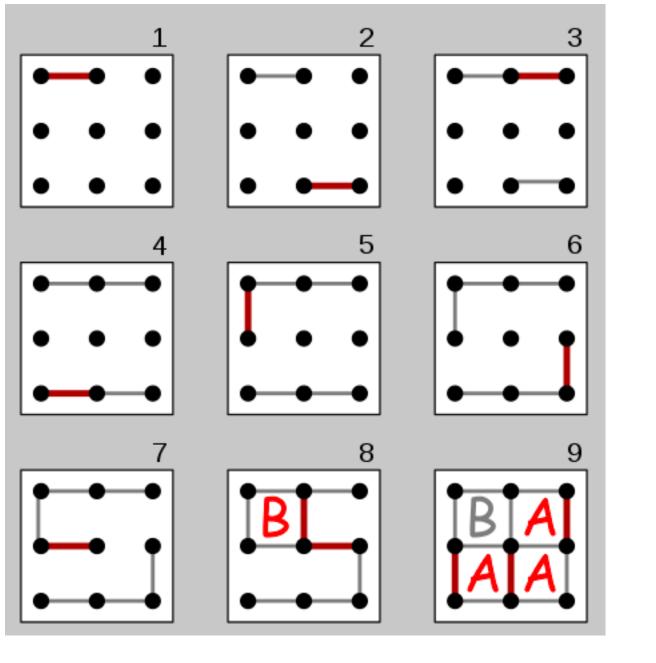
How to Win Dots and Boxes Winning Ways: E.R Berlekamp, J.H. Conway, R.K. Guy Lessons and Play: M.H. Albert, R.J. Nowakowski, D. Wolfe

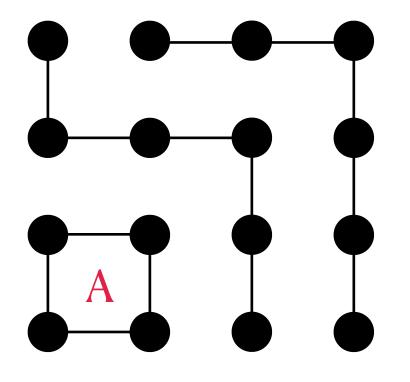
Presented by: April Niu, Mentor: Jordan Barrett

RulesDots and Boxes

- Two players, Alice and Bob, start from a (rectangular) array of vertices (dots) and take turns to add edges horizontally or vertically.
- The player who completes the fourth side of a unit square (box) earns one point and takes another turn.
- The game ends when there is no more box can be completed. Whoever has more boxes is the winner (optimization).
- Note: there are two phases for this game (1. connecting vertices 2. collecting boxes).



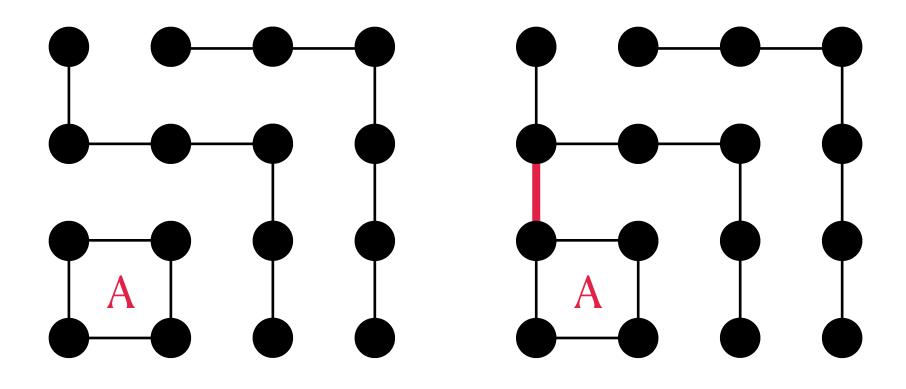
Cr: https://en.wikipedia.org/wiki/Dots_and_Boxes



• It's Alice's turn, she want to force Bob to play on the shorter chain.

Let's Play

Consider the following game board



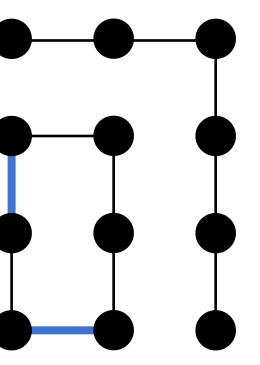
• It's Alice's turn, she want to force Bob to play on the shorter chain.

