
I’ve got 99 vertices but a solution to Conway’s problem ain’t

one

Caitlin Hutnyk

January 6, 2020

Abstract

Our project seeks to answer Conway’s 99-graph problem, posed eloquently by Conway himself
as: “Is there a graph with 99 vertices in which every edge belongs to a unique triangle and
every nonedge to a unique quadrilateral?” Current spectral and combinatorial techniques for
construction and disproof have failed in this case, and the space of possible graphs is too large for
a brute-force computational search. Our approach is to use a hybrid evolutionary algorithm, which
simulates evolution on a population of possible solutions while also performing local optimizations.

1 Conway’s 99-graph problem

This paper describes the context and theory behind Conway’s 99-graph problem, and explains a
hybrid evolutionary algorithm based approach to try to construct a solution. We begin with the
graph theoretic and spectral context and theory behind Conway’s question, then discuss the basics of
hybrid evolutionary algorithms. Finally we discuss the approach and the results.

In Conway’s paper Five $1000 problems the 99-graph problem is stated as follows: ”Is there a
graph with 99 vertices in which every edge (i.e. pair of joined vertices) belongs to a unique triangle
and every nonedge (pair of unjoined vertices) to a unique quadrilateral?” (Conway 2017). As stated
the problem, and its importance, may seem unclear. The goal of the next few sections is to provide
context to the problem, and to help explain the ideas behind our approach.

1.1 Strongly Regular Graphs

We begin with a discussion of strongly regular graphs.

Definition 1. A graph G = (V,E) is regular if ∃d ∈ N such that ∀v ∈ V |{uv s.t. uv ∈ E }| = d

In other words, a graph is regular if every vertex has the same number of neighbours. We can say
that a regular graph G has parameters (n, d) with n = |V | and d being d ∈ N in the definition above.

Definition 2. A regular graph is said to be strongly regular if ∃a, c ∈ N such that ∀u, v ∈ V

|{x ∈ V s.t. ux, vx ∈ E}| =

{
a, if uv ∈ E
c, if uv /∈ E

In other words, a graph is strongly regular if it is regular, and if every pair of adjacent vertices
have a mutual neighbours, and every pair of non-adjacent vertices have c mutual neighbours. We say
a strongly regular graph, or SRG, has parameters (n, d, a, c).

Proposition 1. The parameters (n, d, a, c) of a strongly regular graph satisfy

d(d− a− 1) = c(n− d− 1) (1)

1

Proof. Fix a vertex x. Let Y be the set of x’s d neighbours, and call Z the graph with x and Y
removed, having size n − d − 1. Count the edges between Y and Z in two ways. Each element in
Y has d neighbours, a of which are shared with x. So each of the d elements in Y have d − a − 1
neighbours in Z. On the other hand each element in Z has c mutual neighbours with x, all of which
are in Y . So each of the n− d− 1 vertices in Y is adjacent to c members of Z. Combining these two
facts yields the equation above.

1.2 Spectral Theory and Eigenvalue Multiplicity

The adjacency matrix A of a graph G = (V,E) is defined as follows.

A(u, v) =

{
1, if uv ∈ E
0, otherwise

Proposition 2.

A2(u, v) =

{
deg(u) if u = v

u and v’s number of mutual neighbours otherwise

Proof. A2(u, v) is the dot product of the uth row and the vth column. The kth term in the dot product
is

k =

{
1 if uk, vk ∈ E
0 otherwise

So the matrix entry is equal to the number of neighbours that u and v share. If u = v then u
shares all of its neighbours with v, so the matrix entry is equal to its degree.

Proposition 3. The adjacency matrix of a regular graph has the simple eigenvalue d, with the constant
function as its eigenfunction.

Proof. Multiplying A by the column vector filled with ones we see that the ith term in the vector
is equal to the number of entries in the ith row of A which are 1. For a regular graph this is d
for every column. So the product is the column vector filled with d’s, which is exactly d times the
eigenfunction.

