The Coincidence that Wasn't

Sam Mayo

McGill University

$e^{\pi\sqrt{163}}$ is "almost" an integer!

$$e^{\pi\sqrt{163}}$$
 is "almost" an integer!

$$e^{\pi\sqrt{163}} = 262537412640768743.999999999999925\ldots$$

Warning for experts: Many lies ahead!

A binary quadratic form is a function:

$$f(x,y) = ax^2 + bxy + cy^2$$

where $a, b, c \in \mathbb{Z}$

A binary quadratic form is a function:

$$f(x,y) = ax^2 + bxy + cy^2$$

where $a, b, c \in \mathbb{Z}$

Definition

Define the **discriminant** of *f* to be $D = b^2 - 4ac$

A binary quadratic form is a function:

$$f(x,y) = ax^2 + bxy + cy^2$$

where $a, b, c \in \mathbb{Z}$

Definition

Define the **discriminant** of *f* to be $D = b^2 - 4ac$

Question

How close is the discriminant to classifying quadratic forms?

Theorem (Lagrange; 1775)

For a given D, there are finitely many quadratic forms with discriminant D.

Let Cl(D) denote the number of quadratic forms with discriminant D, the so-called "class number"

Theorem (Lagrange; 1775)

For a given D, there are finitely many quadratic forms with discriminant D.

Let Cl(D) denote the number of quadratic forms with discriminant D, the so-called "class number"

Question (Gauss; 1801)

For which D is Cl(D) = 1?

Theorem (Lagrange; 1775)

For a given D, there are finitely many quadratic forms with discriminant D.

Let Cl(D) denote the number of quadratic forms with discriminant D, the so-called "class number"

Question (Gauss; 1801)

For which D is Cl(D) = 1?

Theorem (Baker, Heegner, Stark; 1967) If D < 0, then Cl(D) = 1 if and only if

$$D = -1, -2, -3, -7, -11, -19, -43, -67, -163$$

The j-function

$$j(\tau+1) = j(\tau) \qquad j(-\frac{1}{\tau}) = j(\tau)$$

The j-function

$$j(\tau+1) = j(\tau) \qquad j(-\frac{1}{\tau}) = j(\tau)$$

$$\begin{split} j(\tau) &= 1728 \frac{g_2(\tau)^3}{g_2(\tau)^3 - 27g_3(\tau)^2} \\ \text{where } g_2(\tau) &= 60 \sum_{m,n \in \mathbb{Z}} (m + n\tau)^{-4} \\ g_3(\tau) &= 140 \sum_{m,n \in \mathbb{Z}} (m + n\tau)^{-6} \end{split}$$

Given a quadratic form $f = ax^2 + bxy + cy^2$, let $\tau_f \in \mathbb{C}$ be the root of $ax^2 + bx + c$:

$$f = ax^2 + bxy + cy^2 \implies au_f = rac{-b + \sqrt{b^2 - 4ac}}{2a}$$

Given a quadratic form $f = ax^2 + bxy + cy^2$, let $\tau_f \in \mathbb{C}$ be the root of $ax^2 + bx + c$:

$$f = ax^{2} + bxy + cy^{2} \implies \tau_{f} = \frac{-b + \sqrt{b^{2} - 4ac}}{2a}$$
$$f = x^{2} + xy + 41y^{2} \implies \tau_{f} = \frac{-1 + \sqrt{-163}}{2}$$

The j-function assigns a *class invariant* to quadratic forms:

$$j(au_f) = j(au_g) \quad \Longleftrightarrow \quad f ext{ and } g ext{ are the same (in a sense)}$$

The j-function assigns a *class invariant* to quadratic forms:

$$j(\tau_f) = j(\tau_g) \iff f$$
 and g are the same (in a sense)

Miracle

If Cl(D) = 1, then $j(\tau_f)$ is an integer!

The j-function assigns a *class invariant* to quadratic forms:

$$j(au_f) = j(au_g) \quad \Longleftrightarrow \quad f \text{ and } g \text{ are the same (in a sense)}$$

Miracle

If Cl(D) = 1, then $j(\tau_f)$ is an integer!

In fact, $j(\tau_f)$ is a **algebraic integer** of degree Cl(D), where $D = \operatorname{disc}(f)$.

Bringing it home

Consider
$$f = x^2 + xy + 41y^2$$
:

■ *D* = −163

•
$$\operatorname{Cl}(D) = 1$$

•
$$\tau_f = \frac{-1 + \sqrt{-163}}{2}$$

$$\implies j(rac{-1+\sqrt{-163}}{2})$$
 is an integer: $=(-640320)^3$

Bringing it home

Consider
$$f = x^2 + xy + 41y^2$$
:

■ *D* = −163

$$\implies j(rac{-1+\sqrt{-163}}{2})$$
 is an integer: $=(-640320)^3$

 $j(\tau) = q^{-1} + 744 + 196884q + 21493760q^2 + 864299970q^3 \dots$

(where
$$q = e^{2\pi i \tau}$$
)
 $q = e^{2\pi i \frac{-1+\sqrt{-163}}{2}} = -e^{-\pi\sqrt{163}}$ $q^{-1} = -e^{\pi\sqrt{163}}$

$$j(\frac{-1+\sqrt{-163}}{2}) = (-640320)^3$$
$$= -e^{\pi\sqrt{163}} + 744 + c_2 e^{-2\pi\sqrt{163}} + c_3 e^{-3\pi\sqrt{163}} + \dots$$
$$= -e^{\pi\sqrt{163}} + 744 + O\left(e^{-\pi\sqrt{163}}\right)$$

$$j(\frac{-1+\sqrt{-163}}{2}) = (-640320)^3$$
$$= -e^{\pi\sqrt{163}} + 744 + c_2 e^{-2\pi\sqrt{163}} + c_3 e^{-3\pi\sqrt{163}} + \dots$$
$$= -e^{\pi\sqrt{163}} + 744 + O\left(e^{-\pi\sqrt{163}}\right)$$

At long last

$$e^{\pi\sqrt{163}} \approx (640320)^3 + 744$$