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1 Introduction

The famous philosopher and logician Bertrand Russell once gave an analogy:
if you have an infinite number of pair of socks, each composed with a left and
a right sock, then a choice function is easily defined. We can just always pick
the left sock in each pair of socks. Now let us remove the condition of the
distinguishing feature. We then have an infinite number of non-empty sets. Can
we say for sure that there exists a choice function? The axiom of choice allows
us to do so. It is in fact used by most mathematicians since many accepted
results require the Axiom of Choice in their proof. It is part of the ZFC, the
Zermelo-Fraenkel set theory with Choice.

A natural question to ask is whether the Axiom of Choice is consistent with
the other axioms of ZF. It has been proven consistent by Gödel in 1938 and
independent by Cohen in 1963. Gödel showed that if ZF is consistent then
ZF is consistent with the Axiom of Choice by constructing a model, called the
Constructible Universe, that satisfies ZFC. That is, the negation of the Axiom
of Choice is not provable with the axioms of ZF. Cohen, on the other hand,
proved, using forcing, that ZF along with the negation of the Axiom of Choice
is consistent. Thus, the Axiom of Choice cannot be proven to be true nor false
in ZF, it is independent.

In this paper, we will go through the important notions to understand
Gödel’s Constructible Universe. To this end, we will explore topics such as
the axioms of ZF, ordinal and cardinal numbers, models of set theory.

Before getting started, we would like to mention that in what follows, most
theorems, proofs and definitions are taken from “Set Theory”(2006), by Thomas
Jech.

2 The Axioms of Zermelo-Fraenkel and Choice

2.0.1 Set theory and its formulas

The language of set theory uses two predicates: “ and P. The first denotes
equality and the second indicates the binary relation of membership.
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Let x, y be sets. Atomic formulas are of the form

x “ y, x P y. (1)

We can also construct more complex formulas using the following connectives:
for ϕ,ψ formulas,

ϕ^ ψ, ϕ_ ψ,  ϕ, ϕÑ ψ, ϕØ ψ.

Furthermore, two quantifiers are used:

@xϕ and Dxϕ.

Variables that are not bounded by quantifiers are called free variables. They
occur in formulas as such:

ϕpx1, ¨ ¨ ¨ , xnq (2)

where xi are free variables.
A formula without free variables is called a sentence.

In ZFC, there is only one type of object, namely sets. However, in some
cases, it is highly inconvenient to discuss an object with itself as a reference, we
therefore introduce another type of object in subsection 2.10.

2.1 Axiom of Extensionality

If X and Y have the same elements, then X “ Y :

@upu P X Ø u P Y q Ñ X “ Y. (3)

Note that the converse is an axiom in predicate calculus. We then have both
directions.

2.2 Axiom of Pairing

For any a and b there exsists a set ta, bu that contains exactly a and b:

@a @b Dc @x px P cØ x “ a_ x “ bq. (4)

2.3 Axiom Schema of Separation

If P is a property with parameter p, then for any X and p there exists a set
Y “ tu P X : P pu, pqu that contains all those u P X that have property P : Let
ϕpu, pq be a formula,

@X @p DY @u pu P Y Ø u P X ^ ϕpu, pqq. (5)

Another way of looking at it is that the intersection of a class of the form
tu : ϕpu, p1, ¨ ¨ ¨ , pnqu with any set is a set. Here, notice that we replaced p by
p1, ¨ ¨ ¨ , pn, which is a more general version of the Separation Schema.

2



The condition that X must be a set in the Axiom Schema of Separation
prevents situations like Russell’s Paradox, whereas with a stronger version re-
moving the condition, the Comprehension Schema, would cause tX : X R Xu
to be a set.

2.4 Axiom of Union

For any X there exists a set Y “
Ť

X, the union of all elements of X:

@X DY @u pu P Y Ø Dzpz P X ^ u P zqq. (6)

Note that here, Y “ tu : pDz P Xqu P zu “
Ť

tz : z P Xu “
Ť

X.

2.5 Axiom of Power Set

For any X there exists a set Y “ P pXq, the set of all subsets of X.

@X DY @u pu P Y Ø u Ă Xq. (7)

2.6 Axiom of Infinity

There exists an infinite set:

DSpH P S ^ p@v P SqxY txu P Sq. (8)

At first glance, this is not an intuitive way of describing an infinite set. The
reason why the Axiom of Infinity is defined as such is to avoid using natural
numbers as they are not defined yet.

2.7 Axiom Schema of Replacement

If a class F is a function, then for any X there exists a set Y “ F pXq “ tF pxq :
x P Xu: Let ϕpx, y, pq be a formula,

@x@y@zpϕpx, y, pq^ϕpx, z, pq Ñ y “ zq Ñ @XDY @ypy P Y Ø pDx P Xqϕpx, y, pqq.
(9)

The first part of equation (7) describes the class F being a function, the second
part identifies Y “ F pXq as a set. Once again, there can be more than one
parameter.

2.8 Axiom of Regularity

Every nonempty set has an P-minimal element.

@SpS ‰ HÑ pDx P SqS X x “ Hq. (10)

Especially, there cannot be infinite sequence of memberships. Particularly, we
cannot have chains of the form x0 P x1 P x2 P ¨ ¨ ¨ P x0.

