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1 Abstract

The fundamental group of a topological space is one of the most important
constructions in algebraic topology. It also happens to be one of the simplest.
We provide the context required to define the fundamental group, define it, and
show some examples. Then we proceed to explore some elegant applications
and introduce van Kampen’s Theorem.

2 Homotopy

Definition 2.1. A path in a space X is a continuous map f : I Ñ X where I
is the unit interval.

Definition 2.2. A homotopy of paths in X is a family of paths ft : I Ñ X,
0 ď t ď 1, such that:

1. The endpoints ftp0q “ x0 and ftp1q “ x1 are independent of t.

2. The associated map F : IˆI Ñ X defined by F ps, tq “ ftpsq is continuous.

When two paths f0 and f1 are connected in this way by a homotopy ft, they
are said to be homotopic, and we write f0 » f1

Definition 2.3. A map f : X Ñ Y is called a homotopy equivalence if there
is a map g : Y Ñ X such that fg » gf » 1 (the identity map). We then say
that X and Y are homotopy equivalent.

Example 2.4. Any two paths f0psq and f1psq in Rn with the same endpoints
are homotopic, by the homotopy:

ftpsq “ p1´ tq f0psq ` t f1psq

This is illustrated in the continuous deformation displayed on the top of the next
page, where t “ 0 in the leftmost picture and t “ 1 in the rightmost picture.
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Indeed, using this construction, it is not difficult to show that any convex subset
X Ă Rn satisfies the previous property. Namely, any two paths f0 and f1 in X
convex with the same endpoints are homotopic. By the previous construction
of ftpsq, it suffices to show that this homotopy lies in X, but this is necessarily
the case since f0 and f1 lie in X and X is convex.

It is not entirely obvious that there exist topological spaces for which this
property does not hold. As an example of such a space, consider the 2-torus,
denoted T2. In the illustration below, two paths in T2 are displayed in red with
the same endpoints (each path actually has exactly one endpoint). Denote the
two paths hpsq and h1psq. We claim that there does not exist a homotopy ftpsq
with f0psq “ hpsq and f1psq “ h1psq such that F ps, tq is continuous.

Intuitively, this makes sense. Any homotopy sending the small circular path to
the larger one must involve ”breaking” the smaller one at some point. We will
return to this example several times later in this paper once we have established
more tools to investigate this topological space.

Proposition 2.5. The relation of homotopy on paths with fixed endpoints in
any space is an equivalence relation. We denote this relation by ».

Proof. f » f is achieved by taking the constant homotopy ft “ f . For symme-
try, if we have f0 » f1 by the homotopy ft, then f1 » f0 by the homotopy f1´t.
Finally, if f0 » f1 by the homotopy gt and f1 » f2 by the homotopy g1t, then
we define the homotopy ht “ Hps, tq in terms of its associated map as:

Hps, tq “

#

Gps, 2tq 0 ď t ď 1
2

G1ps, 2t´ 1q 1
2 ď t ď 1

Clearly, by continuity of G and G1, we have that H is continuous on I ˆ r0, 12 s
and I ˆ r 12 , 1s. Thus, since a function defined on the union of two closed sets is
continuous if it is continuous on each of these closed sets separately, then H is
continuous on I ˆ I. Then f0 » f2 via the homotopy ht, satisfying transitivity.
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Example 2.6. In light of this equivalence relation, we know from Example 2.4
that there is only one homotopy equivalence class of paths in any convex subset
X Ă Rn. Much more subtle is the case of T2. All we have shown up to now is
that there are at least two homotopy equivalence classes of paths on T2, and so
T2 is not homotopy equivalent to Rn for every n P N.

In the next section, we define the fundamental group, a natural and elegant
extension of homotopy equivalence classes.

