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Abstract

The project commences by exploring the Expectation-Maximization (E-M)
algorithm. This is a well-known and widely used method in statistics used to find

maximum likelihood estimates of parameters in models where we regard the observations
as incomplete data. The paper then investigates a detailed example using the multinomial
distribution to further motivate and illustrate the algorithm. Another application of the

algorithm, applied to a Gaussian mixture model, is also investigated.
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Chapter 1

Introduction and Explanation of
Algorithm

1.1 Motivation, Set-up of the Algorithm, Key Definitions

and Properties

The Expectation-Maximization algorithm (short: E-M algorithm) is an iterative procedure
used to find maximum likelihood estimates in statistical models having incomplete data.
Whilst the term incomplete data may seem slightly enigmatic, a precise mathematical definition
can be offered: [4].

Definition 1.1.1. Incomplete Data.
Let f be a non-injective mapping between two sample spaces X and Y . Assume that the data
collected, ie: the observed data, is denoted by y. We say that y is a realization from the
sample space Y and as such y ∈ Y. Let x ∈ X be data observations which are not observed
directly. Instead, x is observed indirectly through the observed data y. By considering the
many-to-one mapping f : X → Y, and recalling that we only observe y, we assume that x is
only known to reside in X (y), a subset of X specified by the relationship y = f(x) ∈ Y.

Under this setup, we say that x is the complete data and that y is the incomplete
data. As a trivial example, a complete data set can be thought of to be draws from a
population, and an incomplete data set can be regarded as draws from a subset of that
population. Another more compelling example of the distinction between complete and
incomplete can be found in Chapter 2. Typically, when working with problems which lend
themselves naturally to an application of the E-M algorithm, the incomplete data y is known
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and fixed, whereas the complete data x can be appropriately chosen in certain circumstances
to facilitate the computations of the algorithm.

The E-M Algorithm was first discussed in a 1977 paper by Dempster, Laird, and Rubin when
they introduced the algorithm and guaranteed that its solution converges to the maximum
likelihood estimates of the desired parameters. The authors also extended the algorithm
to various levels of generality, the broadest one being that of applying the algorithm to
exponential families. Under the formalism of exponential families, we will see in section
1.2 how the algorithm is greatly simplified. Indeed, their paper also pushed the algorithm
towards its full generality by arguing that it indeed achieves convergence towards the MLE’s
even outside of the exponential family.

In the current statistical literature, the E-M algorithm has a tremendous number of applications
to virtually any model with latent variables. Examples of where this algorithm is commonly
applied includes: factor analysis, censored data, finite mixtures, hyperparameter estimation,
and iteratively re-weighted least squares, among others.

Definition 1.1.2. Latent Variable
A latent variable is a variable whose value is not directly observed. Rather, its value can
only be inferred from other known values in the model. Following the terminology introduced
earlier, if x is latent then it is unobservable.

It is also worthwhile to mention that the E-M algorithm also works under a Bayesian
framework to find maximum a posteriori (MAP) estimates. However, this paper will focus to
an overview of the algorithm under a parametric model where the parameter to be estimated
is a fixed value (i.e. under a frequentist paradigm). In brief, the algorithm works towards
finding the MLE’s by iteratively applying a two-fold sequence of steps: an E-step (expectation
step) and an M-step (maximization step). In order to understand what happens at each of
those steps, we need to introduce additional notation:

Let f(x|θ) denote the probability density(mass) function associated with the complete-data
vector x which is dependent on a (possibly multivariate) unknown parameter θ ∈ Θ (complete-data
specification) where Θ denotes the parameter space. Similarly, let g(y|θ) the incomplete-data
specification.
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Now, the overarching premise of the E-M algorithm lies on the fact that traditional maximization
of the log-likelihood of the observed data y (yielding the MLE) might not be analytically
solvable. Hence, in order to find the MLE of our observed data y, the E-M algorithm
actually finds a way to incorporate the complete-data specification f(x|θ). In other words,
via the E-M algorithm, we find a way to link the observed incomplete-data model to a
complete-data model in order to enable easier maximum-likelihood computations. To this
end, for continuous densities, we have that the complete-data specification is related to the
incomplete data specification via:

g(y|θ) =
∫

x∈X (y)
f(x|θ)dx (1.1)

Similarly, when dealing with discrete random variables, we simply replace the integral sign in
Equation (1.1) with a summation sign. Furthermore, Equation (1.1) illustrates the essence
of the algorithm: we are resorting to using the complete-data specification and averaging it
over all possible latent/missing variable settings [5].