Theorem 1. (Nica 2018) The adjacency matrix of a strongly regular graph (n, d, a, c) has 3 distinct
eigenvalues. The simple eigenvalue d and

a− c±
√

∆

2
, with ∆ = (a− c)2 + 4(d− c) > 0 (2)

having multiplicities
1

2

(
n− 1± (n− 1)(a− c) + 2d√

∆

)
(3)

Proof. Applying Proposition 2 to the adjacency matrix of a SRG with the above parameters, we get
that A2 = (a− c)A+ (d− c)I + cJ . For α a non-trivial eigenvalue of A with eigenfunction f we see
that Jf = 0. A is symmetric, and eigenvectors of symmetric matrices are orthogonal. Note that the
constant function is an eigenvector of A for a regular graph, and so the same is true for a SRG, so the
constant function and f are orthogonal. Each term in Jf is the constant function times f , so Jf = 0.
This means that α2 = α(a− c) + (d− c). Applying the quadratic formula yields the equation above.

For the multiplicities, call the two eigenvalues above α and α′ and their multiplicites m and m′.
The sum of the multiplicities is the size of the matrix n, and the sum of all the eigenvalues counted

2

with multiplicity is the trace of the matrix. So 1 + m + m′ = n and d + mα + m′α′ = 0. Again
combining these equations with the formulas for α and α′ yields the desired equation.

The real power of the above theorem lies in the fact that the multiplicities must be integral. This
requires that either (n−1)(a−c)+2d = 0 or ∃ t such that t2 = (a−c)2+4(d−c) and t | (n−1)(a−c)+2d.
This turns out to be very restrictive.

Theorem 2. The only possible values of n and d for a strongly regular graph with parameters a = 1
and c = 2 are (9,4), (99,14), (243,22), (6273,112), and (494019,994).

Proof. First we can consider the first case above, (n− 1)(a− c) + 2d = 0. Proposition 1 with a = 1,
c = 2 shows d(d− 2) = 2(n− d− 1). Combining these two equations gives

d2 − 2d = 2(2d+ 1)− 2d− 2

d = ±4

This gives the unique set of parameters (9,4,1,2). For the second case let t2 = (a− c)2 + 4(d− c) =

1 + 4(d − 2) = 4d − 7, where t | 2d − n + 1. Proposition 1 gives d2+2
2 = n. Applying the divisibility

equation gives

t | 2d− d2 + 2

2
+ 1

t | 4d− d2

Then we can manipulate the definition of t to get d = t2+7
4 . Then

t |
(t2 + 7

4

)2
− t2 − 7

t | t4 − 63

So t | 63, which leaves only the possible values t = 1, 3, 7, 9, 21, 63. t = 1 gives d < 0, and t = 3
yields d non-integer. The rest of the possible values of t, along with Proposition 1 and t2 = 4d − 7
yield the possible values of n and d.

In fact, constructions exist for (9,4,1,2) and (243,22,1,2): the Paley graph P (9) and the Berlekamp–van
Lint–Seidel graph (Berlekamp 1973). So the smallest graph for these parameters whose existence is
unknown is that with parameters (99,14,1,2). This is the source of Conway’s 99-graph problem. Every
edge belonging to a unique triangle means that every adjacent pair of vertices has exactly one common
neighbour, a = 1, and every non-edge being in a unique quadrilateral gives the other parameter c = 2.
Then Proposition 1 implies that d = 14. While the initial phrasing of the question did not mention
strongly regular graphs, we see that Conway’s question is asking precisely about the existence of this
smallest unknown but possible graph.

Figure 1: The strongly regular graph (9,4,1,2): the Paley graph P (9)

3

2 Evolutionary Algorithms

The basic idea behind an evolutionary algorithm is to simulate evolution on a population of potential
solutions. This requires an evaluation function, some notion of random mutation, and some way of
having the potential solutions ”reproduce.” A basic implementation would look like

Algorithm 1 Evolutionary Algorithm

randomly initialize population
Evaluate current generation
while Solution not found do

Select best from population for reproduction
Create new individuals by reproduction and random mutation
Evaluate fitness of new individuals
Replace weakest individuals in population with new individuals

end while
Return solution or best found

In general, an evolutionary algorithm alone is not effective enough to find good solutions to prob-
lems, so a hybrid algorithm is used: an evolutionary algorithm combined with a local search algorithm.
Different types of search algorithms have seen success with different types of NP-hard graph problems.
Some opt for a more heuristically motivated algorithm (Sidi Mohamed Douiri 2013), while others use
a Tabu algorithm (Philippe Galinier 1999), while others use a more generic local search algorithm
(Keiko Kohmoto 2003).

