the ultrametric space (X, d) presented in Example (⋆) with
X = Z+ and d : Z+ × Z+ → R as:

d(n,m) =

{
0 if n = m

max
{
1 + 1

n , 1 +
1
m

}
if n ̸= m
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Recall that this ultrametric space is not spherically complete, but only complete.
We thus consider (X,σ) as defined above. Note that

∀m,n ∈ Z+,m ̸= n ⇒ 1 < d(m,n) ≤ 2

and so whenever m ̸= n, σ(m,n) = 2, we thus get that balls in (X,σ) are of the
form:

B(a, r) =

{
Z+ if r > 2

{a} if r ≤ 2

Remark. Here, for r = 2,

B(a, r) = {a} ≠ Z+ = B(a, r)

Note that for any sequence of nested balls, (Bn)n∈N, where Bn = B(an, rn):
if there exists N ∈ N such that rN < 2, then ∩n∈NBn = {aN}, otherwise,
∩n∈NBn = Z+.
In particular, (X,σ) is spherically complete. Theorem 4.5 can now be applied.
Since (Z+, σ) is spherically complete, it follows that any subspaces A and B are
also spherically complete. The Theorem is not applicable only in the case where
A ∩B ̸= ∅ and A ̸= {a} and B ̸= {b} for any a, b ∈ Z+.

5.2 Levi-Civita field

Define:
R := {f : Q → R : supp(f) is left-finite}

where, supp(f):= {q ∈ Q : f(q) ̸= 0} and supp(f) is said to be left-finite iff
supp(f) ∩ ]−∞, q] is finite for all q ∈ Q.
We also define the function λ : R → Q ∪ {∞}:

λ(x) :=

{
min supp(x) if x ̸= 0

∞ if x = 0

Note that min supp(x) exists as supp(x) is left-finite. Then, we define an
ultrametric valuation | · | : R → R+:

|x| := e−λ(x)

which induces an ultrametric d : R×R → R+:

d(x, y) := |x− y|

This ultrametric is complete, we check if (R, d) is spherically complete.

Proposition 5.1. (R, d) is not spherically complete
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Figure 4: examples for the function λ

Proof. Let B(an, rn) = (Bn)n∈N be a decreasing sequence of nested balls in
(R, d). So,

B(an, rn) = {x ∈ R : |x− an| < rn}
= {x ∈ R : e−λ(x−an) < rn}
= {x ∈ R : − ln rn < λ(x− an)}

Then, consider rn with limn→∞ rn = 0. So limn→∞ − ln rn = ∞, but for
any a ∈ R there is no x ∈ R such that ∞ < λ(x− a). In particular:⋂

n∈N
B(a, rn) = ∅

We thus have that (R, d) is not spherically complete.

Example. Take B(an, rn) with rn = e−n and an ∈ R defined, for x ∈ Q, as:

an[x] :=

{
1 if x ∈ [1, n] ∩ Z+

0 otherwise

Note that for fixed n ∈ Z+, x ∈ B(an, rn) ⇒ d(x, an) = e−λ(x−an) < e−n ⇒ n <
λ(x−an). Now, suppose x ∈

⋂
n∈N B(an, e

−n), then it must be that for all n ∈ N,
n < λ(x− an) ∈ Q but no such λ(x− an) ∈ Q exist, so

⋂
n∈N B(an, e

−n) = ∅

Remark. If we had, instead, considered rn with limn→∞ > 0, then⋂
n∈N

B(an, rn) ̸= ∅
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To see this, let (B(an, rn)) = (Bn)n∈N be a decreasing sequence of nested balls
in (R, d). Suppose (rn)n∈N is a strictly decreasing sequence for the radius. This
can be done since:

B(an, rn) = B(an+1, rn) , because an+1 ∈ B(an, rn)

= B(an+1, rn+1) , assuming rn = rn+1

⇒ B(an, rn) = B(an+1, rn+1)

B(an, rn) = {x ∈ R : − ln rn < min{q ∈ Q : x[q] ̸= an[q]} or x = an}
In particular, x ∈ B(an, rn) if x is such that :

∀q ∈ ]−∞,− ln(rn)] , x[q] = an[q]

We thus get that for any decreasing sequence of nested balls (B(an, rn))n∈N with
limn→∞ rn > 0:

For a ∈ R such that for any q ∈ Q,

a[q] :=


a0[q] if q ≤ − ln r0

an[q] if − ln rn−1 < q ≤ − ln rn

0 otherwise

a ∈
⋂

n∈N B(an, rn).