3



2.9 Axiom of Choice

Every family of nonempty sets has a choice function:

Let S be a family of sets. Then there exists a function fpXq P X for every X P S.
(11)

2.1 to 2.8 are the axioms of ZF. We obtain ZFC by adding 2.9.

2.10 Classes

Let ϕpx, p1, ¨ ¨ ¨ , pnq be a formula. We then say that C defined as

C “ tx : ϕpx, p1, ¨ ¨ ¨ , pnqu (12)

is a class.
One reason for which we make the distinction between classes and sets is

because we cannot define C to be a set, but we still need to manipulate objects
defined by formulas. In particular, we need this concept to define the class of
all sets, also called the universal class, which is proper class (not a set):

V “ tx : x “ xu. (13)

Note that every set is a class.
The reason why V cannot be a set is as follows. Suppose the set of all sets S

exists. Then S contradicts the Axiom of Regularity. This also leads to another
issue, namely Russell’s Paradox.

2.10.1 Russell’s Paradox

Consider the set of all sets S. Subsection 2.3 states the Axiom Schema of
Separation with equation (5) stating it formally. In the statement, we can
define the set Y “ tu P X : P pu, xqu. Notice the condition u P X, for X a set.
With the existence of S, the set of all sets, replacing X with S, we get that for
any property P there exists a set Y “ tx P S : P pxqu “ tx : P pxqu. This is also
commonly called the Axiom Schema of Comprehension. Now let P pxq “ x R x
a property. Then Y “ tX : X R Xu “ tX P S : X R Xu is a set. But Y P Y
and Y R Y are both contradictions. Therefore, S cannot be a set.

3 Ordinals

In this section we introduce Ordinal numbers along with related concepts that
will be necessary in the construction of L, the Constructible Universe. In ad-
dition, we prove the equivalence of the Axiom of Choice and Well-Ordering
principle.
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3.0.1 Well-Ordering

We say that a linear order ă of a set P is a well-ordering if every nonempty
subset of P has a least element.

A linear ordering on a set P is defined as follows, for any p, q, r P P :

1. p ć p

2. if p ă q and q ă r, then p ă r

3. p ă r or p “ q or q ă p.

Note that the first two conditions gives a partial ordering of the set P .

3.0.2 Well-founded relations

We say that a binary relation E on a set X is well-founded if every nonempty
x Ă X has an E-minimal element. That is, for every nonempty x Ă X, there is a
a P x such that Ey P x with yEa. In particular, a well-ordering is a well-founded
relation.

We can extend this definition to classes. Let P be a class. A binary relation
E on P is then well-founded if

1. every nonempty subset x of P has an E-minimal element, and

2. extEpxq is a set, for every x P P ,

where
extEpxq “ tz P P : zExu. (14)

We call equation (14) the extension of x.
We say that a class M is extensional if the relation P on M is extensional.

In other words, for X,Y P M , if X ‰ Y , then X X M ‰ Y X M , that is
extEpXq ‰ extEpY q.

3.0.3 Transitive sets

We say that a set T is transitive if @t P T, t Ă T . I.e. every element is a subset.

3.0.4 Ordinal number

Informally, we can view ordinals as order-types of well-ordered sets. In other
words, Formally, we define an ordinal number to be a transitive set that is
well-ordered by P.

The class of all ordinals is denoted by Ord. In general, greek letters α, β, γ
are used to denote ordinal numbers. Furthermore, we define

α ă β if and only if α P β. (15)

Here are some facts about ordinals:
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1. 0 “ H P Ord

2. If α P Ord and β P α, then β P Ord

3. If α ‰ β, both ordinals, and α Ă β, then α P β

4. If α, β P Ord, then either α Ă β or β Ă α.

There are two types of ordinals, successor and limit ordinals. Let us define
β ` 1 “ β Y tβu “ inftξ : ξ ă βu. If α “ β ` 1 for some β P Ord, then we
say that α is a successor ordinal. If an ordinal α is not a successor ordinal,
i.e. there does not exist a β such that α “ β ` 1, then α is then called a limit
ordinal and is defined as α “ suptβ : β ă αu “

Ť

α.
We can remark that we construct natural numbers, and therefore all num-

bers, using ordinals. In fact, the first ones are defined as follows:

1. 0 “ tu

2. 1 “ tu Y ttuu “ ttuu

3. 2 “ ttuu Y tttuuu “ ttu, ttuuu

4. ¨ ¨ ¨

We call a sequence transfinite if it is indexed by ordinals.
With the special structure that ordinals carry, we define a special type of

induction called transfinite induction. To prove a property P on Ord, the
class of all ordinals, it suffices to show:

1. P p0q,

2. if P pαq, then P pα` 1q,

3. if α is a nonzero limit ordinal and P pβq for all β ă α, then P pαq.

Theorem 3.1 (Zermelo’s Well-Ordering Theorem). Every set can be well-
ordered assuming the Axiom of Choice.

Proof. Let A be a set. To show that A can be well-ordered, we will define a
bijection from A to a proper subset of the ordinals.

Let S be the set of nonempty subsets of A. Assuming the Axiom of Choice,
let f : S Ñ A be a choice function such that fpXq P X for every nonempty
subset X of A.

