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Abstract

Since the proof of the classic prophet inequality, many variations of the original game have
been studied. We begin this paper by reviewing the classic prophet inequality, as well as a
question about the moment-knowledge scenario asked by Jose Correa, Foncea, Hoeksma, Oost-
erwijk, and Vredeveld 2019, We then explore the question by proving a result for the 1-moment
special case and showing how our technique can be generalized to the k-moment general case
by using a family of probability distributions constructed to have certain desirable properties.

1 The Classic Problem

Given a sequence of n independent, non-negative random variables X;, Xs,...,X;,, each repre-
senting the value of an opportunity and drawn from a known distribution F; for i = 1,...,n, the
decision-maker observes the realization of each X; sequentially. The decision-maker must decide
on the spot, for each X;, whether to accept X; and stop the process, or reject X; and proceed to
Xi+1, with the objective of maximizing the expected value of X, where t is the stopping time of
the decision-maker. The classic prophet inequality asserts that there exists a stopping rule for the
decision-maker that guarantees an expected payoff of at least %E[X*], where X* = max{Xj,..., Xn},
which represents the payoff of a prophet who knows the realization of each X; at the start of the
game.

Classic results

Theorem 1 (Krengel and Sucheston 1987, Samuel-Cahn (1984). A uniform threshold guarantees
that the expected value of the gambler’s choice, E[Gambler], is at least % of the expected maximum
value, E[Prophet]. Furthermore, this is a tight bound.

Tight Bound

The above bound was proven to be tight using a scenario consisting of just two random variables,
X7 and X3, where € > 0, X7 = 1, and X; = (1/¢) bernoulli(e).

* The prophet selects the maximum value of two outcomes,

X* — 1 with probability 1 — e,
B with probability e.
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Hence, the expected maximum value E[Prophet] is calculated as:
1
E[Prophet] =1 - (1 —e)—l—g-e:]—e—i-] =2—e.

* The gambler can either accept the first outcome and get an expected value of 1, or reject
it and accept the second outcome, which also has an expected value of 1. Therefore, the
expected value for the gambler is:

E[Gambler] = 1.

» Taking € — 0 shows that the bound is tight.

Moment-Knowledge Scenario

In the moment-knowledge scenario, given a sequence of n independent, non-negative random
variables Xj, Xz, ..., Xy, the player knows only the first k moments of each distribution, unlike the
classic scenario where the player knows each distribution in full. The notion of knowledge in this
context is currently informal, but will soon be formalized.

In the final section of Jose Correa, Foncea, Hoeksma, Oosterwijk, and Vredeveld 2019, multiple
open problems were proposed, including the problem of finding bounds for the moment-knowledge
scenario. The remainder of this paper presents our work on that problem.

2 Preliminaries.

We begin by formalizing the notion of a gambler who knows only the values it has drawn and
the first k moments of each random variable, inspired by the (k,n)-stopping rule of José Correa,
Diitting, Fischer, and Schewior |[2018|

For our purposes, a stopping rule r is a sequence 11,..., T, of functions r; : IPQF — [0, 1] where
ri(x1,...,xi) represents the conditional probability of stopping on X; given that X; = x1,...,Xi = x4
in a prophet game with random variables X;,...,X,,. A k-moment gambler is a gambler whose
choice of stopping rule depends only on the first k moments of each random variable.

Lemma 2. Let r be any stopping rule. Given two prophet games, one on Xj, ..., Xy and the other on
Yi,...,Yn, where X; and Y; are discrete and have the same first k moments for all 1 < j < n and the
same distribution for all 1 < j < i for some 1, let T be the stopping time of r on Xy,..., Xy, and let 7t be
the stopping time of ron Y1,...,Yn. Then P(t =1) =P(t = 1).

Remark. This formalizes the notion that the behaviour of a k-moment gambler up to a point in time
can only be affected by what it has seen up to that point in time, at least when the distributions are
discrete.

Proof of Lemma[2] For xi,...,x; respectively in the supports of Xj,...,X; (which are also respec-
tively the supports of Yi,...,Y;), we have

i1
Plt=1X; =x1,...,Xi =xi) = HU —Ti(X1y. ) | - Tilxry e x0)
=1



and similarly

i—1
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Summing over all choices of x,...,X;, we obtain
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=P(nt=1).

