
AN INTRODUCTION TO SUPERVISED MACHINE
LEARNING

Alexandre St-Aubin
McGill University
alexandre.st-aubin2@mail.mcgill.ca

ABSTRACT

This paper serves as an introductory guide to supervised learning within the field
of machine learning (ML), aimed at readers with a foundational understanding of
mathematics, primarily calculus and statistics. The focus is on neural networks
(NN), with an in-depth exploration of its key components and learning methods.
We begin with an overview of NNs, detailing the architecture and function of
single-layer perceptrons, neurons, and feed-forward neural networks. The discus-
sion extends to the structural elements of layers and the pivotal role of activation
functions. We then explore the learning mechanisms of NNs through backprop-
agation and gradient descent optimization techniques. Different loss functions,
critical for evaluating model performance, are also explored. Finally, we address
the challenges of overfitting and underfitting and present strategies to achieve an
optimal fit.

Keywords: Machine Learning, Supervised Learning, Neural Networks, Multiple
Layer Perceptron, Activation Function, Backpropagation, Loss function, Gradient
Descent, Overfitting, Underfitting.

1

CONTENTS

1 Introduction 3

2 Neural Networks 4

2.1 Single Layer Perceptron . 5

2.2 Neurons . 5

2.3 Feed-Forward Neural Networks . 6

2.4 Layers . 7

2.5 Activation Function . 7

3 Learning 9

3.1 BackPropagation . 10

3.2 Weight Update Rule . 12

3.3 Gradient Descent . 12

3.3.1 Vanilla Gradient Descent . 13

3.3.2 Stochastic Gradient Descent . 13

3.3.3 Mini-Batch Gradient Descent . 14

3.4 Loss Functions . 14

3.4.1 Regression Loss Functions . 14

3.4.2 Classification Loss Functions . 16

4 Fitting the model 17

4.1 Overfitting . 17

4.2 Underfitting . 18

4.3 Mastering the Fit . 18

4.4 Cross-Validation . 19

4.5 Regularization Techniques . 19

4.5.1 L2 Parameter Norm Penalty (Weight Decay) 20

4.5.2 Data Augmentation . 20

4.5.3 Early Stopping . 21

4.5.4 Dropout . 21

5 Conclusion 22

2

1 INTRODUCTION

Machine learning (ML) has surged in popularity recently due to its ability to tackle complex prob-
lems by extracting knowledge from data and learning from it autonomously. In 2022, the field of
Generative Artificial Intelligence, a branch of ML, experienced a major breakthrough when OpenAI
launched ChatGPT, a large language model that quickly became widely adopted. Shortly after, Ope-
nAI introduced Dalle-3, a model designed to generate images from text captions. More recently,
there has been a trend in AI towards releasing task-specific models, such as math equation solvers,
paraphrasers, schedulers, and various others.

Unlike traditional approaches, ML focuses not only on understanding data but also on inferring from
it, allowing models to generalize knowledge and make predictions on unseen data. This emphasis
on inference enables machine learning to go beyond merely understanding information, allowing
ML to foster innovation and advancement in many different fields. Essentially, the power to infer
enhances the practical applications and impact of ML, leading to significant developments across
diverse areas.

There are several types of ML algorithms. The main categories are divided into Supervised learning,
Unsupervised learning, Semi-supervised learning and Reinforcement learning. Figure 1 depicts the
main classes of ML along with some popular models for each. It is important to note that since ML
is a constantly evolving field, its organization into subfields can be somewhat chaotic. As a result,
some areas, such as Imitation Learning, are not included in the figure, and even the latest surveys
on machine learning methods often lack thoroughness. Additionally, new techniques are introduced
every year, reshaping how we approach ML. For example, the introduction of transformers with the
now famous paper ”Attention is All You Need” [Vaswani et al., 2017] revolutionized the field, and
more recently, models like Mamba [Gu and Dao, 2023] are being developed that may eventually
replace transformers. While these topics are beyond the scope of this paper, they may be of interest
to the reader.

SUPERVISED LEARNING allows the machine to learn through examples. The machine learning
algorithm is tasked with developing the strategy for achieving the specified outputs given some
input. To do so, a known dataset is supplied that contains a set of inputs and associated target
outputs in the form (x, t), where x is the input to the model, and t the target output, i.e. the label.
The algorithm finds patterns in the data and adjusts its parameters to predict more accurately future
inputs. This kind of machine learning algorithm needs a developer to accurately label the training
data.

Broadly speaking, the two main problems addressed by Supervised learning are Classification and
Regression. The former consists of classifying objects into their appropriate classes. A well known
example operates on the MNIST data set, which is a set of images representing hand drawn numbers
from 0 to 9. A classification ML algorithm will analyse each point (x, t) of the data set during the
training phase, where x is the image, and t is the number it represents. Then, given an unseen image
as input, the algorithm should predict which number it represents.

Regression aims to predict a continuous output variable, rather than a discrete one (as in Classifica-
tion). An example would be predicting the cost of a house given a set of training data consisting of
house characteristics and their corresponding prices. We note, however, that supervised learning can
also encompass more complex tasks, such as image segmentation and object detection (e.g., YOLO
with bounding boxes), where models learn more than just labels from the data.

UNSUPERVISED LEARNING algorithms discern patterns within data without predefined labels. The
algorithm identifies correlations and structures within datasets. Key steps in this process include
clustering, which groups similar data sets, and dimension reduction, which simplifies variables to
extract essential information.

SEMI-SUPERVISED LEARNING acts on a data set that contains both labelled and unlabelled data.
Normally, labelled data is rare, while unlabelled data makes up most of the set. The goal of semi-
supervised learning algorithms would be to classify the unlabelled by inferring from the labelled
data.

3

https://github.com/ultralytics/ultralytics

Figure 1: Classification of Machine Learning Algorithms from N and Gupta [2020]

REINFORCEMENT LEARNING involves a structured approach where algorithms are provided with
actions, parameters, and goals. These algorithms explore various options, learn from trial and error,
and adapt their strategies based on past experiences to optimize outcomes [Wakefield].

In this paper, we aim to provide a concise, yet comprehensive introduction to Supervised learning,
focussing on the Neural Network approach. We intend for this report to serve as a reference to
key concepts, offering quick access to definitions and reliable references as needed. Most of the
basic concepts we discuss, such as Neurons, Backpropagation, and Overfitting, are relevant across
all areas of machine learning.

We note that throughout, some terms will be introduced before they are defined, or may only be
clarified by illustrative examples. We chose this approach to communicate ideas because of the
broad nature of machine learning. Precise definitions can be made in some cases for terms, while
other significant terms are more flexibly used like in common language. The figures and examples
used were taken from trusted sources in the field and citations are included.

Before starting, we want to highlight that ML, while closely related to statistics, is distinct from
it. Both fields share common methods and terminologies, but their goals differ. Statistics primarily
focuses on analyzing and interpreting existing data, whereas ML aims to make predictions and
infer from new data. Terms like Bias and Variance can have different implications in ML. In
ML, bias refers to the error introduced by approximating a real-world problem with a simplified
model, while variance measures how much the model’s predictions change with different training
data. Understanding and managing the trade-off between bias and variance is crucial for developing
robust ML models, as we’ll learn in section 4.

2 NEURAL NETWORKS

Neural networks, a subset of machine learning, form the core of supervised learning and are inspired
by the human brain. They are made of input, hidden, and output layers, and consist of interconnected

4

neurons with associated weights and biases. Activated nodes transmit data to the next layer through
outgoing edges.

2.1 SINGLE LAYER PERCEPTRON

The simplest neural network is referred to as the Single Layer Perceptron (see Figure 2). This
neural network contains a single input layer and an output node [Aggarwal, 2018a].

Consider a situation where each training instance is of the form (X, y), where each X = [x1, ..., xd]
contains d feature variables, and y ∈ [−1,+1] contains the observed value of the binary class
variable. By “observed value” we refer to the fact that it is given to us as a part of the training data,
and our goal is to predict the class variable for cases in which it is not observed.