Let θ be some ordinal, not fixed for now. We define the function G : θ Ñ A
by induction:
Gp0q “ fpAq
Gp1q “ fpA´ tGp0quq
¨ ¨ ¨

Gpαq “ fpA´ tGpβq : β ă αu as long as A´ tGpβq : β ă αu is nonempty
¨ ¨ ¨ .
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We now show that there must exist a θ P Ord for which G´1pAq “ θ. We
will prove it by contradiction. Notice that, by defintion, G is injective, that is,
different ordinal numbers map to different elements of A.

Suppose thatGpθq is a proper subset of A for every θ P Ord. Then we have an
injection from the class Ord into A. Then the partial inverse function G´1pAq “
Ord is not a set, which contradicts the Axiom Schema of Replacement, as the
range of G is a set.

Hence, since Ord is transitive, there must be an ordinal number θ such that
A Ă Gpθq. Take such θ to be minimal. Then @α ă θ, Gpαq is a proper subset
of A. By the transfinite definition of ordinal numbers, we have that A “ Gpθq.

An interesting result about this theorem is that it is equivalent to the Axiom
of Choice. Indeed, a choice function can be defined using the well-ordering
property. If all sets X Ă S can be well-ordered, we then can choose the least
element of each X to be our choice function. We then have fpXq P X @X P S.

3.0.5 The class of all sets

We define V , the cumulative hierarchy of sets by transfinite induction:
for α, β P Ord

V0 “ H, Vα`1 “ P pVαq, Vα “
ď

βăα

Vβ if α is a limit ordinal . (16)

Some facts on Vα:
for α, β P Ord

1. Vα is transitive,

2. If α ă β, then Vα Ă Vβ ,

3. α Ă Vα.

We can then define
V “

ď

αPOrd

Vα. (17)

Theorem 3.2. For any set x, Dα P Ord such that x P Vα, thus x P V .

Proof. Recall the Axiom of Regularity: every nonempty set has an P-minimal
element.

First, we need to show that every nonempty class has an P-minimal element,
that is the Axiom of Regularity implies that it also applies to classes. Let C
be a nonempty class. Then DS P C. If S X C “ H, we are done. Otherwise, if
SXC ‰ H, we need to find an x such that x P C and xXC “ H. Consider the
set X “ TCpSq X C, where TCpSq “ tT : T Ą S, T transitiveu is the transitive
closure of S. We know that TCpSq is not empty since we can define a T :

S0 “ S, Sn`1 “
ď

Sn, T “
8
ď

n“0

Sn. (18)
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X is nonempty since S Ă TCpSq and S X C ‰ H, so S X C Ă S Ă X ‰ H.
Since X is a nonempty set, the Axiom of Regularity gives that Dx P X such
that x X X “ H. We claim that x X C “ H. Suppose not, then Dy P x
and y P C. Thus y P x ùñ y P T since T is transitive. But x X X “ H,
y P x X T X C ùñ y P x XX is a contradiction. We now have all nonempty
classes have an P-minimal element.

Let C be the class of all sets which are not in V . Suppose C is nonempty.
Then C has an P-minimal element x. x X C “ H ùñ @y P x, y R C, thus
y P V . Hence Dα P Ord such that y P Vα. But ty : y P xu Ă V ùñ x Ă V .
Therefore, Dβ P Ord with x P Vβ . We then have that the class C is empty and
every set is in V .

4 Cardinals

Let X be a set. We denote |X| the cardinality of X.
Two sets X,Y are said to be of same cardinality if there exists a bijection

between X and Y . It is denoted |X| “ |Y |. We define cardinal numbers to
be equivalence classes of this equivalence relation.

We say that an ordinal number is a cardinal if |α| ‰ |β| for all β ă α. In
particular, all finite cardinals are equal to the finite ordinals, i.e. the natural
numbers, and all infinite cardinals are limit ordinals. In particular, we call
infinite cardinals alephs, denoted ℵ. The alephs are defined as such:

ℵ0 “ ω0 “ ω, ℵα`1 “ ωα`1 “ ℵ`α , (19)

ℵα “ ωα “ suptωβ : β ă αu, if α is a limit ordinal. (20)

We say that ℵα`1 is a successor cardinal. If the index α is a limit ordinal,
then we call ℵα a limit cardinal.

We say that |X| ď |Y | if there is an injective mapping from X onto Y .
Note that the class of cardinals is well-ordered since it is defined based on

the ordinals and so is a subclass of Ord.

4.0.1 Arithmetic operations on cardinals

We define the following cardinal operations:
Let A,B be sets with |A| “ κ, |B| “ λ.

1. κ` λ “ |AYB|, if A,B disjoint

2. κ ¨ λ “ |AˆB|

3. κλ “ |AB |, where AB “ tf : B Ñ Au.

Theorem 4.1 (Cantor). Let X be a set. Then |X| ă |P pXq|.

In other words, for any set, the cardinality of its power set is strictly greater
than the cardinality of the set itself.
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Proof. Let f be a function from X to P pXq. Clearly, |X| ď |P pXq|. It then
suffices to show that f cannot be a bijection.

Notice that it suffices to find an element of P pXq that is not in the range
of f . Consider the set Y “ tx P X : x R fpxqu P P pXq. We claim that Y is
not in the range of f . Suppose for contradiction, that there exists z P X with
fpzq “ Y . Then either z P Y or z R Y . If z P Y , then by definition of Y ,
z R fpzq “ Y . If z R Y “ fpzq, then z P Y . �

Thus, |X| ‰ |P pXq| and we have |X| ă |P pXq|.