Procedure:
The first step of the algorithm is an initialization step, whereby we let θ0 ∈ Θ be an initial
reasonable estimate of the true parameter θ. At the first iteration, we begin with the E-step,
in which we are interested in calculating an expectation quantity denoted Q(θ|θ0), and whose
formula is given by:

Q(θ|θ0) = E
(
ln f(X|θ)|y, θ0

)
(1.2)

In other words, at the first E-step, we are computing the expected value of the log-likelihood
of the complete-data specification, given the observed data y AND the first estimate of the
parameter θ0.

In general, at the k-th iteration of the algorithm, the quantity Q(θ|θk−1) = E
(
ln f(X|θ)|y, θk−1

)
is computed, where we condition on the last iterative estimate of the parameter, θk−1, which
was found at the k-th iteration.

The M-step, at the k-th iteration, simply works to find the new, updated parameter θk which
maximizes Q(θ|θk−1). In other words, the M-step can be summarized as follows:

θk = argmax Q(θ, θk−1) (1.3)
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The recursive procedure continues by alternating between the E-step and an M-step. It is
important to mention that each step of the E-M algorithm monotonically increases the
log-likelihood of the complete-data specification. In this sense, the algorithm can only
be improved on at each step. Furthermore, convergence of the E-M algorithm to a critical
point of the likelihood function happens only when we assume that the likelihood function
of θ is uniformly bounded from above. Finally, it is worthwhile to state that the rate of
convergence of the algorithm can be increased whenever there is a reduction in the amount
of missing data.

1.2 Connection to Exponential Families

Recall that the broadest level of generalization of the E-M algorithm introduced in the 1977
paper was when the complete-data specification f(x|θ) is in an exponential family form. Let
X be a random variable distributed according to an exponential family and let SX denote
the support of X, θ ∈ Θ ⊂ Rd (d ≥ 1 is the dimension of the parameter space). The pdf/pmf
for a member of the parametric exponential family is given by:

f(x|θ) = h(x)c(θ) exp
{
ωT (θ) · T (x)

}
,∀x ∈ SX (1.4)

with h(x) > 0, c(θ) > 0 and also:

• T (x) =

(
t1(x), t2(x), ..., tk(x)

)T

such that the tj(x)’s are real-valued functions depending

only on x.

• ω(θ) =

(
ω1(θ), ω2(θ), ..., ωk(θ)

)T

such that the ωj(θ)’s are real-valued functions depending

only on θ.

Suppose that θk−1 denotes the current estimate of θ at the k-th iteration of the algorithm.
Observe that, when f(x|θ) is an exponential family, the computation of ln f(x|θ) simplifies
to:

ln
(
h(x)

)
+ ln

(
c(θ)

)
+ ωT (θ) · T (x)

In the E-step, we compute Q(θ, θk−1), given by:

Q(θ, θk−1) = E
(
ln(h(X)) + ln (c(θ)) + ωT (θ) · T (X)

∣∣∣∣y, θk−1

)
(Remember that, at the k-th iteration, we are working to find an updated estimate for θ,
denoted θk).
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Simplifying further, the term ln(c(θ)) is treated as a constant and hence pulled out of the
expectation yielding:

Q(θ, θk−1) = ln (c(θ)) + E
(
ln(h(X)) +

n∑
i=1

ωi(θ) ti(X) | y, θk−1

)

Q(θ, θk−1) = ln (c(θ)) + E
(
ln(h(X) | y, θk−1

)
+

n∑
i=1

ωi(θ)E
(
ti(X) | y, θk−1

)
(1.5)

When working with exponential families, we have the well known result that when X has a
distribution belonging to the exponential family, ∀j ∈ {1, ..., d}:

E

{
∂

∂θj

( n∑
i=1

ωi(θ)ti(X)

)}
= − ∂

∂θj

(
ln c(θ)

)
(1.6)

As part of the M -step, we can maximize Equation (1.5) with respect to θ by taking the
derivative with respect to θ and then setting it equal to 0. Note that the expectation of the
term ln(h(X)) gets dropped at this stage as it will depend only on θk−1 and y.