A

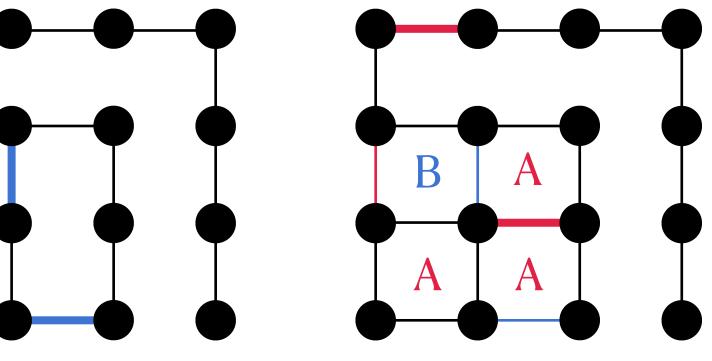
- It's Alice's turn, she want to force Bob to play on the shorter chain.
- Suppose you are Bob, what is your next move?

B A

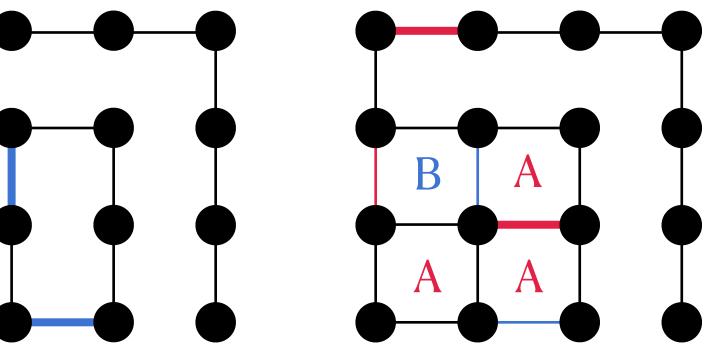
- It's Alice's turn, she want to force Bob to play on the shorter chain.
- Suppose you are Bob, what is your next move?

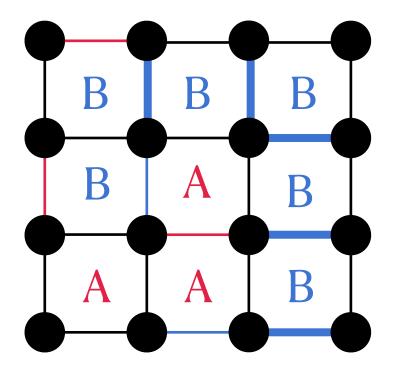


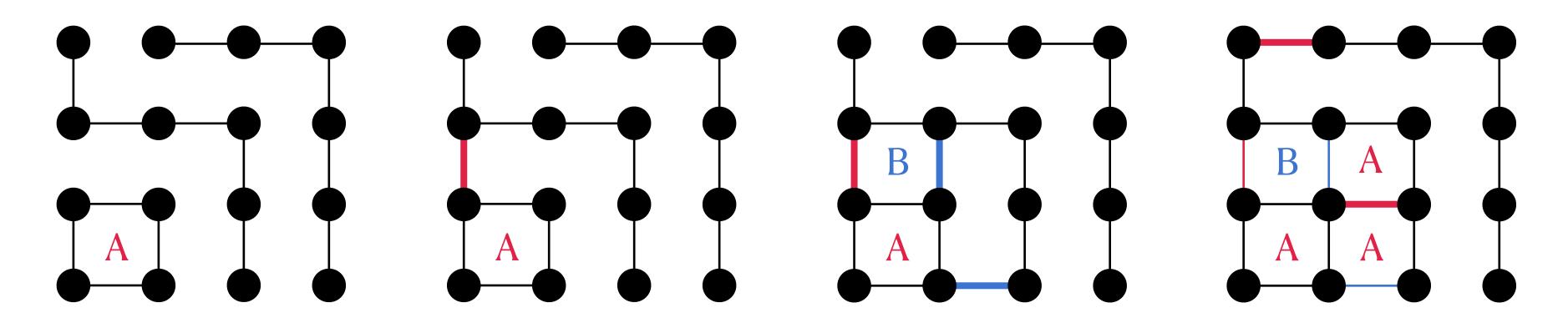
- It's Alice's turn, she want to force Bob to play on the shorter chain.
- Suppose you are Bob, what is your next move?