Lemma 3. For any non-negative probability mass function f whose support has a maximum m, there
exists n such that given n i.i.d. f random variables X1, ..., X,, we have

E{ max {Xi}} > m/2.
1<i<n

Proof. Letp = f(m). Then 0 < (1 —p) < 1, so there exists n such that (1 —p)™ < 1/2. Thus, for n
i.i.d. f random variables X;, ..., X;,,, we have

E{ max {Xi}} > m - P( max {Xi} > m)
1<i<n 1<i<n

=m- (1 —P(]m.ax{Xi} <m))
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3 Special Case: 1-Moment Gambler

We begin by restricting our focus to the 1-moment gambler case. Its proof is more intuitive than
that of the general case thanks to the use of familiar Bernoulli distributions, but it acts as a stepping
stone to the general case.

Theorem 4. For any real € > 0 and any 1-moment gambler; there exists a prophet game Y1,...,Ym
such that

E{Y,} < eE{max{Y;}},

where Tt is the stopping time of that 1-moment gambler on that prophet game.



Proof. Let N = [4/€e]. We must now show that for any 1-moment gambler, there is a prophet game
where the expected payoff for the prophet is at least N/4 times as high as that of the gambler. We
begin by constructing an intermediate prophet game from which the desired prophet game will be
constructed.

For 1 < i < N, let f; be the Nibernoulli(1/N?) probability mass function and let m; be a
number such that the expected maximum of m; i.i.d. f; random variables is at least N*/2, which
is guaranteed to exist by Lemma |3, Now for 0 < i < N let M; = Z}:l m;. Consider the prophet
game corresponding to a sequence of independent random variables Xj,..., Xy, where for all
1 <i< Nand Mi_; <j < My, X is a random variable with probability mass function f;. Here is
how Xj, ..., Xm, looks:

X1oo oy XMyy oo oy XM q4+1y oy XMyy + o oy XMy 1415+ - o s XMy

m; random variables with pmf f;, together having expected maximum > Nt/2

Now let g be any 1-moment gambler, let r be the stopping rule that g chooses for X, ..., Xy,
let T be the stopping time of r on Xj,...,Xnm,, and let

pi=PMi <1< M)

for all 1 <1i < N. Then there exists 1 <n < N such that p, < 1/N.

Now let Y7,...,Ym, be a new sequence of independent random variables where Yi,...,Yu,
are respectively the same as Xy, ..., Xum, while Yy, 41,..., Ym, have distribution bernoulli(1). By
definition of 1-moment gambler, g must choose the stopping rule r for Yj,..., Yy, . Let 7 be the
stopping time of r on Yi,...,Ypm,. By Lemma

PMp 1 <t <My) =P(My 1 <1< My) <1/N.

Now, because every random variable that isn’t among X, ,+1,...,Xm, can take on value at
most N1, we have

1 N—1

< _N" n—1 _ nfl'
E{Xn} < N+ =N 2N

At the same time,
n

Emax(Xg) > -,

by choice of m,, using Lemma 3| As a result,
N
Efmax(X:}) > 2 E(Xx),
1

which implies that
E{X7} < eE{max{X;}}
1

by definition of N. O

Remark. Varying x in xbernoulli(1/x) provides a way of controlling how the expected maximum
grows when chaining copies of this distribution together. In the above proof, we have taken advantage
of the gambler’s inability to predict this growth.



4 Existence of the Distributions Needed to Generalize.

The following lemma essentially asserts the existence of a family of distributions where the maxi-
mum of the support can be chosen to be arbitrarily high without affecting the first k moments.

Lemma 5. For any integer k > 1, there exists a family of discrete, non-negative distributions {Dy(0) :
© > 1} such that for all a > 1, Dy(a) and Dy (1) have the same first k moments and a is the maximum
of the support of Dy(a).