For reasons that will become clear in the next section, the local search algorithm we used is
simulated annealing. The idea behind simulated annealing is to avoid getting stuck in local minima
by accepting worse solutions at each step with probability proportional to a cooling temperature. The
temperature starts very high, allowing lots of exploration, and is gradually lowered to zero, where the
algorithm behaves like a simple local search. The algorithm then, depends on the initial and final
temperatures T and FT , as well as the cooling ration 0 < α < 1. A basic implementation would look
like

Algorithm 2 Simulated annealing

Given initial solution x, and evaluation ex
while T > FT do

Pick random neighbour x′, and find evaluation ex′

δ = ex′ − ex
if δ ≤ 0 then x = x′, ex = ex′

else set x = x′, ex = ex′ with probability e−δ/T

T = αT
end while
Return x

Usually the algorithm is run on any new individual just before it is added to the population, be it
on one of the individuals of the initial population, or the result of the reproduction operator.

3 Approach

With all of the background out of the way, we can finally talk about the details of our approach.
The algorithm as a whole follows the same structure as the generic outline above, but several details
need to be explained. The first question is how to initialize the population of potential solutions.

4

Since generating random regular graphs has well-known algorithms, and evaluating for regularity and
strong regularity would be tricky, it made sense to have every graph in the population be regular with
n = 99 and d = 14. This makes evaluation clear and simple, but as we will see, it also makes the step
function and reproduction algorithm slightly more complicated.

3.1 Fitness

The idea behind the fitness function is simple: for every pair of vertices find the distance between
their number of mutual neighbours and the number they are suppose to have. Using the spectral
identity from before this is

fitness =
∑
i 6=j∈V

{
|A2(i, j)− 1| if ij ∈ E
|A2(i, j)− 2| otherwise

(4)

So the desired SRG would have fitness 0. Manually computing this for every
(
99
2

)
= 4851 pair of

vertices is slow. We can use the speed of matrix operations and the spectral identities seen before to
improve the speed. But first, another useful fact from linear algebra.

Proposition 4.

tr(ATA) =

n∑
i=1

n∑
j=1

A(i, j)2 (5)

Proof. The trace is the sum of the dot products of each of the rows of A. Each term in each of those
dot products will be the square of a unique A(i, j), so the above formula holds.

Returning to the fitness function, replace the absolute values with squares, and note that the
desired number of mutual neighbours is 2 − A(i, j). Also, since the adjacency matrix of a graph is
symmetric for simple graphs, we can compute a similar sum to that from (4), namely

fitness = tr((A2 − 2J +A)2) (6)

However, the above equation includes the sum of the squares of the diagonals i = j. This can be
removed by seeing that for any regular graph (A2 − 2J + A)(i, i) = d − 2. The sum of the diagonal
entries will be a constant for any graph in our population, so the above formula evaluates strong
regularity effectively, but we want a solution to have fitness 0 so that our function behaves like an
optimization problem. So our final fitness function is

fitness = tr((A2 − 2J +A)2)− 122 × 99 (7)

3.2 Reproduction

Generally in an evolutionary algorithm the goal of the reproduction operator is to take some of the
traits of each of the parents and instill them in the offspring. What exactly these traits might be in
our case is not so clear: the evaluation for each vertex relies on the configuration of every other vertex,
and we have yet to develop any sort of heuristic for what sort of substructure is positive or negative.
Further, we cannot just take two subgraphs and reconnect them carelessly: we need the offspring to
be regular before we can add it to the population.