3 Fundamental Group

Definition 3.1. Let f, g : I Ñ X be two paths such that fp1q “ gp0q, then the
product path f ¨ g which first traverses f then traverses g is defined by

f ¨ gpsq “

#

fp2sq 0 ď s ď 1
2

gp2s´ 1q 1
2 ď s ď 1

Note that f and g are traversed twice as quickly in order for the product path
to be completed in unit time. Also, notice that this path product respects
homotopy equivalence. Indeed, if we let f0, f1, f2, gt and g1t be as in the proof of
Proposition 2.5, then f0 ¨f1 and f1 ¨f2 are well-defined, so f0 ¨f1 » f1 ¨f2 by the
homotopy gt ¨ g

1
t. Henceforth, we will restrict our attention to paths f : I Ñ X

with the same start and end point (like in the example of the 2-torus). We call
such paths loops, and we refer to the endpoint as the basepoint.

Theorem 3.2. Let π1pX,x0q be the set of all homotopy equivalence classes of
loops with basepoint x0 P X. π1pX,x0q is a group with operation rf srgs “ rf ¨gs.

Proof. By restricting our attention to loops, we are ensured that f ¨ g is well-
defined given two such loops f and g. Also, we have already observed that the
path product respects homotopy equivalence. Thus, the operation of the group
is well-defined. It remains to prove the three group axioms.

First, we define the reparameterization of a path f to be the composition
fφ, where φ : I Ñ I is some continuous map such that φp0q “ 0 and φp1q “ 1.
We claim that reparameterization preserves homotopy (ie. fφ » f). To see
this, consider the family of paths φtpsq “ p1´ tqφpsq ` ts so that φ0psq “ φpsq
and φ1psq “ s. Notice that φtpsq lies between φpsq and s, so it is in I for all t.
Then the composition fφtpsq is a homotopy from fφ to f .

Suppose that we are given paths f, g, h such that fp1q “ gp0q and gp1q “
hp0q. Then f ¨ pg ¨ hq and pf ¨ gq ¨ h are both defined. In the first product,
f is traversed in half time, and g and h are both traversed in one quarter
of the time. In the second product, f and g are traversed in quarter time
whereas h is traversed in half time. Thus, choosing φpsq “ 2s on the interval
0 ď s ď 1

4 , φpsq “ s on the interval 1
4 ď s ď 1

2 , and finally φpsq “ s
2 on the

interval 1
2 ď s ď 1, we see that ppf ¨ gq ¨ hqφ “ f ¨ pg ¨ hq, hence we have that

f ¨ pg ¨ hq » pf ¨ gq ¨ h.
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Now for identity, given a path f : I Ñ X, let c be the constant path such
that cpsq “ fp1q. Then it is clear that f ¨ c is a reparameterization of f .
Similarly, if we let c be the constant path such that cpsq “ fp0q, then we have
that c ¨ f is a reparameterization of f . Since we have restricted our attention
to loops at basepoint x0, then in fact if we let c be the constant path at x0,
then c ¨ f » f » f ¨ c for all loops f at basepoint x0. Thus, we have proved the
existence of an identity element in the set π1pX,x0q.

Finally, we define the inverse path f :“ fp1 ´ sq, and we claim that this
is indeed the inverse of the element rf s P π1pX,x0q. Let ft be equal to f on
the interval r0, 1´ ts and constant at fp1´ tq on the interval r1´ t, 1s, and let
gt be the inverse path of ft. Then let ht “ ft ¨ gt “ ft ¨ f t. Then since f0 “ f
and f1 is the constant path c at x0, then ht is a homotopy from f ¨ f to c ¨ c, so
f ¨ f » c ¨ c “ c. Replacing f by f , we get that f ¨ f » c. Thus, rf s is indeed
the two-sided inverse of the element rf s P π1pX,x0q.

If X is path-connected, the group π1pX,x0q is independent of the choice of
basepoint x0, up to isomorphism. In this case, we may write π1pX,x0q as π1pXq.
Next, we compute one of the simpler examples of a non-trivial fundamental
group; that of a circle. To do so, it is necessary to introduce a few more concepts
which are, in fact, quite relevant to any further study of the concepts presented
in this paper. We introduce these necessary concepts and state two lemmas
without proof. The proof of these lemmas is beyond the scope of this paper.

Theorem 3.3. The fundamental group of the circle is an infinite cyclic group
generated by the homotopy class of the loop wpsq “ pcosp2πsq, sinp2πsqq based at
x0 :“ p1, 0q, or equivalently:

π1pS
1, x0q – Z

As explained above, we begin with some preliminary definitions before the proof.