Figure 2: A single layer perceptron,
from Aggarwal [2018a].

The input layer of the perceptron contains d nodes that
transmit the d features X = [x1, ...xd] with edges of
weight W = [w1, ...wd] to an output node. The input
layer does not perform any computation. The linear func-
tion W ·X =

∑d
i=1 wixi is computed at the output node.

Subsequently, the sign of this real value is used in order
to predict the dependent variable of X . Therefore, the
prediction ŷ is computed as follows:

ŷ = sign[X ·W] = sign

[
d∑

i=1

wixi

]

Here, the sign function serves the role of an activation
function (subsection 2.5). The goal of the perceptron
algorithm with respect to all training instances in a data
set D = {(X1, y1), · · · , (Xn, yn)} is to minimize the
loss function (subsubsection 3.4.1). We shall learn more
about loss functions in a following section, but an exam-
ple would be to minimize the least-squares function:

n∑
i=1

(ŷi − yi)
2 =

n∑
i=1

(
sign[Xi ·W]− yi

)
To optimize the loss function, the perceptron will use a gradient descent method, which we will see
later.

2.2 NEURONS

The neuron is the smallest computational unit of a neural network. The single layer perceptron
described in the previous section is exactly a neuron, see Figure 3 for a picture.
Definition 2.1 (Neurons). Neurons are made up of 4 elements:

1. The inputs, seen as nodes, consist of either the input layer (subsection 2.4), or the outputs
of the previous layer of the neural network.

2. The weights (Definition 2.2) and biases (Definition 2.3), seen as edges will act on the
outputs of previous neurons before they reach the input function of the neuron.

3. The input function takes a sum of the weighed inputs.

4. The activation function (subsection 2.5) acts on the input function and outputs the result to
the following layers.

A simple mathematical model for a neuron’s output activation is [Russel and Norvig, 2010]

oj = f

(
n∑

i=0

wi,joi

)

5

Figure 3: A neuron and its inputs and outputs.

where f is the activation function, oi is the output activation of neuron i and wi,j is the weight on
the directed edge from neuron i to the neuron j.

Definition 2.2 (Weights). A weight wi,j ∈ R will multiply the output of neuron i before giving
it as input to neuron j. Weights are the moving parts of the neural network, as they get changed
during each iteration of the learning step in order to optimize the output. They can be initialized to
any random value, and after running the network on a pair (x, t) from the training data, the weight
update rule (subsection 3.2) will alter them to minimize the error between the output ŷ and the target
t.

Definition 2.3 (Bias). Biases are constant, they are an additional input into the next layer that will
always have the value of 1. Bias units are not influenced by the previous layer, they guarantee that
even when all the inputs are zeros there will still be an input in the neuron [AI-Wiki].

When talking about neural networks and ML models in general, the term ”parameters” often comes
up. For example, OpenAI loves to brag about how many parameters their latest language models
have (GPT-4 has 1.76 trillion). Parameters are the elements of a neural networks that the model
learns from the training data. These parameters are exactly the weights and biases defined above.
See Figure 4 for a comparison of popular Large Language Models in their number of parameters.

2.3 FEED-FORWARD NEURAL NETWORKS

Having defined neurons, the building blocks of neural networks, we may now give a rigorous def-
inition of the latter. A feed-forward neural network (FFN) has connections only in one direc-
tion—that is, it forms a directed acyclic graph. Every node receives input from “upstream” nodes
and delivers output to “downstream” nodes; there are no loops [Russel and Norvig, 2010].

The overall network is a combination of function composition and matrix multiplication:

g(x) = fL(WLfL−1(WL−1 . . . f1(W 1x) . . .)),

where L is the number of layers (subsection 2.4), W is the weight matrix, and f is the activation
function (subsection 2.5).

Definition 2.4 (Feed-forward Neural Network). A neural network is a computational directed
acyclic graph, in which a unit of computation is the neuron. Each directed edge in the graph repre-
sents a function passing the weighed output of a node in a layer to a node in the next layer.

Artificial neural networks are often referred to as multi-layer perceptrons (MLPs) for one simple
reason: you can think of a neural network as the composition of multiple perceptrons. In this
case, the perceptron would be a synonym for neuron, so the smallest computational unit of a neural
network, which performs, for example, a linear combination of its inputs followed by the application
of an activation function, which can be the sigmoid, tanh, ReLU, identity, or any other function that
is differentiable, if you plan to train the neural network with gradient descent.

6

Figure 4: A graph comparing the number of parameters in popular Large Language Models (LLMs),
data from Wikipedia.

2.4 LAYERS

FFNs are usually arranged in layers, such that each unit receives input only from units in the im-
mediately preceding layer. The layers are divided in 3 groups: the input, hidden, and output layers.
Layers are a general term given to a grouping of neurons that act together in the neural network, as
seen in Figure 5.

Figure 5: A graph representation of
a Neural Network, from Aggarwal
[2018a].

The first layer in a neural network is the Input Layer, it
receives the initial data for the network from the outside
world. The ”Entry point” of the neural network. Then,
come the hidden layer(s), which are where the magic
happens in neural networks. Each layer is trying to learn
different aspects about the data by minimizing the cost
function. The most intuitive way to understand these lay-
ers is in the context of image recognition such as a face.
The first layer may learn edge detection, the second may
detect eyes, third a nose, etc. [cdeterman]. The final layer
in the neural network is the output layer. This layer is
responsible for holding the final result or output of the
problem. Input, such as raw images, is fed into the input
layer, and the output layer produces the corresponding re-
sult.

2.5 ACTIVATION FUNCTION

An activation function in neural networks is a smooth
function applied to the output of each neuron in a layer.
It introduces non-linearity to the network, allowing it to
learn complex patterns and relationships in the data.

The activation function determines whether a neuron should be activated or not based on the
weighted sum of its inputs. In other words, it defines the output of a neuron given a set of in-
puts. Without activation functions, neural networks would be limited to linear transformations, and
they wouldn’t be able to capture the non-linearities present in many real-world datasets.

7

https://en.wikipedia.org/wiki/Large_language_model

Desired Characteristics of Activation Functions [Jagtap and Karniadakis, 2022]

There is no universal rule for choosing the best activation function, but there are some characteristics
to look for, namely

1. Nonlinearity is one of the most essential characteristics of an activation function. The
non-linearity significantly improves the network’s ability to learn and model complex, non-
linear relationships in the data. If only linear activation functions were used, the entire
network would be equivalent to a single linear transformation of the input, regardless of
the number of layers. This would severely limit the network’s ability to solve complex
problems.

2. The activation function must be computationally cheap in order to reduce training costs.

3. It must be bounded, as gradient-based training approaches are more stable when the range
of the activation function is finite.

4. The most desirable quality for using gradient-based optimization approaches is continu-
ously differentiable activation functions. This ensures that the back-propagation algorithm
works properly.

Remark 2.5 (The vanishing and exploding gradient problems). The inputs and outputs of certain
activation functions, like the logistic function (Sigmoid), can vary greatly. These functions compress
a large input space into a smaller output range between [0,1]. This may cause the back-propagation
algorithm to have almost no gradients to propagate backward through the network, and any remain-
ing gradients diminish as they move down through the layers. This leaves the initial hidden layers
with little to no gradient information. Using non-saturating activation functions, such as ReLU, is
one way to solve this problem.

We present some commonly used activation functions discussed in Jagtap and Karniadakis [2022].

1. Sigmoid Function. Its range is [0, 1], and is defined as,

σ(x) =
1

1 + e−x

Advantage: boundedness.
Disadvantages: the vanishing gradient problem, the output not being zerocentered, and the
saturation for large input values.

2. Hyperbolic Tangent Function. It is mostly used for regression problems, has a range of
[−1, 1], and is defined as,

tanh(x) =
ex − e−x

ex + e−x

Advantage: zerocentered structure.
Disadvantage: the vanishing gradient problem, i.e. once saturated, it is really challenging
for the learning algorithm to adapt the parameters and learn faster.