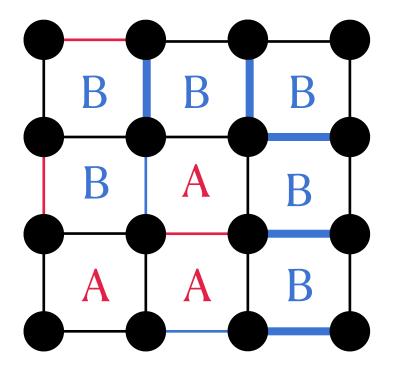
- It's Alice's turn, she want to force Bob to play on the shorter chain.
- Suppose you are Bob, what is your next move?



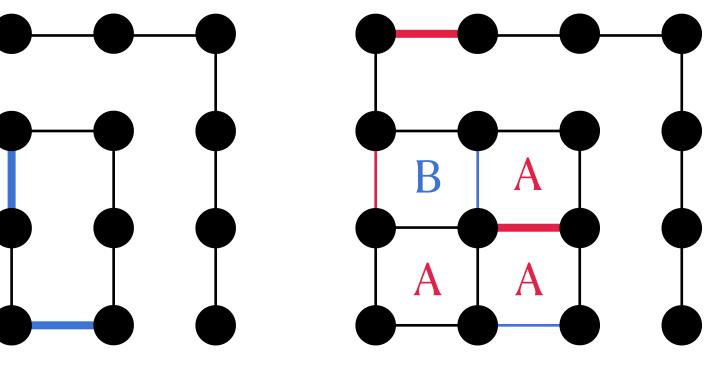


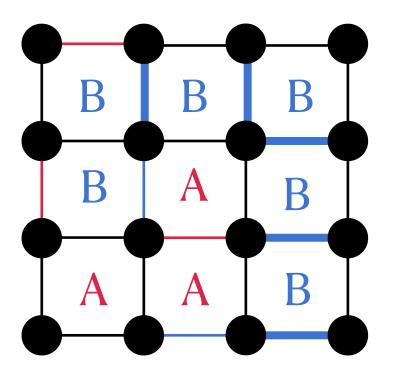


- It's Alice's turn, she want to force Bob to play on the shorter chain.
- Suppose you are Bob, what is your next move?
 - Choice 1: greedily take the chain, and open the long chain to Alice



- It's Alice's turn, she want to force Bob to play on the shorter chain.
- Suppose you are Bob, what is your next move?
 - Choice 1: greedily take the chain, and open the long chain to Alice
 - Choice 2: sacrifice 2 boxes, Alice is forced to open the long chain and then Bob can take the long chain





Double-Crossing **A Winning Strategy**

- chain to Bob.
- control.
- The player who has control usually wins when there are several long chains.
- A long chain is a chain contains 3 or more boxes: it takes at least 3 boxes to individual boxes, preventing the opponent from double-crossing.)

• When Bob was forced to take a chain opened by Alice, he could close it with a double-cross move: sacrificing 2 boxes, but then Alice is forced to open a longer

• After double-crossing, Bob gains control of the game. Otherwise, Alice has the

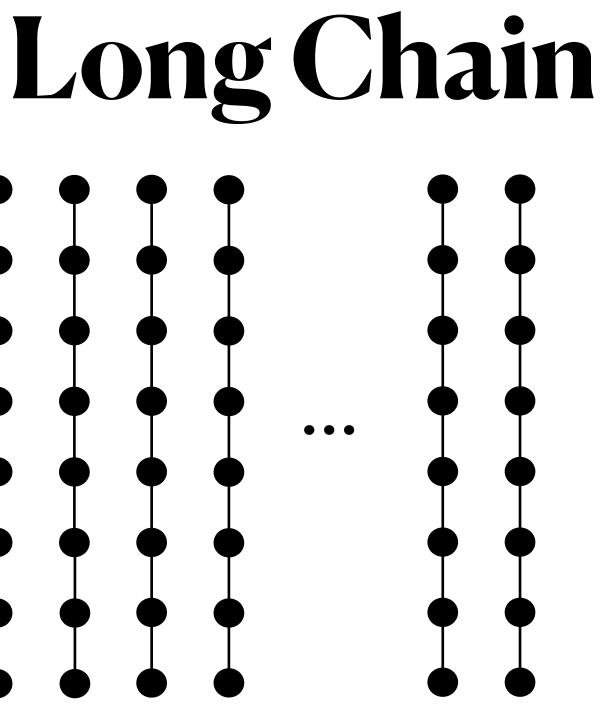
complete a double-crossing move. (Note that a 2-box chain can be broken into 2