Lemma 4.1. If |A| “ κ, then |P pAq| “ 2κ.

Proof. Let A be a set with cardinality κ. We define a bijective map from P pAq
to t0, 1uA. From subsection 4.0.1, we know that |t0, 1uA| “ 2κ.

Let X P P pAq. Consider the function χX : AÑ t0, 1u defined as:

χXpxq “

#

1 if x P X

0 if x P A´X.

Define fpXq “ χX . Then f : P pAq Ñ t0, 1uA is bijective.

4.0.2 The Generalized Continuum Hypothesis (GCH)

Informally, the GCH says that there is no cardinal between the cardinality of
a set and that of the power set of that set. Formally, it is to say, if X is a set
with cardinality ℵα, then:

2ℵα “ ℵα`1, (21)

where 2ℵα is the cardinality of the power set of X and ℵα`1 is the cardinal that
comes right after ℵα.

5 Models

A language L is defined as a set of symbols of relations P , functions F , and
constants c:

L “ tP, ¨ ¨ ¨ , F, ¨ ¨ ¨ , c, ¨ ¨ ¨ u. (22)

We define a model for a language L to be a pair U “ pA, Iq, where A is
the universe of U and I an interpretation mapping symbols of L to relations,
functions and constants in A.

Let U “ pA, Iq be a model. We define a submodel L of U to be a subset
B Ă A with the interpretations of L be those of U restricted to the symbols of
B. In this case, we denote L Ă U.

We call a submodel L of a model U an elementary submodel of U if for
every formula ϕ and every b1, ¨ ¨ ¨ , bn P B,

ϕLpb1, ¨ ¨ ¨ , bnq Ø ϕUpb1, ¨ ¨ ¨ , bnq, (23)
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that is, ϕpb1, ¨ ¨ ¨ , bnq is satisfied by U if and only if it is satisfied by L. In this
case, we denote it as

L ă U. (24)

We denote U satisfying a formula ϕpxq by

U |ù ϕpxq. (25)

5.0.1 Gödel’s Completeness and Incompleteness Theorems

Gödel’s theorems are famous results in set theory.

1. The Completeness Theorem states that a model exists for every set of
consistent sentences. Note that a set of sentences Σ is said to be consistent
if there is no provable contradiction from Σ.

2. The First Incompleteness Theorem states that no consistent extension of
Peano Arithmetic is complete, that is, there exists undecidable statements.
We say that a theory is incomplete if there exists sentences that cannot
be proven true or false. In particular, if ZFC is consistent, then it will
remain incomplete.

3. The Second Incompleteness Theorem states that sufficiently strong the-
ories (as Peano Arithmetic or ZF, if consistent) cannot prove their own
consistency. Particularly, we cannot prove in ZF that there exists a model
of ZF.

5.0.2 Relativization to models of set theory

Let pM,Eq be a model of set theory, where M is a class and E, a binary relation
on M . Let ϕ be a formula in the language of set theory. We relativize ϕ to
pM,Eq as follows:

1. px P yqM,E Ø x E y

2. px “ yqM,E Ø x “ y

3. p ϕqM,E Ø  ϕM,E

4. pϕ^ ψqM,E Ø ϕM,E ^ ψM,E

5. pDxϕqM,E Ø pDx PMqϕM,E .

The relativization is defined similarly for the other connectives and the universal
quantifier @. ϕpx1, ¨ ¨ ¨ , xnq relativized to pM,Eq is denoted

ϕM,Epx1, ¨ ¨ ¨ , xnq. (26)

In cases where E “P, we omit E and just write ϕM .
We denote Form to be the set of all formulas of the language tPu.
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5.0.3 ∆0 Formulas

We say that a formula of set theory σ is a ∆0 formula if one of the following
holds:

1. σ contains no quantifier;

2. σ is of the form φ ^ ψ, φ _ ψ,  φ, φ Ñ ψ or φ Ø ψ, when φ, ψ are ∆0

formulas;

3. its only quantifiers are bounded, i.e. pDx P yqφ or p@x P yqφ for φ are ∆0

formula.

5.0.4 Absoluteness

We say that a formula ϕ is absolute if for all x1, ¨ ¨ ¨ , xn

ϕM px1, ¨ ¨ ¨ , xnq Ø ϕpx1, ¨ ¨ ¨ , xnq. (27)

In particular, a formula is absolute if it is both upward absolute and downward
absolute. That is, its truth value does not change from submodels to ’bigger’
models and vice-versa.

5.0.5 Transitive models

Let M be a transitive class. We then say that pM, Pq is a transitive model of
set theory.

Theorem 5.1. ∆0 formulas are absolute for transitive models of set theory.

Proof. The proof goes by induction on the complexity of formulas. First, atomic
formulas are absolute.

Second, the logical connectives does not change the absoluteness of a formula.
Third, let y PM and suppose σ “ pDx P yqφ, with φ a ∆0 formula.
If σM holds, then ppDx P yqφqM “ pDxpx P y ^ φpxqqqM “ pDx P Mqpx P

y ^ φM pxqq holds. Since φ is absolute, φM Ø φ. Thus, pDx P yqpφpxqq “ σ
holds.