3. ReLU Function. ReLU was primarily used to overcome the vanishing gradient problem.
ReLU is the most common activation function used for classification problems. Its range
is [0,∞), and is defined as

ReLU(x) = max(0, x)

Advantages: Apart from overcoming the vanishing gradient problem, the implementation
of ReLU is very easy and thus cheaper, unlike tanh and sigmoid, where an exponential
function is needed.
Disadvantages: It has a saturation region, which can prevent the learning of the networks.
In particular, ReLU always discards the negative values, which makes the neurons stop
responding to the gradient-based optimizer. This problem is known as dead or dying ReLU
problem, meaning the neurons stop outputting other than zero.

4. Softplus Function. It approximates the ReLU activation function in a smooth way, with a
range of (0,∞), and it is defined as

Softplus(x) = ln(1 + ex)

8

Figure 6: Common activation functions, their derivatives, range, and order of continuity, from Jagtap
and Karniadakis [2022].

5. Softmax. It is a generalization of logistic function in high dimensions. It normalizes the
output and divides it by its sum, which forms a probability distribution. The standard
softmax function Softmax: Rk → (0, 1)k is defined as

Softmax(xi) =
exi∑k
j=1 e

xj

for i = 1, ..., k

In other words, it applies the standard exponential function to each element xi of the input
vector x and normalizes these values by dividing them by the sum of all these exponentials,
which ensures that the sum of the components of the output vector is 1.

Figure 6 summarizes the information described above.

3 LEARNING

At the core of machine learning lies the art of learning itself. But how can a computer program
”learn”? The answer lies in viewing learning from data as an optimization problem. Essentially, the
model’s goal is to minimize the error between the predicted output and the actual expected output.

In practice, given many data points, the model learns by adjusting its parameters iteratively. Each
iteration involves tweaking the model’s parameters to reduce the error between its predictions and
the true values. This process continues until the model achieves the desired level of accuracy.

In this section, we delve into the essential components that drive this process forward: gradient
descent, backpropagation, and loss functions.

Gradient descent is the main concept that enables learning. Its goal is to navigate down the gradient
of the loss function, which quantifies the disparity between predicted and actual outputs, guiding the
learning trajectory towards convergence. This optimization technique iteratively adjusts the model’s
parameters to minimize the error.

To achieve this, gradient descent relies on the computation of gradients, which are crucial for un-
derstanding the direction and rate at which the model parameters should be updated. This is where
backpropagation comes into play. Backpropagation serves as the engine of learning in neural net-
works, propagating the error from the output layer back through the network to the first hidden layer.
This process enables the calculation of the gradient of the loss function with respect to the weights,
allowing the model to update its parameters in a way that reduces the overall error. By continually
applying these updates, the model gradually improves its performance.

9

3.1 BACKPROPAGATION

Backpropagation is an algorithm for automatic differentiation that calculates the gradients of pa-
rameters in neural networks. The gradient estimate is used by optimization algorithms such as
Stochastic Gradient Descent (subsubsection 3.3.2) to compute the network weight updates. So,
when we say a neural network is learning, it means that backprop is computing a gradient descent
that minimizes the loss function, and updates the weights using a weight update rule (subsec-
tion 3.2). Backpropagation is a way of computing the partial derivatives of a loss function with
respect to the weights of a network; we use these derivatives in gradient descent. Let us first begin
by recalling that a neural network evaluates compositions of functions computed at individual nodes.
Think of a neural network as a function hw(x) of the input, parametrized by the weights.
Example 3.1. Consider the network in Figure 7, let {x1, x2} be the input vector, f the activation
function and ai denote the activated output at node i. Then, the output at node 3 is given by

a3 = f(w0,3 + f(x1)w1,3 + f(x2)w2,3),

where w0,3 is the bias weight (Definition 2.3) at node 3. Similarly, the output at node 5 is

a5 = f(w0,5 + f(a3)w3,5 + f(a4)w4,5)

= f [w0,5 + f(w0,3 + f(x1)w1,3 + f(x2)w2,3)w3,5 + f(w0,4 + f(x1)w1,4 + f(x2)w2,4)w4,5]

And even with such a small network, we can already see how awkward it would be to compute the
derivative of a5 with respect to w.

Figure 7: A simple network with 2 in-
puts, one hidden layer, and two outputs.

An even bigger problem than in the above exam-
ple arises when we think of how we would com-
pute the loss function in hidden layers. Whereas
the error y − hw at the output layer is clear, the
error at the hidden layers seems mysterious because
the training data do not say what value the hidden
nodes should have. Note that here, y is the target
output, and hw the value computed by the network.

Therefore, we need some kind of iterative approach to
compute the derivatives, and a way to back-propagate the
error from the output layer to the hidden layers. The
resulting iterative approach uses dynamic programming,
and the weight update rule is the chain rule of differen-
tial calculus [Aggarwal, 2018b].
Theorem 3.2 (Multivariate Chain Rule). Let z = f(y1, y2, . . . , ym) be a differentiable function of
m variables, where each yj = gj(x1, x2, . . . , xn) is a differentiable function of n variables. Then,
for each i = 1, 2, . . . , n, the partial derivative of z with respect to xi is given by

∂z

∂xi
=

m∑
j=1

∂z

∂yj

∂yj
∂xi

.

Figure 8: Pre and Post activation values
of a neuron.

We note that backpropagation can be implemented by us-
ing either the pre-activation, or post-activation values at
each neuron. Here, we’ll focus on the method that acts
on the pre-activation values, illustrated in Figure 8. For
the sake of simplicity, we view the neural network as a
Directed Acyclic Graph G, where

1. Each node represents a neuron, and is denoted
by a number j.

2. The weight on the edge from neuron i to j is
denoted wi,j .

The algorithm can be divided in two phases: forward and
backward.

10

FORWARD PHASE. The term ”forward phase” refers to
this process of computing values of each hidden layer de-
pending on the current weight values using a specific input vector. These computations naturally
cascade forward across the layers. The aim of the forward phase is to compute every intermediate
hidden and output variable for a given input. The Backward phase will call for these values. The
loss function L with respect to this output, as well as the value of the output o, are calculated at the
completion of the computation.

BACKWARD PHASE. In this phase, the gradient of the loss function with respect to different weights
is calculated. First, the derivative ∂o

∂w is computed. This establishes the gradient computation’s ini-
tialization. The multivariate chain rule is then used to propagate the derivatives backwards in the
neural network. Since we are focussing on the pre-activation approach, the gradients are computed
with respect to the pre-activation values of the hidden variables, which are then propagated back-
wards.

More precisely, the process can be described as follows [Dreyfus, 1990]. Let (x, t) be the input to
our algorithm, where t is the target output of the input vector x. Define the value

L = Loss(y, t),

where Loss could be any loss function (see subsection 3.4), such as the MSE. At each neuron j, let
its post-activation output be

oj = Φ(netj) = Φ

(
n∑

i=0

wi,joi

)
,

where Φ is any activation function, wi,j is the weight on the edge between neurons i and j, and oi
is the output from neuron i. Then, the pre-activation value is easily seen to be netj .

1. The forward pass propagates x through the neural network, computing the values of all
hidden neurons to reach the output ŷ of the neural network, which corresponds to the pre-
dicted output. Then, L = Loss(ŷ, t) is computed.

2. The derivative ∂L
∂ŷ at the output can be directly computed. Then, to compute the derivative

of L with respect to oj for an arbitrary neuron j,
3. Consider L as a function of all neurons receiving input from j, and denote this set by

Ij = {i(j)1 , ..., i
(j)
n }. Then,

∂L(oj)

∂oj
=

∂L(net
i
(j)
1
, ...,net

i
(j)
n
)

∂oj
to obtain the following recurrence relation for the derivative of L with respect to oj , by the
chain rule,

∂L

∂oj
=
∑
i∈Ij

(
∂L

∂neti

∂neti
∂oj

)
=
∑
i∈Ij

(
∂L

∂oi

∂oi
∂neti

∂neti
∂oj

)

=
∑
i∈Ij

(
∂L

∂oi

∂oi
∂neti

wj,i

) (1)

We can see that the derivative with respect to oj can be computed if those of the neurons
on the next layer are already known, per the recurrent behaviour of this algorithm.