Definition 3.4. Given a topological space X, a covering space of X is a
topological space rX and a map p : rX Ñ X such that the following condition is
satisfied:

For each point x P X, there is an open neighbourhood U of X such that
p´1pUq is a union of disjoint open sets, each of which is mapped homeomorphi-
cally onto U by p.

Definition 3.5. Given a path f : I Ñ X and a covering space rX with the
associated map p : rX Ñ X, we say that the path rf : I Ñ rX is a lift of the path
f if they satisfy p rf “ f .

In order to prove the theorem above, we only need the following two lemmas:

Lemma 3.6. For each path f : I Ñ X starting at x P X and each rx P p´1pxq,

there exists a unique lift rf : I Ñ rX starting at rx.
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Lemma 3.7. For each homotopy of paths ft : I Ñ X starting at x P X and
each rx P p´1pxq, there exists a unique lifted homotopy rft : I Ñ rX of paths
starting at rx.

Proof of Theorem 3.3

Proof. We will use R as a covering space of S1, via the map p : R Ñ S1 given
by ppsq “ pcosp2πsq, sinp2πsqq. Geometrically, this map can be visualized as
embedding R into R3 as the helix parameterized by sÑ pcosp2πsq, sinp2πsq, sq,
and then restricting to just the first two coordinates: pcosp2πsq, sinp2πsqq.

Define wnpsq “ pcosp2πnsq, sinp2πnsqq for n P Z. Note that rwsn “ rwns,
thus the theorem is equivalent to the fact that every loop in S1 based at x0 “
p1, 0q is homotopic to wn for some unique n P Z.

Let f : I Ñ S1 be a loop with basepoint x0. By Lemma 3.6, there is a
unique lift rf : I Ñ R starting at 0. This path rf ends at some integer n P R
since p rfp1q “ fp1q “ x0, and since p´1px0q “ Z Ă R. Another path from 0 to

n in R is rwn. Notice that rf » rwn, by the linear homotopy p1´ tq rf ` t rwn. We
can compose this homotopy with p, thereby constructing a homotopy from f to
wn. Thus, we have that f » wn, or rf s “ rwns.

It remains to show that n is uniquely determined by rf s. Suppose that
wm » f » wn. Let ft be a homotopy from wm “ f0 to wn “ f1. By Lemma
3.7, this homotopy lifts to a homotopy rft of paths starting at 0. By uniqueness
of the lift of f0 and f1, we have that rf0 “ rwm and rf1 “ rwn. By definition of
homotopy, we know that the endpoint of rftp1q is independent of t. For t “ 0, the

endpoint is rf0p1q “ rwmp1q “ m. For t “ 1, the endpoint is rf1p1q “ rwnp1q “ n.
Therefore, m “ n.

It is possible to derive several interesting, yet seemingly unrelated, results
from the theorem above. For example, the Fundamental Theorem of Algebra
and the Brouwer fixed point theorem in dimension 2 can be proven as corollaries
of Theorem 3.3. For proofs of these applications and for the proofs of Lemma
3.6 and Lemma 3.7, we refer the reader to [1]. Finally, we prove one more
proposition which will render Theorem 3.3 even more powerful still.

Proposition 3.8. If X and Y are two path-connected topological spaces, then
π1pX ˆ Y q – π1pXq ˆ π1pY q

Proof. Let g : Z Ñ X and h : Z Ñ Y be continuous, then f : Z Ñ X ˆ Y
defined by fpzq “ pgpzq, hpzqq is continuous. Thus, a loop f in X ˆ Y based
at px0, y0q is equivalent to a pair of loops g P X and h P Y based at x0 P X
and y0 P Y respectively. Analogously, a homotopy ft of a loop in X ˆ Y is
equivalent to a pair of homotopies gt and ht of corresponding loops in X and Y
respectively. Thus, we obtain the desired bijection π1pXˆY q « π1pXqˆπ1pY q.
This is clearly a group homomorphism, so we have the desired isomorphism.