∂

∂θ
ln(c(θ)) +

∂

∂θ

{
n∑

i=1

ωi(θ)E
(
ti(X) | y, θk−1

)}
= 0

The first term on the left side of the above equality can be expressed alternatively via
Equation (1.6):

−E

{
∂

∂θj

( n∑
i=1

ωi(θ)ti(X)

)}
+

∂

∂θ

{
n∑

i=1

ωi(θ)E
(
ti(X) | y, θk−1

)}
= 0

From which we obtain:

∂

∂θ

{
n∑

i=1

ωi(θ)E
(
ti(X) | y, θk−1

)}
− E

{
∂

∂θj

( n∑
i=1

ωi(θ)ti(X)

)}
= 0 (1.7)

Working with Equation (1.7), we can treat each term one at a time. The first term may be
expressed as:

∂

∂θ

{
n∑

i=1

ωi(θ)E
(
ti(X) | y, θk−1

)}

=
∂

∂θ

(
ω1(θ)E

(
t1(X) | y, θk−1

)
+ ...+ ωn(θ)E

(
tn(X) | y, θk−1

))
=

∂

∂θ

(
ω1(θ)E

(
t1(X) | y, θk−1

))
+ ...+

∂

∂θ

(
ωn(θ)E

(
tn(X) | y, θk−1

))
= E

(
t1(X) | y, θk−1

)
∂

∂θ
{ω1(θ)}+ ...+ E

(
tn(X) | y, θk−1

)
∂

∂θ
{ωn(θ)}
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=
n∑

i=1

{
E
(
ti(X) | y, θk−1

) ∂
∂θ

ωi(θ)

}

Working with the second term from Equation (1.7), and following a similar argument as
above (using the sum rule for derivatives, rules of expectations), we have that:

E

{
∂

∂θj

( n∑
i=1

ωi(θ)ti(X)

)}
=

n∑
i=1

{
E
(
ti(X)

) ∂
∂θ

ωi(θ)

}
Substituting our simplified expressions back into Equation (1.7), we obtain:

n∑
i=1

{
E
(
ti(X)) | y, θk−1

) ∂
∂θ

ωi(θ)

}
−

n∑
i=1

{
E
(
ti(X)

) ∂
∂θ

ωi(θ)

}
= 0

By combining the summations:

n∑
i=1

∂

∂θ
ωi(θ)

(
E(ti(X)) | y, θk−1)− E(ti(X))

)
= 0

Which implies that: E
(
ti(X)) | y, θk−1

)
− E (ti(X)) = 0; if and only if:

∂

∂θ
ωi(θ) ̸= 0 ∀ i ∈ {1, ..., n} and sgn

(
∂

∂θ
ωi(θ)

)
= sgn

(
E(ti(X)) | y, θk−1)− E(ti(X))

)

Hence, when the complete-data specification is an exponential family, the M -step amounts
to having:

E
(
ti(X)) | y, θk−1

)
= E (ti(X))
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Chapter 2

Worked Multinomial Genetic Model
Example

In order to better understand the E-M algorithm in action, we can proceed with a detailed
mathematical treatment applied to an illustrating example mentioned in Dempster, Laird,
and Rubin’s original paper.

In this example, our sample size is n = 197 animals, which are distributed following a
multinomial distribution into k = 4 categories. We designate our observed data vector
as y and have that:

y = (y1, y2, y3, y4) = (125, 18, 20, 34)

Further assume that the model specifies the following probabilities:

p = (p1, p2, p3, p4) =

(
1

2
+

1

4
θ,

1

4
(1− θ) ,

1

4
(1− θ) ,

1

4
θ

)
Note that θ ∈ Θ is an unknown population parameter which needs to be estimated and that
we have 0 ≤ θ ≤ 1.