4. We now have all the necessary tools to compute the partial derivative of L with respect to
the weight wi,j . Again, by applying the chain rule, we get

∂L

∂wi,j
=

∂L

∂oj

∂oj
∂wi,j

=
∂L

∂oj

∂oj
∂netj

∂netj
∂wi,j

=
∂L

∂oj

∂oj
∂netj

(
∂

∂wij

n∑
k=1

wk,jok

)

=
∂L

∂oj

∂oj
∂netj

(
∂wi,joi
∂wi,j

)
=

∂L

∂oj

∂oj
∂netj

oi

(2)

11

and so, we may consider the following recursively defined function to simplify notation,

δj =
∂L

∂oj

∂oj
∂netj

=


∂L(t,oj)

∂oj

dφ(netj)
dnetj

, if j is an output neuron,(∑
i∈Ij

wj,iδi

)
dφ(netj)
dnetj

, otherwise.

to conclude that the partial derivative of L with respect to the weight wi,j is given by

∂L

∂wi,j
= oiδj

3.2 WEIGHT UPDATE RULE

After having found the derivatives of the loss function with respect to the weights, one needs a way
to update the weights. The goal is to modify the weights of the neural network so that given the
input (x, t), where x is the input vector and t the target output, it points more toward t. Then, in the
future, it will have a better chance of classifying x correctly [Hagan et al., 2014]. The naive way
would be to set the weights so that they point directly to t. Unfortunately, this leads to overfitting,
which we’ll address in the next chapter.

To update the weight wi,j using backpropagation, we first choose a learning rate µ > 0. We may
then choose to update wi,j by adding ∆wi,j to it, where

∆wi,j = −µ
∂L

∂wi,j
= −µoiδj

Then, the weight update rule would be defined as,

w
(updated)
i,j = w

(old)
i,j −∆wi,j

We claim that this update rule decreases the loss L, and refer the reader to section 4.15 of Hagan
et al. [2014] for a proof, which is quite lengthy.

3.3 GRADIENT DESCENT

Gradient descent is a method for minimizing an objective function J(θ) parameterized by a model’s
parameters θ ∈ Rd, namely, the weights and biases. This is achieved by updating the parameters
in the opposite direction of the gradient of the objective function ∇θJ(θ) with respect to the pa-
rameters. The learning rate η (see subsection 3.2) determines the size of the steps taken towards a
(potentially local) minimum. Essentially, we move in the direction of the slope of the surface defined
by the objective function, descending until we reach a valley [Ruder, 2017].

In the context of neural networks, the objective function would be the loss function, and in order to
find the gradient, one would use backpropagation. It is common for developers to say they trained
their model using back-propagation, but technically, this is incorrect. Back-propagation is not an
optimization algorithm and cannot be used to train a model by itself. The term back-propagation
is often misunderstood as the entire learning algorithm for multi-layer neural networks. In reality,
back-propagation only refers to the gradient computation method, while another algorithm, like
SGD, performs the learning using these gradients [Goodfellow et al., 2016]. Before exploring the
different gradient descent algorithms, we define some terminology from Brownlee [2022].
Definition 3.3 (Sample). A sample is a single row of data containing inputs for the algorithm and an
output for error calculation. A training dataset consists of many samples, also known as instances,
observations, input vectors, or feature vectors.

The term feature vectors may be more appropriate for describing a row of data, as features refer
to specific, measurable attributes or characteristics of a given phenomenon. Selecting informative
features is crucial for the success of algorithms in tasks such as pattern recognition, classification,
and regression. Although features are typically numerical, they can also be structural, such as strings
and graphs. The concept of a feature is analogous to that of an explanatory variable in statistical
methods like linear regression. For simplicity, we will use the term sample for the remainder of the
paper.

12

Definition 3.4 (Batch). The batch size is a hyperparameter defining the number of samples pro-
cessed before updating the model parameters. A batch iterates over samples, makes predictions,
calculates errors, and updates the model.

Common mini-batch sizes are 32, 64, and 128. If the dataset size is not divisible by the batch size,
the final batch will have fewer samples.

Definition 3.5 (Epoch). An epoch is a hyperparameter defining the number of times the entire train-
ing dataset is processed. Each epoch ensures all samples have an opportunity to update the model
parameters. An epoch consists of one or more batches.

The number of epochs is typically large, often in the hundreds or thousands, to minimize the model
error sufficiently. Running too many epochs may lead to overfitting, as we’ll see in subsection 4.1.

3.3.1 VANILLA GRADIENT DESCENT

Vanilla gradient descent computes the gradient of the loss function with respect to the parameters
(i.e. the weights and biases) for the whole training set. In other words, the batch size is the size of
the entire training set. So for each parameter θ, the update would be,

θ = θ − η · ∇θJ(θ)

Since calculating the gradients for the entire dataset to perform a single update can be very slow,
vanilla gradient descent is impractical for large data sets. The code for vanilla gradient descent might
look like this [Ruder, 2017]:

for i in range(nb_epochs):
params_grad = evaluate_gradient(loss_function, data, params)
params = params - learning_rate * params_grad

For a pre-defined number of epochs, we first compute the gradient vector params grad of the loss
function for the entire dataset with respect to our parameter vector params using, say, backpropa-
gation.

We then update our parameters in the direction of the gradients, with the learning rate determining
the size of each update. Batch gradient descent is guaranteed to converge to the global minimum for
convex error surfaces and to a local minimum for non-convex surfaces [Ruder, 2017].

3.3.2 STOCHASTIC GRADIENT DESCENT

The volume of data has grown so much in recent years that the processing power available is insuffi-
cient to train neural networks by performing gradient descent on the entire training set at each epoch.
As a result, neural networks employ stochastic gradient descent (SGD), which reduces machine
computation time.

SGD is a method that optimizes gradient descent, making it less costly. SGD alters the batch gradient
descent algorithm by computing the gradient for just one training sample in each iteration before
updating the parameters. Equivalently, the batch size for SGD is equal to 1. We define an example
as a pair (x(i), y(i)) where x(i) is the training input and y(i) the label. The update is then [Ruder,
2017],

θ = θ − η · ∇θJ(θ : (x(i), y(i)))

The steps for performing SGD are as follows:

for i in range(nb_epochs):
np.random.shuffle(data)
for example in data:

params_grad = evaluate_gradient(loss_function, example, params)
params = params - learning_rate * params_grad

Notice that the data is shuffled before each iteration. This is done to prevent bias that would occur
if the data were trained in a specific order. A downside of SGD is that it doesn’t converge as surely

13

as vanilla gradient descent to the minimum of the ”basin” where the parameters were initialized.
Indeed, since SGD updates the parameters after every gradient computation on a single sample, it
fluctuates a lot, as seen in Figure 9. This may cause it to jump to a new local minima. Research
indicates that by gradually decreasing the learning rate with a learning rate schedule, SGD ex-
hibits similar convergence behavior to vanilla gradient descent, nearly always converging to a local
minimum for non-convex functions and to the global minimum for convex functions [Ruder, 2017].

3.3.3 MINI-BATCH GRADIENT DESCENT

Figure 9: SGD fluctuation, from
[Ruder, 2017]

Finally, Mini-batch is the middle ground between SGD
and Vanilla gradient descent. Instead of computing the
gradient on one sample, or on the entire data set, we com-
pute it on a fixed number n of samples,

θ = θ − η · ∇θJ(θ : (x(i:i+n), y(i:i+n)))

This approach reduces the variance of parameter updates,
leading to more stable convergence, and leverages highly
optimized matrix operations in modern deep learning li-
braries, making gradient computation with mini-batches
very efficient. Common mini-batch sizes range from 50 to
256, though they can vary depending on the application.
Mini-batch gradient descent is typically the preferred al-
gorithm for training neural networks, and the term SGD is
often used even when mini-batches are employed [Ruder,
2017]. The code for mini-batch gradient descent with a
batch size of 50 would be,

for i in range(nb_epochs):
np.random.shuffle(data)
for batch in get_batches(data, batch_size=50):

params_grad = evaluate_gradient(loss_function, batch, params)
params = params - learning_rate * params_grad

Now, there exist many more gradient descent algorithms, such as Nesterov Accelerated Gradient,
Adagrad, Adadelta, Adam, and many more. For more information on the subject, we refer the reader
to Ruder [2017].