Example 3.9. The unit cylinder is the topological product of S1 with I. There-
fore, by Proposition 3.8, the fundamental group of the unit cylinder is

π1pS
1 ˆ I, px0, y0qq – π1pS

1, x0q ˆ π1pI, y0q – Zˆ teu – Z
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Example 3.10. Let us return to the example of the 2-torus. T2 “ S1 ˆ S1,
thus by Proposition 3.8, we can compute its fundamental group:

π1pS
1 ˆ S1, px0, y0qq – π1pS

1, x0q ˆ π1pS
1, y0q – Zˆ Z

Note that we have shown that the fundamental group of T2 is abelian. Intu-
itively, this means that a closed path which circles the torus ’longitudinally’ then
’latitudinally’ can be continuously deformed into a closed path which circles the
torus first ’latitudinally’ then ’longitudinally’.

The last proposition was elegant, but there are plenty of relatively simple
topological spaces which cannot be easily described as a topological product of
simpler spaces.

Example 3.11. The graph illustrated below can be easily expressed as the
wedge sum (definition in the next section) of two circles, denoted S1_S1, but
does not admit a simple description in terms of a topological product.

It becomes clear that we are in need of a much more powerful tool to compute
fundamental groups of more general topological spaces. Van Kampen’s theorem
will serve as this crucial tool, and will be introduced in the coming section.
If we denote the circles on the right and left in the above illustration by A
and B respectively, we know that π1pAq “ Z “ π1pBq. Certainly, arbitrary
products of a and b (the generators of A and B respectively) should be elements
of the fundamental group of the graph above. For example, aaa and bb should
be elements of our group, but so should abaa and aba´1bab. Intuitively, the
fundamental group of the graph should be some combination of π1pAq and
π1pBq. In fact, van Kampen’s theorem will confirm this intuition and will make
this combination precise.

4 Van Kampen’s Theorem

Definition 4.1. Given groups G1, G2, ..., Gn, a word in
Ťn
i“1Gi is a product

s1s2...sm such that, for all j, there exists some i such that sj P Gi.

Definition 4.2. A word is called reduced if for all j, sj is not equal to the
identity of some group Gi, and if consecutive elements of the product are in
different groups, (ie. Ei such that sj , sj`1 P Gi).

Definition 4.3. The free product of G1, G2, ...Gn is the set of reduced words
in

Ťn
i“1Gi, where the operation is concatenation followed by reduction. We

denote this product by ˚ni“1Gi, or simply as ˚iGi.
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It is quite clear that the free product of groups forms a group, where the
empty word acts as the identity element. For a proof of this, we refer the reader
to [1]. We are now ready to present van Kampen’s theorem.

Theorem 4.4. If X is the union of path connected open sets Aα each containing
the basepoint x0 P X and if each intersection Aα X Aβ is path connected, then
the homomorphism Φ : ˚απ1pAαq Ñ π1pXq is surjective. If each intersection
AαXAβXAγ is also path connected, then the kernel of Φ is the normal subgroup
N “ t

@

iαβpwqiβαpw
´1q

D

: w P π1pAαXAβqu, where iαβ : π1pAαXAβq Ñ π1pAαq
is the homomorphism induced by the inclusion AαXAβ ãÑ Aα. Hence, we have
the induced isomorphism π1pXq – ˚απ1pAαq {N .

The proof of this theorem is beyond the scope of this paper. Again, we
refer the curious reader to [1] for the proof. For a categorical approach to this
theorem, we refer the reader to [2].

Often, this theorem will be applied to a union of two spaces AαYAβ , making
the extra condition on the path connectedness of triples AαXAβXAγ superflu-
ous. In this case, if AαXAβ is path connected, then we obtain the isomorphism
π1pXq – π1pAαq ˚ π1pAβq {N . Next, we return to the example of the wedge
sum of circles as displayed in Example 3.11.