In order to be in a framework where we can apply the E-M algorithm, we will now regard y
as being incomplete data and actually denote by x the complete data vector coming from
a multinomial population with k = 5 categories.

Hence, we have: x = (x1, x2, x3, x4, x5) and with corresponding probabilities:

q = (q1, q2, q3, q4, q5) =

(
1

2
,
1

4
θ,

1

4
(1− θ),

1

4
(1− θ),

1

4
θ

)
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Comparing the complete data vector x with the incomplete data vector y, it is easy to
observe the following one-to-one correspondences between their respective probabilities.
Indeed: q3 = p2, q4 = p3, and q5 = p4. Also notice that q1 + q2 = p1. Hence, we can
say that the complete data x = (x1, x2, x3, x4, x5) is related to the incomplete data whereby
y1 = x1 + x2, y2 = x3, y3 = x4, y4 = x5.

In this example, from the fact that y1 = x1+x2, we can say that x1 and x2 are latent variables
because we never directly observe their individual values. In other words, even though we
have observed what y1 is, just knowing its value will not tell us specifically the values of x1 and
x2. From our complete data vector x, we also have its complete-data specification, which
is simply the probability mass function (or probability density function) of the complete data.
It is designated by f(x|θ). Here, recall that f(x|θ) has a multinomial pmf given by:

f(x|θ) = n!

x1!x2!x3!x4!x5!

(
1

2

)x1
(
1

4
θ

)x2
(
1

4
(1− θ)

)x3
(
1

4
(1− θ)

)x4
(
1

4
θ

)x5

(2.1)

We can take the logarithm of the complete data specification to obtain the complete-data
log-likelihood, which is what we will use throughout the remainder of the algorithm. Let
L(x|θ) be the complete-data likelihood. We now calculate ln(L(x|θ)), the complete-data
log-likelihood, as a function of θ. This means that any terms independent of θ have been
discarded. We hence obtain:

ln(L(x|θ)) = x2 ln

(
1

4
θ

)
+ x3 ln

(
1

4
(1− θ)

)
+ x4 ln

(
1

4
(1− θ)

)
+ x5 ln

(
1

4
θ

)
By further simplifying using logarithmic rules, and only retaining the terms containing θ, we
have, for the complete-data log-likelihood:

ln(L(x|θ)) = (x2 + x5) ln(θ) + (x3 + x4) ln(1− θ) (2.2)

The main issue with Equation (2.2) is that this log-likelihood equation cannot be maximized
as x2 is a latent variable and as such is unobservable. However, the E-step of the E-M
algorithm provides a solution.

Step 1: Provide an initial value/estimate for the parameter θ at the 0-th iteration. Denote
this by θ0.

Step 2: E-step We are interested now in the computation of Q(θ|θ0):

Q(θ | θ0) = E
(
ln(L(X|θ)) | y, θ0

)
9



Q(θ | θ0) = E
(
(X2 +X5) ln(θ) + (X3 +X4) ln(1− θ) | y1, y2, y3, y4, θ0

)

Now, remark that y2 = x3, y3 = x4, y4 = x5 have all been revealed, and, as such, X3, X4 and
X5 are deterministic and no longer random. Hence, we can simplify as follows:

Q(θ | θ0) = E
(
(X2 | y1, θ0) +X5

)
ln(θ) + (X3 +X4) ln(1− θ)

Let Y1 be the random variable corresponding to y1. At this point, we need to compute the
conditional expectation of X2 given Y1 = X1 +X2 given Θ = θ0: Notice how in the E-step,
we are, in essence, replacing X2 - the latent random variable, by its conditional expectation
given the observed data vector y. The question becomes how we can find the expectation
E
(
X2 | Y1 , θ0

)
.

Note that the conditional distribution of X2 | Y1, θ
0 is binomial since the counts in a single cell

in a multinomial experiment precisely follow a binomial distribution. Precisely, we obtain:

X2 | Y1, θ0 ∼ Binom

(
y1,

1
4
θ0

1
2
+ 1

4
θ0

)
Since there are n = y1 = 125 trials, the probability of success of X2 | Y1 is indeed given by
{P(X2 = x2)/P(Y1 = x1 + x2)} = (θ0/4) / (1/2 + θ0/4).