3.4 LOSS FUNCTIONS

The attentive reader will have noticed that supervised machine learning revolves around optimizing
the outputs of a loss function. This also applies to a wide range of other machine learning strategies.
Thus, defining a good loss function is essential. We offer an overview of the most widely utilized
loss functions for a variety of uses, starting with Regression Losses.

3.4.1 REGRESSION LOSS FUNCTIONS

Regression losses are loss functions used to solve the regression problems of supervised ML. Recall
that regressions model predict the output of a continuous output variable. The regression losses are
all based on residuals, namely the difference between the predicted and expected outputs. In the
following, let xi be the ith element of input x, f(xi) the ith element of the predicted output, and yi
the ith element of the expected output. The following represent commonly used regression losses,

1. Mean Bias Error Loss [Continuous, Differentiable]. The Mean Bias Error loss (MBE) is
the most basic loss function, it is given by,

LMBE(yi, f(xi)) =
1

n

n∑
i=1

[yi − f(xi)] (3)

It measures the average bias in the prediction, but because positive errors have the ability
to cancel out negative ones and create an incorrect parameter estimate, it is rarely used

14

as the loss function to train regression models. However, it serves as the foundation for
the ensuing loss functions and is frequently employed to assess the models’ performances
[Ciampiconi et al., 2023].

2. Mean Absolute Error Loss (L1) [Lipschitz-Continuous, Convex]. The Mean Absolute Error
loss is one of the most fundamental loss functions for regression; it measures the average of
the absolute bias in the prediction. The absolute value overcomes the problem of the MBE
by ensuring that positive errors do not cancel the negative ones. It is defined as,

LMAE(yi, f(xi)) =
1

n

n∑
i=1

|yi − f(xi)| (4)

Notice that the contribution of the errors follows a linear behaviour, implying that many
small errors have as much impact as a big one. This implies that the gradient magnitude
is not dependent on the error size, thus leading to convergence problems when the error is
small. A model trained to minimize the MAE performs well when the target data condi-
tioned on the input is symmetric [Ciampiconi et al., 2023].

3. Mean Squared Error Loss (L2) [Continuous, Differentiable, Convex]. The Mean Squared
Error loss is a well-known and simple loss function for regression. It is given by

LMSE(yi, f(xi)) =
1

n

n∑
i=1

(yi − f(xi))
2 (5)

The squared term makes all the biases positive and magnifies the contribution made by
outliers, making it more suitable for problems where noise in the observations follows a
normal distribution. The sensitivity to the outliers is the primary disadvantage [Ciampiconi
et al., 2023].

4. Root Mean Squared Error Loss [Continuous, Differentiable, Convex]. The Root Mean
Squared Error loss is, apart from the square root term, identical to MSE. It main benefit
is that the loss has the same units and scale as the relevant variable. The minimization
procedure converges to the same optimal value as MSE. However, the RMSE may take
different gradient steps depending on the optimization method employed [Ciampiconi et al.,
2023]. It is defined as,

LRMSE(yi, f(xi)) =

√√√√ 1

n

n∑
i=1

(yi − f(xi))2 (6)

5. Huber Loss [Lipschitz-Continuous, Differentiable, Strictly Convex]. Huber loss is a mix of
MAE and MSE. When the residuals are sufficiently small, it goes from MAE to MSE. It
is parameterized by δ, which indicates the point at which MAE and MSE transition. This
enables it to combine the benefits of the MAE and the MSE. When there is a significant
discrepancy between the model’s output and prediction, the Huber loss becomes less sus-
ceptible to outliers since the errors are linear. On the other hand, if the error is tiny, it
follows the MSE, which accelerates convergence and makes it differentiable at 0. A crucial
decision is which δ to use, which may be modified often throughout the training process
depending on what constitutes an outlier [Ciampiconi et al., 2023]. The Huber loss is given
by,

LHuber(yi, f(xi)) =

n∑
i=1

αi(yi, f(xi)), (7)

where,

αi(yi, f(xi)) =

{
1
2 (yi − f(xi))

2, if |yi − f(xi)| ≤ δ

δ
(
|yi − f(xi)| − 1

2δ
)
, otherwise.

6. Log-cosh Loss [Continuous, Differentiable]. The Log-cosh loss is given by the logarithm
of the hyperbolic cosine of the residuals between the actual value y and the predicted value
f(yi). It is more computationally demanding than Huber loss, but it provides all the same

15

benefits without the need to establish a hyperparameter. The log-cosh loss has the advan-
tage of being twice differentiable, making it appropriate for algorithms needing to compute
the hessian. It is also considered as a Robust estimator, meaning that is is tolerant to outliers
in the data set [Ciampiconi et al., 2023]. It is defined as,

LLogcosh(yi, f(xi)) =
1

n

n∑
i=1

log[cosh(yi − f(xi))] (8)

7. Root Mean Squared Logarithmic Error Loss [Continuous, Differentiable, Convex]. The
Root Mean Squared Logarithmic Error (RMSLE) loss is given by,

LRMSLE(yi, f(xi)) =

√√√√ 1

n

n∑
i=1

[log(yi + 1)− log(f(xi) + 1)]2 (9)

When it comes to RMSE, the only distinction is that the logarithm is used on both the ob-
served and the anticipated values. The logarithm’s plus one term permits zero values for
f(xi). The RMSLE is more resilient to outliers because of the logarithm, as well as the
relative inaccuracy between the expected and actual values. In particular, the RMLSE’s
size does not increase in proportion to the error’s magnitude. Rather, when both the antici-
pated and actual values are high, data points with large residuals are not penalized as much.
Because of this, the RMSLE is a viable option for problems where the targets have an ex-
ponential relationship or when penalizing underestimates more heavily than overestimates
is desirable. This loss, however, is inappropriate for problems where negative values are
permitted [Ciampiconi et al., 2023].

3.4.2 CLASSIFICATION LOSS FUNCTIONS

The second subset of supervised ML, Classification, also has its own set of loss functions. The
following consists of the most commonly used Margin-based Classification losses.

1. Zero-one Loss. The Zero-one loss is the most basic classification loss function. It is defined
as,

LZero−One(y, f(x)) =

{
1, if f(x) · y < 0

0, otherwise.
(10)

In practice, the Zero-one loss can’t be used since it is not convex, nor differentiable.
2. Hinge Loss [Lipschitz-continuous, Convex]. The Hinge loss is among the most famous loss

functions for classification. It is given by,

LHinge(y, f(x)) = max(0, 1− f(x) · y) (11)

The two main drawbacks of Hinge loss are that it is sensible to outliers, and that its deriva-
tive is discontinuous at f(x) · y = 1. The latter makes it harder to optimise.

3. Quadratically Smoothed Hinge Loss [Lipschitz-continuous, Convex, Differentiable]. The
Quadratically Smoothed Hinge loss is a smoothed version of the Hinge loss, making it
easier to optimize.

LQSmoothedHinge(y, f(x)) =

{
1
2γ max(0,−(f(x) · y))2, if f(x) · y ≥ 1− γ

1− γ
2 − f(x) · y, otherwise.

(12)

The hyperparameter γ gives the degree of smoothing. As γ → 0,
LQSmoothedHinge(y, f(x)) → LHinge(y, f(x)).