Remark. For k = 1, xbernoulli(1/x) satisfies the properties required of Dy (x). These are in fact the
only properties required for the proof of Theorem 4| to work, and so we will later be able to use the
existence of Dy to generalize Theorem

Proof of Lemma5] Let Dy(1) be the uniform distribution over {0/k,1/k,...,k/k}. Now let a > 1.
It will suffice to find a satisfactory definition of Dy(a). Consider the function F : R x R* — R
defined

a
(.12
F(x,y) = : x + My
K
where
A0 2/ ... (k/K)!
/K2 (2/k2 ... (k/K)?
M: . . c. .
/0% 2% ... (k/K)

For suitable values of x and y, F(x,y) is the vector of the first k moments of a distribution on
0/k,1/k,...,k/k, and a with weight x on a and weight y; on i/k for all T < i < k (with the
remaining weight being put on 0). Let xo = 0 and yo = [1/(k+1),...,1/(k+1)] € R¥ so that x, and
yo are the weights of Dy (1) on a and 1/k, 1/, ..., k/k. Define a new function G : R x R* — R* by

G(X)Y) = F(X)Y) - F(X07YO)-

The Jacobian JFy(xo,y0) is M, which is a Vandermonde matrix, and hence inevitable. As a
consequence of the implicit function theorem, there exist a neighbourhood U of xy and a continuous
function g : U — RX such that g(x¢) = yo and G(x, g(x)) = 0 for all x € U.

There is also a neighbourhood V around y, where each element’s components are non-negative
and sum to at most T — zk]ﬁ’ since the components of y, are strictly positive and sum to 1 — k%
By continuity of g, g~' (V) is a neighbourhood of x,.

Now pick 0 < p < zgﬁ in the intersection of U and g~' (V), which is a neighbourhood of xy = 0.
Then p and the components of g(p) are all non-negative and sum to at most 1, meaning there is a
discrete, non-negative distribution Dy(a), the maximum of whose support is a, defined by putting
a weight of p on a, a weight of g(p); on i/k for all 1 < i < k, and the remaining weight on 0. By
definition of g, F(p, g(p)) — F(xo,¥0) = 0, that is, Dy (a) has the same first k moments as Dy(1). [

Remark. We can think of D(a) intuitively as being constructed by taking D (1), transferring a “suffi-
ciently small” portion of the weight from 0 to a, and then correcting the first k moments using the k
degrees of freedom afforded by the weights on 1/k,2/k,...,k/k.



5 General Case: k-Moment Gambler

Theorem 6. For any real € > 0, any integer k > 1, and any k-moment gambler, there exists a prophet
game Y1, ..., Yn such that
E{Yr} < eE{max{Yi}},
1

where Tt is the stopping time of that k-moment gambler on that prophet game.

Proof. The proof is similar to that of Theorem |4| except that the 1-moment gambler is replaced by
a k-moment gambler and x bernoulli(1/x) is replaced by Dy (x) from Lemma [5|for all x. d

6 Future Work

One critical aspect of future work could be distribution-specific analyses, where the primary focus
would be to determine whether the result regarding the moment-knowledge scenario holds con-
sistently across different families of distributions. This investigation can specifically address the
differences between heavy-tailed and light-tailed distributions, analyzing how these characteristics
impact the decision-making process in prophet inequalities. Additionally, the research can be ex-
tended to scenarios where the random variables are not independent in order to understand how
inter-variable correlations affect the maximum achievable ratio of the player’s expected gain to the
expected maximum value.

Another possible direction lies in algorithmic development. Here, the emphasis would be on de-
signing algorithms capable of computing stopping rules in real time, using only the known moments
of the distributions. Such algorithms would be crucial for applications requiring quick decision-
making under uncertainty. Moreover, the robustness of these algorithms could be rigorously tested
against various scenarios where moment estimation errors may occur, thereby evaluating their ef-
fectiveness and practicality in diverse settings.

Finally, the problem remains of determining the tight upper bound for a k-moment gambler
when the number of boxes is restricted to N, or equivalently, the minimum number of boxes re-
quired to force a given upper bound. For example, the construction in Theorem [4| requires

12
- Z { 1n1]21{21)w =6,742,003,513,416

12n

boxes Yi,..., Yy just to force an upper bound of
E(Y,) < E(max(Yy)
1

for the stopping time 7t of a given 1-moment gambler on Yi,..., Y, and we believe that dramatic
improvement is likely to be possible.
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