Because of these difficulties, the reproduction operator is currently motivated by quite a simple
heuristic: take the induced subgraph on some k vertices from the first parent, and the induced
subgraph on the remaining n− k vertices from the second parent. We reconnect these two subgraphs
using as many edges from the parents as possible, and as many edges which cross the cut as possible.
Unfortunately, we almost always have to insert some edges which are in neither of the parents in order

5

to preserve the regularity condition. Ideally we want to keep as much of the subgraph structure from
each of the parents as possible, although because of the restrictions on the problem space and the
inter-relatedness of the evaluation, this is difficult.

The other aspect of the algorithm is how to determine k. We could always pick k = n/2, but
it makes sense to pick k based on the fitness of each of the parents. So we pick k from a normal
distribution centered around n/2 + w with w some number representing the difference in fitness
evaluation of the parents.

Our current implementation of the above algorithm succeeds about half the time. So the question
arises: is it always possible to reconnect the two subgraphs? More formally, given two induced
subgraphs g1 and g2 of two regular graphs with parameters (n, d) with |g1|+ |g2| = n, can we always
produce a regular graph with the original parameters with g1 and g2 as subgraphs by only adding
edges?

It is relatively easy to construct examples where one of the parents is disconnected, or where one
of g1 or g2 is already d regular. Take both parent graphs to be copies of the 2-regular graph on 7
vertices from Figure 2. Taking g1 with vertices 0, 1, 2 and g2 with vertices 0, 1, 2, 3 we see that the
reproduction requirements are met and it is impossible to connect them back up into a regular graph
(6, 2).

0 1

2

3

4 5

6

Figure 2: Disconnected regular graphs which may not be able to reproduce

Cases like the one above do not seem very realistic given the size and relatively high degree of the
graphs in question. So we can refine the question by qualifying that both parents must be connected
and that both subgraphs must not already be d regular. Although it may not be immediately obvious,
the answer to this question is also no. We construct three subgraphs, each with a designated special
vertex which we will use to connect them up after. The idea is to construct two connected regular
graphs with two subgraphs g1 and g2 such that both are d regular except for one vertex of degree
d− 2. Since double edges are not allowed in simple graphs, this means that the two subgraphs cannot
be stitched back together.

Using the subgraphs of Figure 3 we can construct our counterexample. Let G1 be the graph
obtained by merging the red vertices of A and C into one, and G2 from merging the red vertices of
two copies of B. Both graphs are 4-regular on 17 vertices, so our initial conditions for the two parent
graphs are satisfied. Picking g1 as A, the subgraph from G1, and g2 as B, the subgraph from G2, we
see that the sum of the vertices in the subgraphs is 17, but there is no way to reconnect them into a
4-regular graph without deleting edges.

This counterexample is also quite contrived, but speaks more to the main problem when recon-
nected subgraphs into a regular graph: having two vertices which need more edges than there are
available. This is why the reproduction algorithm as it is currently implemented maintains an order-
ing on the vertices in the last stage, so as to add an edge to the vertex with the lowest degree. This
helps avoid cases like the one in the counterexample.

6

(a) Subgraph A (b) Subgraph B

(c) Subgraph C

Figure 3: Each subgraph is 4-regular except for one red vertex with degree 2

3.3 Step operator and local search

Necessary for any sort of local search algorithm is the notion of a step function. This defines what the
neighbours of an individual are in the problem space. Since every graph in the population needs to be
regular, we need the step function to preserve regularity. This means that simply adding or removing
an edge will not suffice. Instead we have a slightly more complicated step function, shown in figure
4: find two pairs of adjacent vertices (a, b), (c, d) such that each element of both pairs is disjoint from
the other pair. In other words the only edges between these four vertices are ab and cd. Then delete
those two edges and add either ac and bd or ad and bc. This preserves the regularity of the graph.