4. Modified Huber Loss [Lipschitz-continuous, Differentiable, Strictly convex]. The Modified
Huber loss is a version for classification. It is a special case of the Quadratically Smoothed
Hinge Loss with γ = 2. We define it as,

LModHuber(y, f(x)) =

{
1
4 max(0,−(f(x) · y))2, if f(x) · y ≥ −1

−(f(x) · y), otherwise.
(13)

16

Figure 10: Diagrams representing Underfitting, Appropriate, and Overfitting, from [Goodfellow
et al., 2016]

5. Ramp Loss [Continuous, Convex]. The Ramp loss is more robust to outliers than the Hinge
loss. It is given by,

LRamp(y, f(x)) =

{
LHinge(y, f(x)), if f(x) · y ≤ 1

1, otherwise.
(14)

Other loss functions based on Information Theory, such as the Cross-Entropy loss, and the Kullback-
Leiber divergence are widely used in classification problems, and we refer the reader to [Ciampiconi
et al., 2023] for more information.

4 FITTING THE MODEL

Amidst the pursuit of learning, lurk the pitfalls of overfitting and underfitting. Overfitting occurs
when a model becomes overly tailored to the training data, while underfitting results in oversim-
plified representations. Finding the right balance between generality and complexity is essential,
achieved through techniques like regularization and cross-validation.

The main difficulty with machine learning is that we have to be able to learn from new, unknown
inputs as well as those that our model was trained on. The capacity of a model to perform well
on unseen data is called Generalization. When training a model, we want the error between the
expected and predicted outputs to be as low as possible on the training data. This is referred to as the
training error. We could stop here, and we’d have an optimization problem. But this is where the
difference with machine learning is, we require that our model also predict new, unseen data with a
low error. We call this error the test error. When determining the quality of a ML algorithm, we
look mainly at the two following attributes,

1. How low is the training error?
2. How small is the gap between the test and training errors?

These correspond, respectively, to the two main challenges in Machine Learning: Underfitting and
Overfitting [Goodfellow et al., 2016].

4.1 OVERFITTING

Overfitting refers to the process of producing an analysis that matches a given set of data too closely,
which can lead to problems when trying to fit new data or make reliable predictions about future

17

events. That is, a mathematical model starts overfitting when it begins to memorize the data, rather
than learn from it.

In the topic of machine learning, if we choose too large of a network, it will behave like a lookup
table on the data it was trained with, but won’t generalize well to new data. Put another way, when
a neural network has an excessive number of parameters, it can overfit, just like any other statistical
model [Russel and Norvig, 2010].

As was hinted above, the degree of overfitting is influenced by the amount of data supplied, as well
as the model’s complexity. The complexity of the model is determined by the number of underlying
parameters that a neural network has. Additional degrees of freedom are the consequence of having
more parameters, which can be utilized to explain certain training data points without making a
strong generalization to new ones [Aggarwal, 2018c].
Example 4.1. Suppose we have 5 training pairs (x, t) available. Then, it can be shown that there
exists a degree 4 polynomial that fits the 5 training points exactly with zero error. This does not
mean, however, that the polynomial will approximate unseen data with zero error.

Figure 11: A diagram showing
overfitting (green line) of data from
[Wikipedia, the free encyclopedia]

As seen in Figure 11, an overfit model will have low
bias, but high variance on the training data. However,
as explained in Burnham and Anderson [2002], an overfit
model will

”have estimated (and actual) sampling
variances that are needlessly large (the
precision of the estimators is poor,
relative to what could have been ac-
complished with a more parsimonious
model) [...]. A best approximating
model is achieved by properly balanc-
ing the errors of underfitting and over-
fitting.”

Remark 4.2. In machine learning models, overfitting is
more likely when learning is performed for too long, or
when the training data set is small.

4.2 UNDERFITTING

Underfitting is essentially the inverse of overfitting. It oc-
curs when a model is too basic, and lacks the complexity,
i.e. the number of parameters, to explain the patterns in
the data. An underfit model will have high bias and low
variance on the training data, the exact opposite of an overfit model. In other words, underfitting is
failing to learn enough from the training set. For instance, when fitting a linear model to non-linear
data, under-fitting would happen. Such a model’s predicting ability would be mediocre both for the
training and testing data.

Underfitting is not as widely discussed as overfitting, since it can be detected easily by evaluating
how well the model is performing on the training data.

4.3 MASTERING THE FIT

Now that we’ve shown how bad a Machine Learning algorithm can be, we’ll show how to fix it. By
changing a model’s capacity, we may alter how likely it is to overfit, or underfit.
Definition 4.3 (Capacity). We define the capacity of a model as its ability to fit a wide variety of
functions. Models with low capacity may struggle to fit the training set, while models with high
capacity can overfit by memorizing properties of the training set that do not serve them well on the
test set. The capacity of a model is a way to measure its complexity.

Before altering the capacity of a model, one must evaluate whether a model is overfitting or under-
fitting. This can be done with the help of cross-validation, which we’ll discuss in the next chapter.

18

The bias-variance tradeoff is a fundamental concept in machine learning that deals with the trade-
off between a model’s bias and its variance. Bias refers to the error introduced by approximating a
real-world problem with a simplified model, often resulting in underfitting. Variance, on the other
hand, reflects the model’s sensitivity to small fluctuations in the training data, potentially leading to
overfitting. Balancing bias and variance is crucial for achieving optimal predictive performance: re-
ducing bias typically increases variance and vice versa. Finding the right balance involves selecting
an appropriate model complexity and regularization techniques to minimize both sources of error.
Figure 12 demonstrates the optimal point of capacity.

As long as the training error is low, one way to increase regularization without playing with capacity
is to increase the amount of training data. If this is not possible, there are a number of components
we can adjust in order to control the capacity of a model, such as [Brownlee, 2020],

1. The number of nodes per layer (width)
2. The number of layers (depth)

It makes sense that augmenting these would increase the capacity, as they clearly increase the com-
plexity of the model, which we know is closely related its capacity. It should be noted, however, that
increasing the number of nodes and layers in a model can also increase its running time and memory
usage.

Figure 12: A diagram showing the opti-
mal capacity of a model and its relation
with the bias-variance trade-off, from
[Kowalik, 2023].

Other ways to tune the model optimally are part of a sub-
set of ML called Regularization, that we’ll cover in the
following sections.

4.4 CROSS-VALIDATION

Cross-validation is a technique that aims to test the ML
model’s testing capabilities on unseen data. This helps
identify issues such as overfitting, discussed above, or se-
lection bias, which is the result of selecting training data
in a non-random way that doesn’t properly represent the
population. Cross-validation provides insight into how
well the model will generalize to a different dataset.

The most common technique used is k-fold cross-
validation, which allows one to repeatedly train and test
the model k times on various randomly chosen subsets of
the training data. The average test error across k trials can
then be used to estimate the test error. In trial i, the ith

subset of the data is used as the test set, and the remaining
data is utilized as the training set [Goodfellow et al., 2016]. See algorithm 1 for the pseudo-code for
the k-fold cross validation algorithm.

4.5 REGULARIZATION TECHNIQUES

Regularization refers to any change we make to a learning algorithm with the goal of lowering
its generalization error but not its training error. It is a key technique for addressing overfitting
(subsection 4.1) and is one of the main concerns in the field of ML, rivaled in its importance only by
optimization [Goodfellow et al., 2016]. Finding effective regularization methods is a hot research
area in the field.

A significant portion of machine learning involves creating various models and algorithms tailored to
suit them. Techniques like cross validation help us empirically determine the most suitable approach
for our specific problem. Yet, there isn’t one ”best” model universally applicable, this concept is
often referred to as the ”no free lunch theorem”. The rationale behind this theorem lies in the fact
that assumptions effective in one domain may not perform well in another [Murphy, 2012].

In light of this theorem, it becomes imperative to develop diverse models to accommodate the wide
array of real-world data. Additionally, for each model, there exists a multitude of algorithms offering
different tradeoffs between speed, accuracy, and complexity [Murphy, 2012].