Now suppose σ “ pDx P yqφpxq holds. Since y P M and M is transitive, we
have that x P M . Thus pDx P Mqpx P y ^ φM pxqq holds since φM pxq Ø φpxq.
Hence σM holds.

The proof for p@x P yqφ is very similar.

Theorem 5.2 (Reflection Principle).

1. Let ϕpx1, ¨ ¨ ¨ , xnq be a formula. Then for any set of constants M0, there
exists a set M ĄM0 such that for all x1, ¨ ¨ ¨ , xn PM ,

ϕM px1, ¨ ¨ ¨ , xnq Ø ϕpx1, ¨ ¨ ¨ , xnq. (28)

In this case, we say that M reflects ϕ.
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2. There is a transitive M that reflects ϕ for any M0. Furthermore, there is
a limit ordinal α such that Vα reflects ϕ with M0 Ă Vα.

3. With the Axiom of Choice, we have case (1) with |M | ď |M0| ¨ ℵ0. In
particular, we can obtain a countable M that satisfies (1).

Note that we can have either case (2) or (3), but not both.
ϕ needs not to be exactly one formula, Theorem 5.2 also applies to a finite

number of formulas.
With the Axiom of Choice, we can get a countable transitive model M of a

true sentence σ. Notice that this satisfies both (2) and (3).
The Reflection Principle, just as Gödel’s Second Incompleteness Theorem

does, implies that ZF is not finitely axiomatizable.

6 The Constructible Universe

Gödel introduced L, the class of all constructible sets, the smallest transitive
model of ZF that contains all ordinal numbers, as a proof of consistency of the
Axiom of Choice and the Generalized Continuum Hypothesis.

6.0.1 Definable sets

Let M be a set. We say that a set X is a definable over the model pM, P
q if there exists a formula ϕ in the set of all formulas of the language tPu
and some parameters p1, p2, ¨ ¨ ¨ , pn P M such that X “ tx P M : pM, Pq |ù
ϕrx, p1, ¨ ¨ ¨ , pnsu.
We can then define

defpMq “ tX ĂM : X is definable over pM, Pqu. (29)

6.0.2 L, the class of all constructible sets

L is defined using transfinite induction.

1. L0 “ H, Lα`1 “ defpLαq,

2. Lα “
Ť

βăα Lβ if α is a limit ordinal, and

3. L “
Ť

αPOrd Lα.

Theorem 6.1. L is a transitive class.

Proof. First, by transfinite induction, we show that Lα is transitive for every α.
The empty set is transitive.
Suppose Lα is transitive. Let x P Lα`1. Then x P defpLαq, so x “ Y , for

Y Ă Lα and Y is definable over pLα, Pq. Hence, Y “ ty P Lα : pLα, Pq |ù
ϕry, p1, ¨ ¨ ¨ , pmsu. Thus, x “ Y Ă Lα Ă Lα`1. Lα`1 is transitive.
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Now suppose Lβ is transitive for every β ă α for α a limit ordinal. Let
x P Lα. Then x P Lβ for some β ă α. So x Ă Lβ ùñ x Ă Lα. Lα is transitive.

Let x P L. Since L “
Ť

αPOrd Lα, we have x P Lα for some ordinal α. From
above, Lα is transitive which implies that x Ă Lα. Thus x Ă

Ť

αPOrd Lα “ L.
L is transitive.

Theorem 6.2. L contains all ordinal numbers.

Proof. Note that this is claiming that every ordinal is constructible.
Let α be an ordinal. This proof goes by transfinite induction on α. More

precisely, we are showing that α P Lα`1 for every α.
First, we notice that α Ă Lα. Assuming, for the induction, that β P Lβ`1

for every β ă α, we have that β P Lα. Thus α Ă Lα.
Second, we show that α R Lα for all α P Ord. Otherwise, there exists a

smallest limit ordinal α such that Lα “
Ť

βăα defpLβq with α P Lα. Then
α P Lβ for some β ă α, thus α Ă Lβ . But this implies that β P Lβ , which
contradicts the minimality of α. Hence, by transitivity of the Lα’s, for all
β ě α, β R Lα.

Third, we remark that since α Ă Lα and α P Ord, α Ă LαXOrd. We claim
that α “ Lα X Ord. If not, then there exists β Ă Lα X Ord such that β ą α,
that is α P β. But that would imply that α P Lα, which is a contradiction.

The third step gives us that α “ tx P Lα : x is an ordinalu. We know
that ’x is an ordinal’ is a ∆0-formula. Thus by Theorem 5.1, α “ tx P Lα :
x is an ordinalu “ tx P Lα : Lα |ù x is an ordinalu. Hence, α is definable over
Lα and α P Lα`1.

Theorem 6.3. L is a model of ZF.

Proof. To show that L is a model of ZF, it suffices to show that σL holds for
all axioms σ of ZF. By Theorem 6.1 we have that L is a transitive class. Thus,
using Theorem 5.1, any ∆0-formula is absolute in L, that is its truth does not
change from V to L.

1. Axiom of Extensionality
Transitiveness implies extensionality. In fact, let x, y be distinct in L.
x, y P L ùñ x, y Ă L. Since x, y distinct, there exists z P x such
that z R y or the other way around. Since L is transitive, z P L. Thus,
L |ù  p@zqpz P x ðñ z P yq. Therefore, extensionality holds.