Example 4.5. The pair of circles joined together at one point can be expressed
as the wedge sum of two circles. Let x0 and y0 be points on each circle and
denote the graph X, then X “ S1 _ S1 “ tpS1 \ S1q { „u, where „ is the
equivalence closure of the relation tpx0, y0qu. If we denote the circles A and B,
then Theorem 4.4 tells us that π1pXq “ π1pA_Bq – π1pAq ˚ π1pBq {N , where
N “ t

@

iABpwqiBApw
´1q

D

: w P π1pAXBqu. However, AXB “ tx0u, so it must
be that π1pAXBq “ 0, (since there is only one possible map from I to x0, then
there cannot be two different paths, so the fundamental group of any point is
trivial). Thus, N is trivial, meaning:

π1pA_Bq – π1pAq ˚ π1pBq “ π1pS
1q ˚ π1pS

1q – Z ˚ Z

Indeed, this result confirms our intuition presented in Example 3.11. We
have shown more generally that given topological spaces Xα, it is the case that:

π1p
ł

α

Xαq – ˚απ1pXαq

As a final example, we perform a slightly more elaborate computation. We
attempt to compute the fundamental group of a genus-2 surface, illustrated on
the next page.

Example 4.6. We begin our computation with the observation that our desired
genus-2 surface, denoted Y , can be decomposed into two tori minus an open disk.
Thus, let U “ V “ T2 ´D2, then our surface can be constructed from U and
V by connecting them along their missing disks. We claim that U is homotopy
equivalent to the figure eight loop displayed in Example 3.11. One way to see
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this is to modify the common construction of a torus. The common construction
of a torus from a rectangle is as follows: starting with a rectangle, glue one pair
of opposite edges together, creating a cylinder, then glue opposite ends of the
cylinder to construct the torus. If, instead, the initial rectangle has a hole in it,
then we end up with our desired punctured torus. If we imagine the hole on the
initial rectangle growing very large as to only leave the boundary of the rectangle
left, then it becomes clear that the procedure described above constructs two
loops joined at a point, as desired. Then by our prior computation π1pS

1_S1q –

Z˚Z, we know that π1pT2´D2q – Z˚Z. The following illustrations from left to
right, are the genus-2 surface, the initial rectangle in the case of the regular torus
construction, and the punctured rectangle in the punctured torus construction.

Clearly, U X V “ S1, so it is path-connected. Then, van Kampen’s theorem
applied to the union of two spaces gives π1pY q – π1pUq ˚ π1pV q{N where the
normal subgroup N “ t

@

iupwqivpw
´1q

D

: w P π1pU X V q “ π1pS
1qu. Here,

iu : π1pS
1q Ñ π1pUq and iv : π1pS

1q Ñ π1pV q. We know that π1pU X V q is
singly-generated by Theorem 3.3, so let g denote the generator, which is just
a single loop around U X V . To compute N , it suffices to compute iupgq and
ivpg

´1q. iu is induced by the inclusion U X V ãÑ U , so iupgq is the equivalence
class of the loop around U XV in terms of the generators of π1pUq – Z ˚Z. Let
π1pUq “ xa, by denote the generators. If we think about this loop as existing on
the initial punctured rectangle as opposed to on the punctured torus itself, it
becomes clear that the loop around the hole is homotopic to the word aba´1b´1.
Thus, iupgq “ aba´1b´1. Analogously, if we denote the generators of π1pV q “
xc, dy, then we find that ivpg

´1q “ c´1d´1cd, so our final result is as follows:

π1pY q – π1pUq ˚ π1pV q { t
@

iupwqivpw
´1q

D

: w P π1pU X V q “ π1pS
1qu

– Z ˚ Z ˚ Z ˚ Z { t
@

iupgqivpg
´1q

D

: g P π1pS
1q “ xgyu

–
@

a, b, c, d : aba´1b´1c´1d´1cd “ 1
D

5 Closing Remarks

It is hoped that the elegance of these concepts has been properly conveyed to
the reader. The purpose of this paper was for it to serve as a brief introduction
into the landscape of algebraic topology. If this paper has successfully seduced
the reader to learn more about the ideas presented here and what comes next,
we provide some resources on the next page.

Hatcher’s Algebraic Topology [1] was followed closely in the writing of this
paper. For the presentation of concepts in a manner similar in style to this paper,
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[1] is strongly recommended. For a presentation of van Kampen’s theorem with
a more categorical flavour, we recommend looking into [2]. Some concepts in the
field which follow naturally from those presented in this paper are cell complexes,
covering spaces, and homology.
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