19

Algorithm 1: k-fold cross-validation
1 Function KFoldXV(D, A, L, k):
2 Require: D , the given dataset, with elements z(i)

3 Require: A, the learning algorithm, seen as a function that takes a dataset as input and
outputs a learned function

4 Require: L, the loss function, seen as a function from a learned function f and an example
z(i) ∈ D to a scalar ∈ R

5 Require: k , the number of folds

6 Split D into k mutually exclusive subsets Di, whose union is D
7 for i from 1 to k do
8 fi = A(D Di);
9 for z(j) in Di do

10 ej = L(fi, z
(j));

11 return e;

4.5.1 L2 PARAMETER NORM PENALTY (WEIGHT DECAY)

Real-world data possesses intricate attributes, requiring equally intricate models to address them.
While reducing parameters represents one approach to mitigate model complexity, it remains a rather
restrictive tactic, since the more parameters our model has, the more interconnections within our
neural network, thereby greater non-linearities, crucial for representing complex data.

Yet, we must exercise caution to prevent these interconnections from spiraling out of control. Thus,
the notion of penalizing complexity emerges as a solution. By employing weight decay, we retain
our many parameters while imposing constraints to prevent excessive model complexity.

A method to impose a penalty on complexity involves adding all parameters (weights) into our loss
function. However, a straightforward addition isn’t viable due to the mix of positive and negative
parameters. Thus, we resort to adding the squares of these parameters to the loss function. Although
effective, this approach might inflate the loss to an extent where the optimal solution would entail
setting all parameters to zero. To avert this scenario, we scale down the sum of squares by a smaller
factor, termed weight decay [Vasani, 2019]. Weight decay stands out as a widely adopted tech-
nique in training numerous cutting-edge deep networks, including prominent models like GPT-3
[Andriushchenko et al., 2023].

We provide the definition from Andriushchenko et al. [2023]. Let (xi, yi)
n
i=1 be the training inputs

and labels where xi ∈ D, yi ∈ Rc, and c the number of classes. Let h : Rp × D → Rc be the
hypothesis class of neural network and for any parameter w ∈ Rp where the function h(w, ·) : D →
Rc represents the network predictions. The training loss L and the ℓ2-regularized training loss Lλ

are given as:

L(w) := 1

N

N∑
i=1

ℓ (yi, h(w, xi)) , Lλ(w) := L(w) + λ

2
w2 , (15)

where ℓ(·, ·) : Rc × Rc → Rp denotes the chosen loss function, such as cross-entropy loss. Then,
simply use gradient descent with respect to Lλ.

We note that choosing an appropriate λ is a difficult problem. No exact method exists as of today.
Reasonable values, however, lie between 0 and 0.1 [Kuhn and Johnson, 2013].

4.5.2 DATA AUGMENTATION

While weight decay was a regularization method that focussed on altering the model, we now see
a technique that alters the data instead, to achieve similar results. Optimizing a machine learning
model’s ability to generalize is often best achieved by training it on a larger dataset. However, prac-
tical constraints limit the amount of available data. To address this limitation, one strategy involves
augmenting the training set with ”fake” data. This approach is straightforward for classification

20

Figure 13: Graph from Goodfellow et al. [2016]. The curves depict the evolution of the negative
log-likelihood loss over the number of training iterations or epochs. Initially, the training objective
steadily decreases over time as the model learns from the data, yet the validation set loss eventually
starts to rise again after reaching a minimum. This pattern indicates that despite improvements in
the training loss, the model’s performance on unseen data begins to degrade over time, highlighting
the phenomenon of overfitting.

tasks, by generating new (x, y) pairs through transformations of existing input data in the training
set, we can effectively expand the dataset.

Dataset augmentation has demonstrated particular effectiveness in certain classification tasks, no-
tably object recognition. Images, being high-dimensional, encompass a wide array of variation
factors, many of which can be simulated easily. Operations such as translating, rotating, or scaling
images have proven beneficial, even when the model is designed with partial translation invariance
through convolution and pooling techniques.

It’s important to be careful when applying transformations to data. For instance, in optical character
recognition tasks, correctly identifying distinctions like ’b’ versus ’d’ and ’6’ versus ’9’ is essential.
Therefore, transformations like horizontal flips are inappropriate for augmenting datasets in these
cases, clearly [Goodfellow et al., 2016].

4.5.3 EARLY STOPPING

When training large models with great complexity, it’s common to observe a phenomenon where
training error steadily decreases over time, while validation set error starts to rise again, as illus-
trated in Figure 13. Consequently, it’s possible to achieve a model with improved validation set error
(and ideally, better test set error) by reverting to the parameter setting at the point when validation set
error was lowest. To implement this, we save a copy of the model parameters each time validation
set error improves. Upon termination of the training algorithm, we return these parameters instead
of the latest ones. The algorithm concludes when no parameters show improvement over the best
recorded validation error for a specified number of iterations [Goodfellow et al., 2016].

4.5.4 DROPOUT

Dropout is yet another technique to address the regularization problem. The core concept is to
randomly deactivate units, along with their connections, within the neural network during training.
This prevents units from becoming overly reliant on each other. Throughout training, dropout sam-
ples from an array of ”thinned” networks. At the testing phase, approximating the ensemble effect
of these thinned networks can be achieved by utilizing a single unthinned network with reduced
weights. This approach significantly mitigates overfitting and surpasses other regularization tech-
niques. Dropout has demonstrated its efficacy in enhancing the performance of neural networks

21

across various supervised learning tasks, including vision, speech recognition, document classifi-
cation, and computational biology. Notably, it has achieved state-of-the-art results on numerous
benchmark data sets [Srivastava et al., 2014].

5 CONCLUSION

As we’ve journeyed through the amazing realm of supervised machine learning, we’ve seen how
powerful it can be. Through simple mathematics and precise engineering of neural networks, su-
pervised learning algorithms can extract information from labelled data to make inferences about
unseen data, behaving like an intelligent being. This is where machine learning diverges from statis-
tics, which is often focused on making inference from observed data, while ML is purposefully
structured for making inference on unseen data. Throughout, we covered the foundational concepts
of neural networks and their construction, progressing to the more advanced techniques of back-
propagation and gradient descent. We provided brief surveys of activation and loss functions for the
reader’s reference. We also addressed key challenges in machine learning, such as overfitting and
underfitting, along with techniques to mitigate them.

Supervised learning has a significant impact on today’s world. It drives many different applications,
including as natural language processing, autonomous cars, and medical diagnostics. The ability
to learn from labelled data has enabled the creation of systems that can recognize speech, translate
languages, detect fraud, and recommend products with remarkable accuracy.

It becomes evident, however, that the reliance of supervised learning on carefully labelled datasets
poses a significant limitation. The need for abundant, high-quality data, paired with corresponding
inputs and desired outputs, can be restrictive and often impractical in real-world scenarios. This
limitation becomes particularly apparent when faced with complex tasks where defining the desired
outputs may be challenging or even impossible.

This is the basis of the power of reinforcement learning (RL), an approach that learns from interact-
ing directly with the environment, surpassing the limitations of supervised learning. In RL, agents
move through a set of options, learning the best methods by making mistakes and getting feedback
in the form of rewards. Due to its self-learning mechanism, RL can now address issues for which
explicit supervision is impractical, providing access to previously uncharted territory for conven-
tional machine learning techniques. The field of RL could be of great interest to the reader, and we
recommend the textbook by Sutton and Barto [2018] for further readings.

In this paper, we focused on the scientific view of ML, but a great deal can also be said about its
philosophical impacts. The concept of supervised learning represents a change in how we see in-
telligence and knowledge. Some once believed that intelligence was a quality exclusive to humans,
one that was demonstrated by one’s capacity for understanding, reasoning, and experience-based
learning. Supervised learning could be said to challenge this notion by demonstrating that machines
can also exhibit these capabilities. This highlights a new paradigm where knowledge emerges from
the interaction between algorithms and data. However, it could also be argued that social networks,
economies, and evolutionary systems, all behave in a manner which could be deemed intelligent.
This raises the question of who defines intelligence. Many systems, like AI, are equilibria of opti-
mization problems, and some argue that everything, even life itself, can be viewed as an optimization
problem. Given the complexity of life, we claim that it is actually an NP-hard optimization problem
and leave the proof to the reader.