Standard results about the expectation of a binomial random variable imply that:

E
(
X2 | Y1 , θ0

)
=

y1 × 1
4
θ0

1
2
+ 1

4
θ0

=
125
4
θ0

1
2
+ 1

4
θ0

=
125θ0

2 + θ0
=

y1θ
0

2 + θ0
= x

(0)
2

Hence, we ultimately obtain:

Q(θ | θ0) =
(
x
(0)
2 + x5

)
ln(θ) +

(
x3 + x4

)
ln(1− θ)

Step 3: M-step

In this step, we choose an update θ(1) so that the quantity Q(θ | θ0) is maximized. Hence,
let us maximize Q(θ | θ0) with respect to θ. We take the derivative, set it equal to zero, and
solve for our new parameter update θ1.
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∂

∂θ

{(
x
(0)
2 + x5

)
ln(θ) +

(
x3 + x4

)
ln(1− θ)

}
= 0

1

θ

(
x
(0)
2 + x5

)
− 1

1− θ

(
x3 + x4

)
= 0(

x
(0)
2 + x5

)(
1− θ

)
= θ
(
x3 + x4

)
x
(0)
2 − x

(0)
2 θ + x5 − x5θ = x3θ + x4θ

Collecting the θ terms on one side:

x
(0)
2 + x5 = x3θ + x4θ + x5θ + x

(0)
2 θ

x
(0)
2 + x5 = θ

(
x3 + x4 + x5 + x

(0)
2

)
And finally, solving for θ will give us our new updated parameter estimate θ0 and complete
the first iteration.

θ(1) =
x
(0)
2 + x5

x3 + x4 + x5 + x
(0)
2

Now, the E-steps and M-steps alternate as the algorithm progresses. In general, we obtain,
at the k-th iteration, that:

θ(k) =
x
(k−1)
2 + x5

x3 + x4 + x5 + x
(k−1)
2

where x
(k−1)
2 =

y1θ
(k−1)

2 + θ(k−1)
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Chapter 3

The E-M Algorithm and Gaussian
Mixture Models

3.1 Background Information, Definitions

We start this section by introducing what is known as a mixture of Gaussians. Simply
put, a Gaussian mixture is a model in which there is a linear superposition of a finite
number of Gaussian densities. We say that each Gaussian density is a component of
the mixture model, and further, that each Gaussian density contributes its own mean and
variance-covariance matrix.

From this point forward, we shall denote by K the number of Gaussian distributions in our
model.

Figure 3.1 beneath is a visual representation of a simple Gaussian mixture model in the
one-dimensional case. [3].

Figure 3.1: Gaussian Mixture with K = 3)
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Gaussian mixture models are closely tied to the concept of unsupervised classification, as
implied by figure 3.1. Indeed, when we are concerned with the issue of clustering, we want to
group/classify observations according to data points that are "similar" via a suitable notion
of distance. To quantify the similarity between two data points, we could, as the most
general example, choose the Euclidean distance if we are operating under the assumption
that the observations can be represented as vectors in Rp.

Needless to say, when we create a cluster, the observations within that cluster are close in
space and hence "similar". The connection with Gaussian mixture models lies within the
fact that, each of these K Gaussian distributions actually represents one cluster.
Therefore, a Gaussian mixture model groups together observations that come from a specific
Gaussian density.

In figure 3.1, we have an underlying population model represented by the black data points
along R. The aim of classification studies is to figure out which data point belongs to which
cluster/Gaussian component.

An important aspect of a Gaussian mixture model is the so-called mixing probability.

Definition 3.1.1. Mixing Probability (Mixing Coefficients)
In a Gaussian mixture model, the mixing probability, denoted by πk, represents the probability,
(or proportion), that the population is described by the kth component (or, equivalently, the
kth Gaussian density). We can think of this mixing coefficient as the "weight" that the kth

component contributes to the overall Gaussian mixture model. As a general rule, we have
that:

K∑
k=1

πk = 1

Furthermore, since these mixing coefficients are probabilities themselves, we also have:

0 ≤ πk ≤ 1

.