a

bc

d a

bc

d

Figure 4: The step function

Now that we have a well-defined notion of locality, we can discuss the choice of local search
algorithm. As previously discussed, the problem is that a small change in the graph, like one step
in the problem space, affects the evaluation of every single vertex. This means that a single step
away from a minimum can increase the evaluation by a large amount. For this reason it is difficult to
motivate any sort of heuristic algorithm. On the other hand, the regularity condition for all the graphs
in the population means that the step function is less simple. This means that the neighbourhood
around an individual is large and not very well defined, so iterating through all of the neighbours is
difficult. The problem also has lots of symmetry in its current definition: two graphs could be identical
up to renaming of vertices. For these reasons remembering which graphs we have already seen, even
just in a neighbourhood, is not realistic, so using something like a Tabu search is not feasible. What
is left is local search algorithms like simulated annealing, which is what is used. Simulated annealing
is successful at finding local minima quickly, and has seen success with evolutionary algorithms in the
past (Philippe Galinier 1999).

7

4 Results

The results from two runs of the most recent version of the algorithm can be seen in Figure 5. The
first point shows the population before any local search has been performed to show some indication
of what a completely random regular graph would evaluate to. Both runs were done with population
size 50.

Figure 5: Two runs of the algorithm

The progress reaches a plateau after around 100 generations. The reason for this is likely that every
species has reached a significant local minimum, and most offspring cannot reach a similar quality
through local search so they do not end up in the population. A simple solution to this would be to
accept something into the generation with probability proportional to its evaluation and the number
of generations that it has been in the population. This could help preserve some diversity. Some other
options will be explored in the next section.

5 Conclusion and Future Work

The approach described in this paper is simple. There is no heuristic or understanding of the structure
of the graph instilled in the algorithm, and the only improvement comes from random reproduction
or the local search algorithm. We think that there is huge room for improvement in the project, both
in terms of the algorithm and the underlying mathematics.

On the mathematics side, there are many techniques for reducing the size of the graph we need
to evaluate. The simplest one would be to fill in what necessarily exists in the graph: a single
vertex surrounded by 7 triangles, with each of the other vertices adjacent to two vertices among those
triangles, and not both on the same triangle. As can be seen in one of the references, this gives us
a way to construct the adjacency matrix of the graph and have a system of equations describe its
constituents (Brandfonbrener 2017). Similarly we could construct an induced subgraph of the matrix
called the star complement. These graphs are much smaller but if found lead to constructions of the
graph. In either case we need a way to evaluate fitness based on adjacency matrix equations rather
than strong regularity alone. Either of these approaches would drastically reduce the size of the graph
and improve search results.

On the other side, the algorithm used is incredibly simple. Modern evolutionary algorithms use
genetic codes to represent traits, which results in much more effective crossover and reproduction,
while related techniques like NEAT (Kenneth Stanley 2002) are much more complex and effective.
Implementing either of these, or some other form of machine learning, would likely yield much better
results.

8

This paper began with a discussion of strongly regular graphs and spectral techniques surround-
ing them, them discussed the basics of evolutionary algorithms and our approach to solve Conway’s
99-problem using one. While the algorithm has been relatively ineffective so far, we think that with
improved mathematical foundation and a more modern algorithm it could prove fruitful.

References

Berlekamp, Seidel, Lint. 1973. “A strongly regular graph derived from the perfect ternary Golay code”.

Brandfonbrener, David. 2017. “Algebraic Graph Theory, Strongly Regular Graphs, and Conway’s 99
Problem”.

Conway, John H. 2017. “Five $1000 Problems (Update 2017)”.

Keiko Kohmoto, Hiroyuki Narihisa, Kengo Katayama. 2003. “Performance of a Genetic Algorithm for
the Graph Partitioning Problem”.

Kenneth Stanley, Risto Miikulainen. 2002. “Efficient Evolution of Neural Network Topologies”.

Nica, Bogdan. 2018. “A Brief Introduction to Spectral Graph Theory”.

Philippe Galinier, Jin-Kao Hao. 1999. “Hybrid evolutionary algorithms for graph coloring”.

Sidi Mohamed Douiri, Souad Elbernoussi. 2013. “Solving the graph coloring problem via hybridgenetic
algorithms”.

9