ACKNOWLEDGMENTS

I want to express my gratitude to the reader who made it this far, possibly being the only one to do
so. I also thank the McGill Directed Reading Program for the opportunity, support, and resources.
Most importantly, I thank Yanees Dobberstein for his criticism and many insights.

REFERENCES

Charu C. Aggarwal. Neural Networks and Deep Learning: A Textbook, chapter 1.2. Springer Publishing
Company, Incorporated, 1st edition, 2018a. ISBN 3319944622.

22

https://www.math.mcgill.ca/gsams/drp/

Charu C. Aggarwal. Neural Networks and Deep Learning: A Textbook, chapter 3.2. Springer Publishing
Company, Incorporated, 1st edition, 2018b. ISBN 3319944622.

Charu C. Aggarwal. Neural Networks and Deep Learning: A Textbook, chapter 4.1. Springer Publishing
Company, Incorporated, 1st edition, 2018c. ISBN 3319944622.

AI-Wiki. Weights and biases. URL https://machine-learning.paperspace.com/wiki/
weights-and-biases. [Online; accessed April 30, 2024].

Maksym Andriushchenko, Francesco D’Angelo, Aditya Varre, and Nicolas Flammarion. Why do we need
weight decay in modern deep learning?, 2023.

Jason Brownlee. How to control neural network model capacity with nodes
and layers, 2020. URL https://machinelearningmastery.com/
how-to-control-neural-network-model-capacity-with-nodes-and-layers/.
[Online; accessed April 30, 2024].

Jason Brownlee. Difference between a batch and an epoch in a neural network, 2022. URL https://
machinelearningmastery.com/difference-between-a-batch-and-an-epoch/. [On-
line; accessed May 14, 2024].

K.P. Burnham and D.R. Anderson. Model selection and multimodel inference: a practical information-theoretic
approach. Springer Verlag, 2002.

cdeterman. what is a ’layer’ in a neural network. Stack Overflow. URL https://stackoverflow.
com/questions/35345191/what-is-a-layer-in-a-neural-network/35347548#
35347548.

Lorenzo Ciampiconi, Adam Elwood, Marco Leonardi, Ashraf Mohamed, and Alessandro Rozza. A survey and
taxonomy of loss functions in machine learning, 2023.

Stuart E. Dreyfus. Artificial neural networks, back propagation, and the kelley-bryson gradient procedure. Jour-
nal of Guidance Control and Dynamics, 13:926–928, 1990. URL https://api.semanticscholar.
org/CorpusID:121153720.

Ian Goodfellow, Yoshua Bengio, and Aaron Courville. Deep Learning. MIT Press, 2016. http://www.
deeplearningbook.org.

Albert Gu and Tri Dao. Mamba: Linear-time sequence modeling with selective state spaces, 2023.

Martin T Hagan, Howard B Demuth, Mark H Beale, and Jesús Orlando, De. Neural Network Design (2nd
Edition), chapter 4 Perceptron Learning Rule. Martin Hagan, 2014. ISBN 978-0971732117. URL https:
//hagan.okstate.edu/NNDesign.pdf.

Ameya D. Jagtap and George Em Karniadakis. How important are activation functions in regression and
classification? a survey, performance comparison, and future directions, 2022.

Marek Kowalik. Capacities of quantum neural networks, part 1, 2023. URL https://medium.com/
@marekkowalik97/capacities-of-quantum-neural-networks-part-1-1a731f44be0.
[Online; accessed May 2, 2024].

Max Kuhn and Kjell Johnson. Applied Predictive Modeling. Springer, 2013. ISBN 978-1-4614-6848-6.

Kevin P. Murphy. Machine Learning: A Probabilistic Perspective. MIT Press, 2012. URL https://
probml.github.io/pml-book/book0.html.

Thomas Rincy N and Roopam Gupta. A survey on machine learning approaches and its techniques:. In 2020
IEEE International Students’ Conference on Electrical,Electronics and Computer Science (SCEECS), pages
1–6, 2020. doi: 10.1109/SCEECS48394.2020.190.

Sebastian Ruder. An overview of gradient descent optimization algorithms, 2017.

Stuart Russel and Peter Norvig. Artificial Intelligence, A Modern Approach, chapter 18. Pearson Education,
New Jersey, 3rd edition, 2010.

Nitish Srivastava, Geoffrey Hinton, Alex Krizhevsky, Ilya Sutskever, and Ruslan Salakhutdinov. Dropout: A
simple way to prevent neural networks from overfitting. Journal of Machine Learning Research, 15(56):
1929–1958, 2014. URL http://jmlr.org/papers/v15/srivastava14a.html.

23

https://machine-learning.paperspace.com/wiki/weights-and-biases
https://machine-learning.paperspace.com/wiki/weights-and-biases
https://machinelearningmastery.com/how-to-control-neural-network-model-capacity-with-nodes-and-layers/
https://machinelearningmastery.com/how-to-control-neural-network-model-capacity-with-nodes-and-layers/
https://machinelearningmastery.com/difference-between-a-batch-and-an-epoch/
https://machinelearningmastery.com/difference-between-a-batch-and-an-epoch/
https://stackoverflow.com/questions/35345191/what-is-a-layer-in-a-neural-network/35347548#35347548
https://stackoverflow.com/questions/35345191/what-is-a-layer-in-a-neural-network/35347548#35347548
https://stackoverflow.com/questions/35345191/what-is-a-layer-in-a-neural-network/35347548#35347548
https://api.semanticscholar.org/CorpusID:121153720
https://api.semanticscholar.org/CorpusID:121153720
http://www.deeplearningbook.org
http://www.deeplearningbook.org
https://hagan.okstate.edu/NNDesign.pdf
https://hagan.okstate.edu/NNDesign.pdf
https://medium.com/@marekkowalik97/capacities-of-quantum-neural-networks-part-1-1a731f44be0
https://medium.com/@marekkowalik97/capacities-of-quantum-neural-networks-part-1-1a731f44be0
https://probml.github.io/pml-book/book0.html
https://probml.github.io/pml-book/book0.html
http://jmlr.org/papers/v15/srivastava14a.html

Richard S. Sutton and Andrew G. Barto. Reinforcement Learning: An Introduction. The MIT Press, second
edition, 2018. URL http://incompleteideas.net/book/the-book-2nd.html.

Dipam Vasani. This thing called weight decay, Nov 2019. URL https://towardsdatascience.com/
this-thing-called-weight-decay-a7cd4bcfccab.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N. Gomez, Lukasz Kaiser,
and Illia Polosukhin. Attention is all you need, 2017.

Katrina Wakefield. A guide to the types of machine learning algorithms and their applica-
tions. URL https://www.sas.com/en_gb/insights/articles/analytics/
machine-learning-algorithms.html. [Online; accessed May 5, 2024].

Wikipedia, the free encyclopedia. Overfitting. URL https://en.wikipedia.org/wiki/
Overfitting. [Online; accessed April 30, 2024].

24

http://incompleteideas.net/book/the-book-2nd.html
https://towardsdatascience.com/this-thing-called-weight-decay-a7cd4bcfccab
https://towardsdatascience.com/this-thing-called-weight-decay-a7cd4bcfccab
https://www.sas.com/en_gb/insights/articles/analytics/machine-learning-algorithms.html
https://www.sas.com/en_gb/insights/articles/analytics/machine-learning-algorithms.html
https://en.wikipedia.org/wiki/Overfitting
https://en.wikipedia.org/wiki/Overfitting

	Introduction
	Neural Networks
	Single Layer Perceptron
	Neurons
	Feed-Forward Neural Networks
	Layers
	Activation Function

	Learning
	BackPropagation
	Weight Update Rule
	Gradient Descent
	Vanilla Gradient Descent
	Stochastic Gradient Descent
	Mini-Batch Gradient Descent

	Loss Functions
	Regression Loss Functions
	Classification Loss Functions

	Fitting the model
	Overfitting
	Underfitting
	Mastering the Fit
	Cross-Validation
	Regularization Techniques
	L2 Parameter Norm Penalty (Weight Decay)
	Data Augmentation
	Early Stopping
	Dropout

	Conclusion