2. Axiom of Pairing
Let a, b P L. Let c “ ta, bu. There exists α P Ord such that a, b P Lα.
Then c is definable over Lα, i.e. c P Lα`1. c “ ta, bu Ø a P c ^ b P
c^ p@d P cqpd “ a_ d “ bq, thus c is ∆0.

3. Axiom Schema of Separation
Let ϕ be a formula, X, p P L. Applying the Reflection Principle, there
exists α P Ord such that X, p P Lα and Y “ tu P X : ϕLpu, pqu “ tu P
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X : ϕLαpu, pqu. Hence, Y “ tu P Lα : Lα |ù u P X ^ ϕpu, pqu. Thus we
have that Y P L. This shows that the Axiom of Separation with formula
ϕ holds in L, using the definition of relativization of formulas (5.0.2), for
any formula ϕ.

4. Axiom of Union
Let X P L, Y “

Ť

X, the union of all elements of X. Since L is transitive,
X Ă L and hence Y Ă L. Let α P Ord such that X P Lα and Y Ă Lα.
Then Y P Lα`1, as Y is definable ovre Lα. Note that ’Y “

Ť

X’ is ∆0 as
it can be expressed as p@z P ZqpDx P Xqz P x ^ p@x P Xqp@z P xqz P Z.
Therefore, the Axiom of Union holds in L.

5. Axiom of Power Set
Let X P L. We wish to show that the power set of X exists in L. Let
Y “ P pXq XL. Let α P Ord such that Y Ă Lα. Then Y is definable over
Lα by the ∆0 formula ’x Ă X’. We need that Y “ P pXq X L “ PLpXq,
that is ’Y is the power set of X’ holds in L. Recall the definition of Y
being the power set of X: @upu P Y Ø u Ă Xq. Notice that this definition
is satisfied by our construction of Y .

6. Axiom of Infinity
We know that ω P Lω`1, thus ω P L, by the proof of Theorem 5.2. Take
S “ ω, the first limit ordinal. Then H P S and p@x P SqxYtxu P S. Thus
the Axiom of Infinity holds in L.

7. Axiom Schema of Replacement
Let class F be a function in L. We want to show that for any X P L, there
exists Y “ F pXq “ tF pxq : x P Xu P L. Using the Separation Schema,
the Axiom Schema of Replacement can be proved from a weaker version,
namely @XDY F pXq Ă Y . Let X P L. Then there exists α P Ord such
that F pXq “ tF pxq : x P Xu Ă Lα. This is sufficient to show that the
Axiom Schema of Replacement holds in L.

8. Axiom of Regularity
Let S P L non-empty. If Dx P S with xXS “ H, then x P L by transitivity
of L. Thus Dx P L with x P S and x X S “ H. Therefore the Axiom of
Regularity holds in L.

We now have that L is a model of ZF.

6.0.3 Gödel Operations

1. G1pX,Y q “ tX,Y u

2. G2pX,Y q “ X ˆ Y

3. G3pX,Y q “ εpX,Y q “ tpu, vq : u P X ^ v P Y ^ u P vu

4. G4pX,Y q “ X ´ Y
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5. G5pX,Y q “ X X Y

6. G6pXq “
Ť

X

7. G7pXq “ dompXq

8. G8pXq “ tpu, vq : pv, uq P Xu

9. G9pXq “ tpu, v, wq : pu,w, vq P Xu

10. G10pXq “ tpu, v, wq : pv, w, uq P Xu

We call compositions of the above 10 operations Gödel operations.

Theorem 6.4 (Gödel’s Normal Form Theorem). Every ∆0-formula can be ex-
pressed as a Gödel operation.

The proof of Theorem 6.4 is done by induction on the complexity of ∆0

formulas.

Theorem 6.5. Gödel operations are absolute for transitive models.

In particular, the proof for this theorem shows that any property expressed
by a Gödel operation can be rewritten as a ∆0 formula, which we know are
absolute for transitive models. Once again, the proof is on induction on the
complexity of Gödel operations.

6.0.4 Inner Models of ZF

We say that a model M of ZF is an inner model if it is a transitive class
containing all ordinals and it satisfies the axioms of ZF.

We remark that L is an inner model of ZF. We will show in Theorem 5.6
that it is in fact the smallest inner model of ZF.

6.0.5 The Lévy Hierarchy

We define a formula to be Σ0 and Π0 if all its quantifiers are bounded. Note
that this corresponds to the definition given in 5.0.3, that of a ∆0 formula.

By induction, we define Σn`1 to be those formulas of the form Dxϕ for ϕ a
Πn formula.

Similarly, we define a Πn`1 formula to be of the form @xϕ for ϕ a Σn formula.
We say that a property is ∆n if it is both Σn and Πn.

Theorem 6.6 (Gödel). 1. L satisfies V = L (Axiom of Constructibility)

2. L is the smallest inner model of ZF

Proof. 1. We want to show that ’every set is constructible’ holds in L.