Long Chain

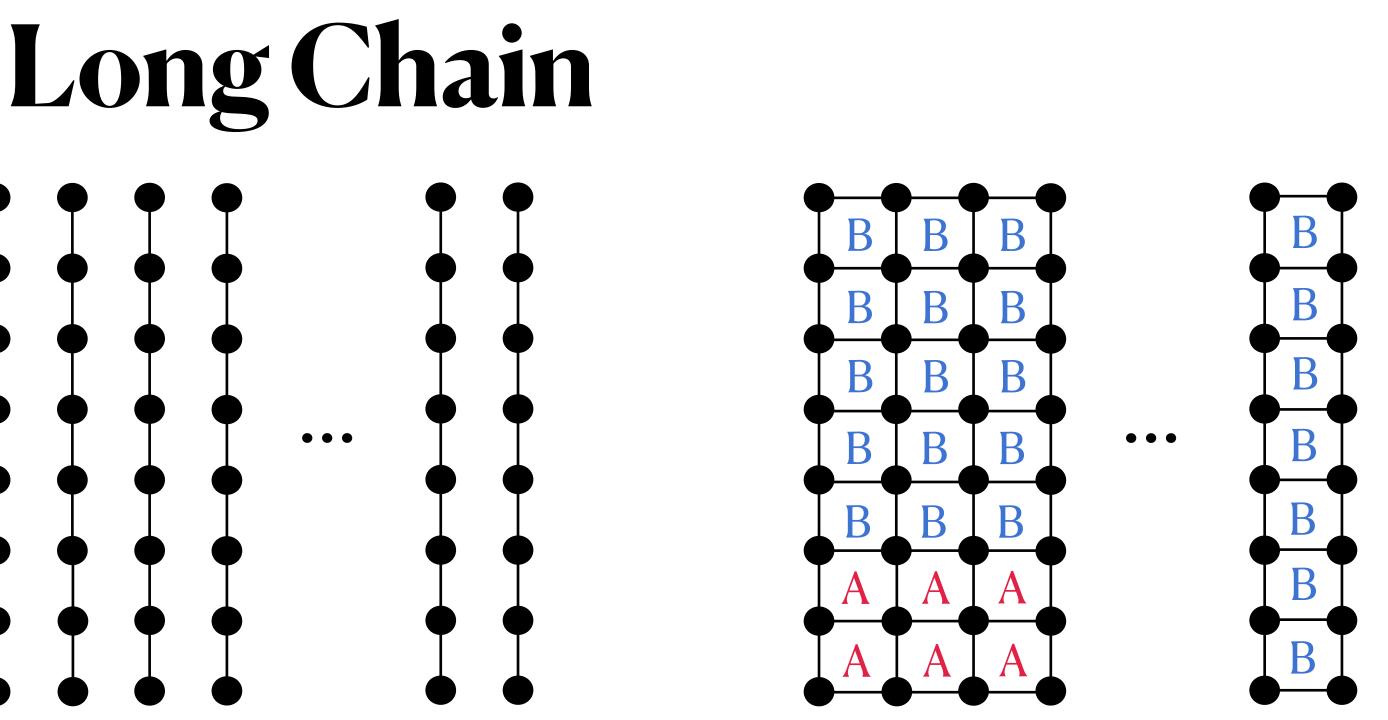
• In the previous game board, there were 2 long chains.

Long Chain

- In the previous game board, there were 2 long chains.
- In general, if there are more than 1 long chains, it is always a winning strategy to take the control by double-crossing.