Now, the equation describing Gaussian mixture models is given below:

p(x) =
K∑
k=1

πk N (x | µk,Σk) (3.1)
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Equation (3.1) again reminds us that each of the K components of a mixture model has its
own mean µk and its own covariance matrix Σk. [2].

3.2 Application of the E-M Algorithm

In turns out that the Gaussian mixture model is a very well-suited model in order to
investigate the E-M algorithm, provided we can introduce latent variables somehow into
the set-up: [1]

Let x = (x1, ..., xn) be a vector of n independent observations sampled from a Gaussian
mixture where we will assume that each component of the mixture (ie: each Gaussian/normal
density) is univariate. We will also further assume that the Gaussian mixture has K = 2

components. Hence, let z = (z1, z2) be the latent (unobservable) variables that specify from
which of the two univariate normal densities an observation is coming from.

We further have that P(Zi = 1) = τ1 and that P(Zi = 2) = τ2 = 1 − τ1, where τ1 and τ2

represent the mixing coefficients as outlined in Definition (3.1.1). We are thus assuming that
observations originate either from a first (1) or second (2) component. It is straightforward
to realize that, for every one of the n observations, each of the Zi’s is a Bernoulli random
variable. It is also important to remark that knowing the value of τ1 immediately provides
us with the value of τ2.

With this set-up, we have:

Xi | (Zi = 1) ∼ N (µ1, σ
2
1) and Xi | (Zi = 2) ∼ N (µ2, σ

2
2)

The overarching goal of applying the E-M algorithm to this setup is to estimate the vector
of unknown parameters θ = (τ , µ1, µ2, σ

2
1, σ

2
2).

The incomplete-data likelihood is denoted by L(θ;x) and it is equal to:

L(θ;x) =
n∏

i=1

{(
τ1f(xi;µ1, σ

2
1)
)
+
(
τ2f(xi;µ2, σ

2
2)
)}
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where f(·) represents the density of the univariate normal distribution.

In the E-step, we work with the complete-data likelihood in this case, which we specify if we
know the values of the latent variables z.

L(θ;x, z) =
n∏

i=1

[
τ1f(xi;µ1, σ

2
1)
]
1(zi=1) [

(1− τ1)f(xi;µ2, σ
2
2)
]
1(zi=2)

where, for each i ∈ {1, ..., n}, the indicator function 1(zi = 1) is equal to one if zi = 1

and is equal to zero otherwise. Similarly, the indicator function 1(zi = 2) is equal to one if
zi = 2 and equal to zero otherwise. Conclusively, for each i-th observation, the complete-data
likelihood consists of just one term; either τ1f(xi;µ1, σ

2
1) or (1− τ1)f(xi;µ2, σ

2
2).

As a preliminary to the E-step of the algorithm, we must proceed by taking the logarithm
of the complete-data likelihood, yielding:

ln(L (θ;x, z)) =
n∑

i=1

ln

{[
τ1f(xi;µ1, σ

2
1)
]
1(zi=1) [

(1− τ1)f(xi;µ2, σ
2
2)
]
1(zi=2)

}

ln(L (θ;x, z)) =
n∑

i=1

1(zi = 1) ln
(
τ1f(xi;µ1, σ

2
1)
)
+ 1(zi = 2) ln

(
(1− τ1)f(xi;µ2, σ

2
2)
)

ln(L (θ;x, z)) = ln(τ1)
n∑

i=1

1(zi = 1) +
n∑

i=1

1(zi = 1) ln
(
f(xi;µ1, σ

2
1)
)
+

ln(1− τ1)
n∑

i=1

1(zi = 2) +
n∑

i=1

1(zi = 2) ln
(
f(xi;µ2, σ

2
2)
)

Analogously to the multinomial example, the problem with the above likelihood is that it
cannot be maximized directly because the zi’s are latent variables. Hence, this is where
we invoke the E-step of the algorithm. We first provide an initial value/estimate for the
parameter θ at the 0-th iteration denoted by θ0 and then we compute the conditional
expectation Q(θ, θ0).