Let x be a set in L. First we prove that ’x is constructible’ is absolute for
inner models of ZF, in particular for L. Let M be an inner model of ZF.
Then M contains all ordinals. Thus,

px is constructibleqM Ø Dα PMx P LMα Ø Dαx P Lα Ø x is constructible.
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Note that we can go from x P LMα to x P Lα because the function α ÞÑ Lα
is absolute. Indeed, induction step in the definition of Lα is Σ1 and thus
upward absolute. In other words, LMα is unique and is equal to Lα.

Now we have that (x is constructible)L if and only if x is constructible,
that is x P L, which is true by assumption. Thus L satisfies the Axiom of
Constructibility.

2. We want to show that any inner model of ZF M contains L.

Let M be an inner model of ZF. Then the class of all constructible sets in
M LM is L (LM “ L), since α ÞÑ Lα is absolute by the argument used in
part 1. Hence L is a submodel of M .

We would like to add some comments on part 1 of the above Theorem.
V “ L essentially says “every set is definable”. And it makes sense that this
holds in L since everything in L is definable.

Another way to look at it is to picture a model as a room. When you enter
the room and close the door, there are walls around you and you don’t see
through them. If you enter the room of L, all you see is what is inside, that is,
definable sets. You are unaware of what exists outside of L, and hence, have no
knowledge of possibly the existence of non-definable sets. Therefore, from your
point of view, every set is definable. Thus it is not surprising that V “ L holds
in L.

Theorem 6.7. Consistency of the Axiom of Choice.

Proof. We will prove that there is a well-ordering of the class L. With Theorem
5.6 part 1, we then have that the Axiom of Choice holds in L.

We define the well-ordering of L inductively. For each α P Ord, we define
a well-ordering ăα of Lα. The idea is to have ăα extend ăβ for any α ą β.
That is, if x ăβ y, then x ăα y for any α ą β. Furthermore, if x P Lβ and
y P Lα ´ Lβ , that is α ą β, then x ăβ y.

First, let α be a limit ordinal. We then let ăα“
Ť

βăα ăβ .
Second, suppose α is not a limit ordinal. The definition of ăα`1 is slightly

more complicated. Let M be a transitive set. As def(M) = clpMYtMuqXP pXq,
we can also write Lα`1 as follows:

Lα`1 “ P pLαq X clpLα Y tLαuq “ P pLαq X
8
ď

n“1

Wα
n , (30)

where cl denotes closure under Gödel operations. In the above, we define Wα
n

inductively:

Wα
0 “ Lα Y tLαu,W

α
n`1 “ tGipX,Y q : X,Y PWα

n , i “ 1, ¨ ¨ ¨ , 10u. (31)

Notice that the definition in equation (11) allows to take compositions of the
operations defined in 5.0.3 so we obtain the full closure under Gödel operations
with the infinite union.

We can then define ăα`1. We do it by induction on n.
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1. ă0
α`1 is the well-ordering of Wα

0 that extends ăα.

2. ăn`1
α`1 is the well-ordering of Wα

n`1 such that x ăn`1
α`1 y if and only if:

(a) x ănα`1 y,

(b) or x PWα
n and y RWα

n , or

(c) x RWα
n and y RWα

n and, letting i, j be the least such numbers with
all parameters of x, y in Wα

n , :

i. i ă j for x “ Gipu, vq and y “ Gjps, tq, or

ii. i “ j and u ănα`1 s, or

iii. i “ j, u “ s, and v ănα`1 t.

Now letting ;p/

ăα`1“

8
ď

n“1

ănα`1 XpP pLαq ˆ P pLαqq (32)

we have a well-ordering of Lα`1 extending ăα.

x ăL y if and only if Dα x ăα y. (33)

ăL is then a well-ordering of the class L.
Now let X be any set. Theorem 5.6 gives us that V “ L. Hence X P L ùñ

X P Lα for some α P Ord. Since Lα is transitive, X Ă Lα. As Lα is well-
orderable, as we have shown just above, X is also well-orderable. Thus, for any
set X, X is well-orderable and the Axiom of Choice holds in L.

6.0.6 Transitive Collapse

We say that a map π is a transitive collapse if the range of π is transitive and

xEy Ñ πpxq P πpyq. (34)

Theorem 6.8 (Mostowski’s Collapsing Theorem).

1. Let E be a well-founded extensional relation on a class P. Then there exists
a transitive class M and an isomorphism π : pP,Eq Ñ pM, Pq such that
M and π are unique.

2. Every extensional class P is isomorphic to a unique class M , with a unique
isomorphism.

3. In the previous case, if T Ă P is transitive, then πpxq “ x, @x P T .

Proof. We note that proving (1) is sufficient to prove the theorem.
Let P be a class with E a well-founded relation.
Since E is a well-founded relation on P , we can use well-founded induction

to define the map π. That is, we can define πpxq based on πpzq for zEx. Let

πpxq “ tπpzq : zExu. (35)
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Remark that if x is E-minimal in P , that is there is no z P P with zEx, then
πpxq “ H. In particular, if E “P, then

πpxq “ tπpzq : z P xX P u. (36)

We then define M “ πpP q “ tπpxq : x P P u. We claim that M is transitive. Let
y PM . Then y P πpP q ùñ Dx P P such that y “ πpxq “ tπpzq : zExu ĂM .

Clearly, π is surjective. It then suffices to show that π is injective. Let x P P .
Then πpxq “ y PM .