Since (R, d) is not spherically complete, we consider instead (X,σ), where σ is
from the previous example. We apply Theorem 4.5
Consider the subspaces:

A = {x ∈ R : λ(x) = 0}
B = {x ∈ R : λ(x) > 0}

Note that for any x, y ∈ B, λ(x − y) > 0 ⇒ −λ(x − y) < 0 ⇒ e−λ(x−y) < 1 ⇒
d(x, y) < 1 ⇒ σ(x− y) ≤ 1 ⇒ δ(B) ≤ 1.
Now, consider a ∈ A and b ∈ B, then λ(a − b) = 0 ⇒ d(a, b) = 1 ⇒ σ(a, b) =
1 ⇒ σ(A,B) = 1. In particular, we have δ(B) ≤ σ(A,B). Now, we need to find
f : A ∪B → A ∪B which is noncyclic, nonexpansive and satisfies (3). Let f be
the following truncation:

f(x)[y] =

{
x[y] if y ≤ g(x) := aλ(x) + b

0 otherwise
where y ∈ Q and a, b ∈ R

Note that for any x ∈ A, we must have λ(f(x)) = 0 in order for f to be noncyclic
and so g(x) ≥ 0 for any x ∈ A∪B. We will also take g(x) ≥ λ(x) for any x ∈ R
so that

λ(x) = λ(f(x)) for any x ∈ R

Remark. In order to satisfy the condition that g(x) ≥ λ(x) ≥ 0, we must have:

g(x) = aλ(x) + b where a ≥ 1, b ≥ 0
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So, f(A) ⊆ A and f(B) ⊆ B (i.e. f is noncyclic).
We now check that f is nonexpansive.

Proposition 5.2. Let x, y ∈ A ∪B, then

λ(f(x)− f(y)) ≥ λ(x− y)

Proof. We have

λ(x− y) = min{q ∈ Q : x[q] ̸= y[q]}
λ(f(x)− f(y)) = min{q ∈ Q : f(x)[q] ̸= f(y)[q]}

Suppose λ(f(x)− f(y)) < λ(x− y), then there exists q ∈ Q such that f(x)[q] ̸=
f(y)[q] while x[q] = y[q] (either f(x)[q] = 0 or f(y)[q] = 0). So, assume
W.L.O.G.

g(x) < q and q ≤ g(y)

and thus, aλ(x) + b < aλ(y) + b ⇒ λ(x) < λ(y) ⇒ λ(x − y) = λ(x). Also, we
have λ(f(x)) = λ(x) < λ(y) = λ(f(y)) ⇒ λ(f(x)− f(y)) = λ(f(x)). Then,

λ(f(x)− f(y)) = λ(f(x)) = λ(x) = λ(x− y)

which contradicts the assumption that λ(f(x)−f(y)) < λ(x−y). We thus have
λ(f(x)− f(y)) ≥ λ(x− y) as desired.

We then get:

λ(f(x)− f(y)) ≥ λ(x− y) ⇒ d(f(x), f(y)) ≤ d(x, y) ⇒ σ(f(x), f(y)) ≤ σ(x, y)

as desired.
We check if inequality (3) holds. We have that, for any x ∈ R, by our choice
of f , λ(f(x)) = λ(x), so g(f(x)) = g(x) and f(x) = fn(x) for n ≥ 1. And so if
x ̸= f(x),

lim inf
n→∞

σ(fn(x), fn+1(x)) = σ(f(x), f2(x)) = 0 < σ(x, f(x))

So (3) holds as desired. And so by Theorem 4.5, f has at least one fixed
point in A and at least one fixed point in B.

Remark. f has infinitely many distinct fixed points in B

Proof. for any x ∈ B \ {0}, 0 < λ(x) ≤ g(x), so

xg := x|]0,g(x)] ̸= 0 and f(xg) = xg

{xg : x ∈ B} ∪ {0} = {x ∈ B : supp(x) ⊂]0, g(x)]} = {x ∈ B : f(x) = x} is
infinite, as g(x) > 0.
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