Q(θ, θ0) = E
(
ln(L (θ;x, z)) | Xi = xi ; θ0

)
Q(θ, θ0) = ln(τ1)

n∑
i=1

E
(
1(Zi = 1) | xi, θ

0

)
+

n∑
i=1

E
(
1(Zi = 1) | xi, θ

0

)
ln
(
f(xi;µ1, σ

2
1)
)
+

ln(1− τ1)
n∑

i=1

E
(
1(Zi = 2) | xi, θ

0

)
+

n∑
i=1

E
(
1(Zi = 2) | xi, θ

0

)
ln
(
f(xi;µ2, σ

2
2

)
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Now, we need to remember that the expected value of an indicator random variable is simply
the probability of the event defined by the indicator function. Hence:

E
(
1(Zi = 1) | xi, θ

0

)
= P

(
1(Zi = 1) | xi, θ

0

)
In order to calculate this probability, we need to use Bayes’ rule:

P
(
1(Zi = 1) | xi, θ

0
)
=

P
(
Xi = xi; θ

0 | zi = 1
)
P
(
Zi = 1

)
P
(
Xi = xi; θ0

)
Denote this above probability of interest, which amounts to being the conditional expectation
we are after, by (Ti)1.Therefore, we have, at the 0-th iteration:

E
(
1(Zi = 1) | xi, θ

0

)
= (Ti)1

(0) =
τ1

(0)f(xi;µ
(0)
1 , σ2

1
(0)
)

τ1(0)f(xi;µ
(0)
1 , σ2

1
(0)
) + (1− τ1(0))f(xi;µ

(0)
2 , σ2

2
(0)
)

Similarly, we also have an expression for (Ti)2:

E
(
1(Zi = 2) | xi, θ

0

)
= (Ti)2

(0) =
(1− τ1

(0))f(xi;µ
(0)
2 , σ2

2
(0)
)

τ1(0)f(xi;µ
(0)
1 , σ2

1
(0)
) + (1− τ1(0))f(xi;µ

(0)
2 , σ2

2
(0)
)

Note: The Ti terms are called membership probabilities.

We can now replace the respective Ti terms into the expression for Q(θ, θ0) we had on the
previous page:

Q(θ, θ0) = ln(τ1)
n∑

i=1

(Ti)1 +
n∑

i=1

(Ti)1 ln
(
f(xi;µ1, σ

2
1

)
+ ln(1−τ1)

n∑
i=1

(Ti)2 +
n∑

i=1

(Ti)2 ln
(
f(xi;µ2, σ

2
2

)
Recall that, for a normally distributed random variable with mean µ and variance σ2, its
density function f(·) is:

f(x) =
1√
2πσ2

exp

{
−(x− µ)2

2σ2

}
.

Taking the natural logarithm of the above:

ln f(x) = −1

2
ln(2πσ2)− (x− µ)2

2σ2

Hence, we can now fully write our expression for Q(θ, θ0) before moving on to the M-step of
the algorithm.
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Q(θ, θ0) = ln(τ1)
n∑

i=1

(Ti)1 +
n∑

i=1

(Ti)1

(
− 1

2
ln(2πσ2

1)−
(xi − µ1)

2

2σ2
1

)
+ ln(1− τ1)

n∑
i=1

(Ti)2 +

n∑
i=1

(Ti)2

(
− 1

2
ln(2πσ2

2)−
(xi − µ2)

2

2σ2
2

)
Now, in the M-step, determining the values that maximize the parameter vector θ is relatively
simple. As an example, we will show the M-step to obtain the MLE of µ1. In order to do
this, it suffices to differentiate the expression Q(θ, θ0) with respect to µ1, setting it equal to
0, and solving accordingly.

∂Q(θ, θ0)

∂µ1

=
n∑

i=1

(Ti)1

[
xi − µ1

σ2
1

]
= 0

=⇒
n∑

i=1

(Ti)1xi −
n∑

i=1

(Ti)1µ1 = 0

=⇒ µ̂
(1)
1 =

∑n
i=1(Ti)

(0)
1 xi∑n

i=1(Ti)
(0)
1
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