We define the rank of a set x as such

rankpxq “ the least α such that x P Vα`1. (37)

Now suppose that π is not injective. Then let z P M of least rank such that
z “ πpxq “ πpyq but x ‰ y, for x, y P P . Since x, y distinct, and as they are
defined by the relation E, extEpxq ‰ extEpyq. Thus, without loss of generality,
we can assume that there exists u P extEpxq but u R extEpyq. Call πpuq “ t.
Since πpxq “ πpyq, πpuq P πpxq ùñ Dv ‰ u with πpvq “ πpvq P πpyq such that
vEy. But notice that this implies that t P z, thus rankptq ă rankpzq, which is
a contradiction. Thus we can conclude that π must be injective.

Next, we show that π is indeed a transitive collapse. M , the range of π, is
transitive. We just need to show

xEy Ñ πpxq P πpyq. (38)

Let xEy, then equation (31) gives us that πpxq P πpyq. Furthermore, since π is
injective, we also have the other direction

πpxq P πpyq Ñ xEy. (39)

It remains to prove that M and π are unique. Suppose there are two different
isomorphisms π1 : P Ñ M1 and π2 : P Ñ M2. Then M1 must be isomorphic
M2, and hence π1 “ π2.

Finally, we show case (3). Let P be an extensional class isomorphic to a class
M . Let T Ă P be transitive. Then for any x P T , x P P . Thus πpxq “ tπpzq :
z P xXP u. Observe that if x “ H, then πpxq “ x. Now suppose for P-induction
that @z P x, πpzq “ z. Then πpxq “ tπpzq : z P xu “ tz : z P xu “ x.

Theorem 6.9 (Löwenheim-Skolem). Every infinite model for a countable lan-
guage has a countable elementary submodel.

Note that Theorem 6.9 requires the use of the Axiom of Choice.

Lemma 6.1 (Gödel’s Condensation Lemma). If γ is a limit ordinal and M an
elementary submodel of pLδ, Pq, then the transitive collapse of M is Lγ , with
γ ď δ.

Theorem 6.10 (Gödel). Consistency of the Generalized Continuum Hypothe-
sis.
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Proof. Gödel proved that if V “ L, then 2ℵα “ ℵα`1. If the Generalized
Continuum Hypothesis did not hold, there could be a cardinal strictly between
2ℵα and ℵα. Then, we would have ℵα`1 ď 2ℵα . For our claim, it then suffices
to show that 2ℵα ď ℵα`1.

In order to do so, we will show that P pωαq Ă Lωα`1 for any α P Ord. Let
X Ă ωα be a constructible set. If we can show that there exists a γ ă ωα`1

with X P Lγ , then we are done. Indeed, by the definition of Lβ ’s, this would
imply that P pXq Ă Lθ for any θ ą γ, in particular, PLpXq Ă Lωα`1

. Then
|PLpXq| “ 2ℵα ď ℵα`1 “ |Lωα`1

|.
Here is a subproof of ℵα`1 “ |Lωα`1 |. It suffices to show that |α| “ |Lα| for

any α ě ω. We do so using transfinite induction. At α “ ω, |α| “ |
Ť

năω n| “
ℵ0 “ |Lα| “ |

Ť

năω Ln| as |Ln| ď ω for every n P ω. Now suppose α is a limit
ordinal. Recall α “

Ť

βăα β and Lα “
Ť

βăα Lβ . By induction hypothesis,
if β ă α, |β| “ |Lβ |. Since the union operation does not change cardinality,
we have that |α| “ |Lα|. Finally, suppose α ` 1 is a successor cardinal. Recall
α`1 “ αYtαu and Lα`1 “defpLαq Ă P pLαq. We remark that by the definition
of successor ordinal, |P pαq| “ |α| “ |α` 1|. Since induction hypothesis gives us
|α| “ |Lα|, we have that |Lα`1| “ |defpLαq| ď |P pLαq| “ |α| “ |α` 1|.

Now going back to the main proof, let X be a constructible subset of ωα.
Suppose V “ L. Then, by the Reflection Principle, there exists a limit ordinal
δ ą ωα such that X P Lδ. Using the Löwenheim-Skolem theorem (L satisfying
the Axiom of Choice is sufficient), we can find an elementary submodel M of
Lγ such that X P M , ωα Ă M , and |M | “ ℵα. By Mostowski’s Collapsing
Theorem, we get that M is isomorphic to a transitive model N with collapsing
map π. The Condensation Lemma says that N is Lγ for some γ ď δ, γ a
limit ordinal. Notice that γ ă ωα`1 since |N | “ |γ| “ ℵα. As ωα is transitive,
ωα ĂM ùñ πpωαq “ ωα and πpXq “ X, by Mostowski’s Collapsing Theorem.
Since X PM , we have X P Lγ , the desired result.

7 Conclusion

This was an introduction to set theory. We covered elementary notions in the
Zermelo-Fraenkel set theory, ordinal and cardinal numbers, models and Gödel’s
Constructible Universe. In particular, we have presented the proofs of consis-
tency of the Axiom of Choice and the Generalized Continuum Hypothesis with
L. This is half of the proof for the independence of those statements. The other
half can be found in Paul Cohen’s proof, which uses a self-invented technique,
namely Forcing. This is, in fact, another interesting topic to explore.
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