- In the previous game board, there were 2 long chains.
- In general, if there are more than 1 long chains, it is always a winning strategy to take the control by double-crossing.
- Let *m* be the number of long chains and *n* be the number of boxes, then if Bob use the strategy of double-crossing, he can score n 2m + 2 > 0

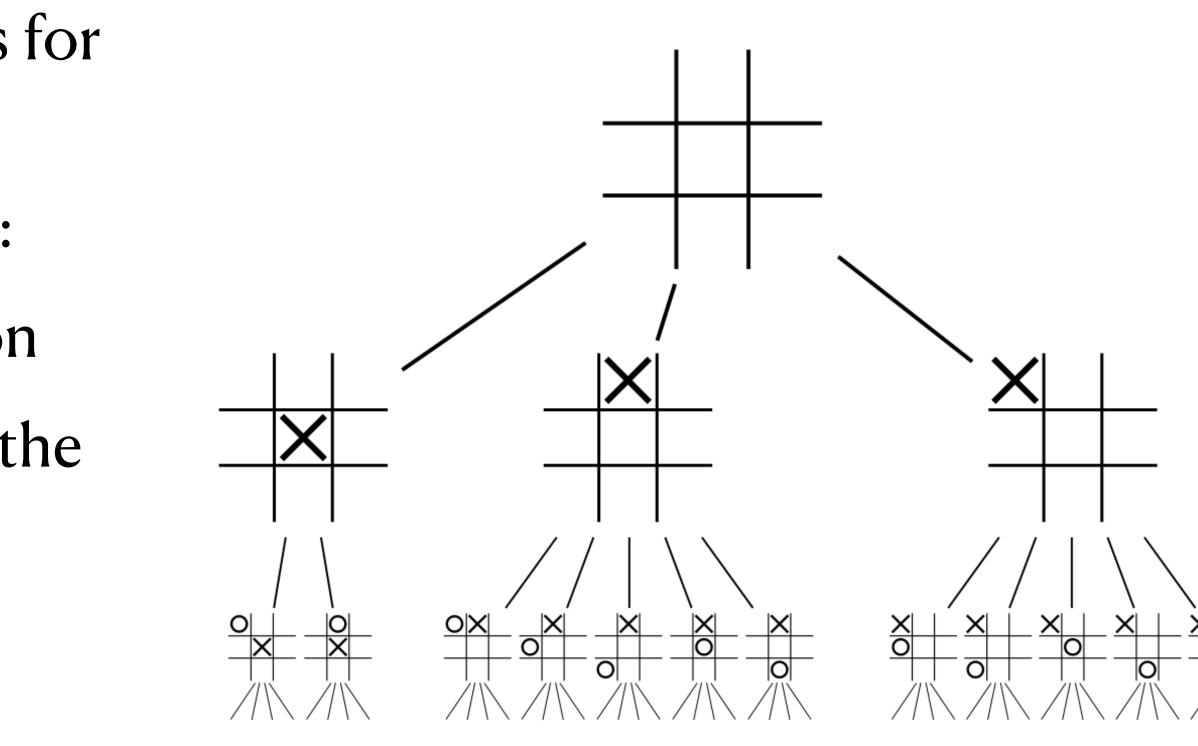


Definitions Combinatorial Game Theory

- Combinatorial game theory studies two-player sequential games: players move sequentially as opposed to simultaneously in economic game theory.
- The winners in most combinatorial games depend on the last player, in contrast to Dots and Boxes.
- By convention \mathscr{L} and \mathscr{R} are used for each of the two players (instead of Alice and Bob).
- A game G is defined by $G = \{ \mathcal{G}^L | \mathcal{G}^R \}$ where \mathcal{G}^L and \mathcal{G}^R stand for the set of left and right options respectively.

Game Tree **Combinatorial Game Theory**

- For impartial games, the set of options for *left* and *right* are the same.
- We can draw a game tree of a position:
 - The root node is the original position
 - Create a node for each option from the root and connect to the root
 - For each node create node for its options and connect to the node
 - Repeat until there is not more options



Cr: <u>https://en.wikipedia.org/wiki/Game_tree</u>

More Definitions Birthday of a Game

- Recall $G = \{ \mathcal{G}^L | \mathcal{G}^R \}$ where \mathcal{G}^L and \mathcal{G}^R stand for the set of left and right options.
- The *birthday* of a game $G = \{ \mathcal{G}^L | \mathcal{G}^R \}$ is defined as $1 + \max$ birthday of any game in $\mathcal{G}^L \cup \mathcal{G}^R$.
- Base case: if $\mathscr{G}^L = \mathscr{G}^R = \emptyset$, then the birthday of *G* is 0, i.e. $0 = \{ | \}$.
- Apply the definition recursively we have:
 - $1 = \{0 \mid \}$
 - $-1 = \{ | 0 \}$
 - $* = \{0 | 0\}$

Thanks