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Abstract

The theory of Riemann surfaces, first developed by Bernhard Riemann to study algebraic functions, now lies in
the confluence of complex analysis, differential geometry, and algebraic geometry. This expository paper aims to
introduce this theory, with the goal classifying all compact Riemann surfaces of genus 0 and 1. To do so, we first
develop the basics of covering space theory, which defines the degree of proper holomorphic maps, and then study
the sheaf of holomorphic maps on a Riemann surface and their associated cohomology theory. Together, they form
the core technical tools of the paper and allow us to connect the function theory of Riemann surfaces to their
complex structure. Lastly, we give a glimpse into the non-compact case, namely the Uniformization Theorem,
which gives us a tri-fold classification of all Riemann surfaces.
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3 Čech Cohomology 13
3.1 Sheaves and their Cohomology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

3.1.1 Presheaves, Sheaves, and Stalks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
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Chapter 0

Introduction

0.1 Overview and Main Results

Complex analysis is undoubtedly one of the foundational cornerstones of modern mathematics. To enrich it with topology, we restrict
the class of 2-dimensional topological spaces (i.e. surfaces) of study to those with a local neighborhood around every point that looks
like a deformed patch of C, but whose global behaviour can be quite different. The choice in which a surface is made to look locally like
C is called a complex structure, and, in general, there are many such choices. A surface, equipped with a particular choice of complex
structure, is called a Riemann surface.

As a motivating example, take the torus T 2. Around every point p ∈ T 2, we can find a small enough neighborhood U of p that
deforms reversibly onto an open subset of C. The figure below shows two ways of doing so.

p

U

φ
φ′

Using φ−1 to ‘pull’ the coordinate lines back to U , we see that the angles that they make is different from the angles made by using
φ′−1 instead. The rigidity of holomorphic maps from complex analysis suggests that those coordinates ought to be different, and indeed
they are. Thus we see that the same surface, T 2, can be equipped with many different complex structures, making them different
complex tori.

In general, we call the set of all complex structures on a surface X the moduli space1 of X, and the main goal of this paper is
to compute it for the sphere S2 and the torus T 2. The results, proven in Theorems 4.1 and 4.8 respectively, are as follows.

• Surprisingly, the moduli space of S2 is a point. In other words, the sphere admits a unique complex structure. This fact, which
is part of the Uniformization Theorem, is one of the starting points in the theory of compact Riemann surfaces.

• The fact that T 2 can be constructed topologically as a quotient C/Γ by an integer lattice Γ gives us a relatively straightforward
proof that the moduli space of T 2 is H/PSL2(Z). Here, H ⊂ C is the upper-half plane of C and PSL2(Z) := SL2(Z)/{±I} is the
modular group, which acts on H via Möbius transformations. We show that all complex tori can be written as Xτ := C/(Z⊕ τZ)
for some τ ∈ H, and two tori Xτ and Xτ ′ are biholomorphic iff τ and τ ′ lie in the same orbit of the action.

0.2 Organization and Prerequisites

We give a brief overview of the organization of this paper.

• Chapter 1 begins with some definitions and constructions relating to Riemann surfaces and introduces the main examples of
interest to this paper: the Riemann sphere and complex tori. We then study the basic behaviours of maps between Riemann
surfaces, with a focus on meromorphic functions and their associated holomorphic maps.

• Chapter 2 studies the covering space theory of Riemann surfaces. The degree of a proper holomorphic map is defined, which is
proven to be the cardinality of any fiber, counted with multiplicity. We finish with a proof of the existence of liftings, which will
be used to compute the moduli space of T 2.

• Chapter 3 builds up the basics of sheaf theory and their associated cohomology. The theory of (complex) differential forms and
integration is then introduced to study the sheaf of holomorphic functions on the Riemann sphere, where we prove the existence
of certain global meromorphic functions on a compact Riemann surface X.

• Chapter 4 ties everything together and uses the tools developed to compute the moduli space of genus 0 and 1 surfaces (S2 and
T 2). We also give a brief discussion and proof sketch of the Uniformization Theorem, which gives a tri-fold classification of all
Riemann surfaces.

As for prerequisites, some familiarity with topology and complex analysis is required, and we also assume that the reader is comfortable
with some linear algebra and basic group theory. A more detailed list of prerequisites, along with references, will be given at the start
of each chapter.

1This paper is only concerned with the underlying set of points, without regard to any geometric structure. This turns out to be interesting enough in
its own right, but the reader should be aware that the study of geometric structures on moduli spaces is vast. We refer the interested reader to [Tan91],
[Mar12], and [Hub06].
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Chapter 1

Riemann Surfaces

We begin with some basic definitions and constructions relating to Riemann surfaces that will be used throughout this paper. This
chapter requires some background in topology and complex analysis, all of which can be found in classical texts such as [Mun00] and
[Lan98]. For an introduction to topology focused on (real) manifolds, see [Lee10] or [Tu10].

1.1 Charts and Atlases

We first formalize what we mean for a topological space to ‘locally look like a patch of C’. In this section, let X be a connected
second-countable Hausdorff space.

Definition 1.1. A complex chart of X is a pair (U,φ) where φ : U → V is a homeomorphism from an open subset U ⊆ X onto
an open subset V ⊆ C. Two charts (U1, φ1) and (U2, φ2) are said to be compatible if either U1 ∩ U2 = ∅, or the map

φ2 ◦ φ−1
1 : φ1 (U1 ∩ U2) → φ2 (U1 ∩ U2) ,

called the transition map, is biholomorphic. A complex atlas on X is a collection A := {(Ui, φi)}i∈I of pairwise compatible
complex charts that cover X.

Remark. Charts provide local coordinates for every point in X in such a way that the transition maps φj ◦ φ−1
i respect the analytic

structure of C. Within the same atlas A, those charts give us different coordinate representations for points in Ui ∩ Uj , and since no
chart is distinguished from the others, we can only define notions using local coordinates if they are invariant under the transition
map.

Ui ∩ Uj

φi(Ui ∩ Uj) φj(Ui ∩ Uj)

φi φj

φj◦φ
−1
i

It is a classical result in complex analysis that the inverse of a holomorphic map is also holomorphic, so φj ◦ φ−1
i is biholomorphic

iff φi ◦ φ−1
j is, which is convenient when checking that a collection of charts form an atlas. Lastly, we remark that it is sometimes

convenient to write (U, z) for (U,φ), which can be decomposed into z = x+ iy by taking the real and imaginary parts of φ. ♦

Definition 1.2. Two complex atlases A and B on X are said to be equivalent if every chart of A is compatible with every chart
in B.

Remark. By Zorn’s Lemma, every atlas A of a manifold X is contained in a unique maximal atlas on X (see, for instance, [Lee12,
Proposition 1.17]). Moreover, two atlases are equivalent iff they are contained in the same maximal atlas, which justifies the following
definition. ♦

Definition 1.3. A complex structure on X is a maximal atlas A on X, or, equivalently, an equivalence class of complex atlases
on X. The pair (X,A) is then called a Riemann surface.

Remark. Every Riemann surface can be regarded as a (connected) 2-dimensional real manifold by ‘forgetting’ its complex structure.
Since orientations are invariant under biholomorphisms, and in particular under transition maps, the local orientation of C pulls-back
via charts to a local orientation at each point p ∈ X. Since charts cover X, these local orientations induce a global orientation on
X. Thus all Riemann surfaces are orientable, so, by the Classification of Surfaces, the closed Riemann surfaces are classified by their
genus. Note, however, that this is a topological classification, and does not give any information about the complex structure on X.♦

Example 1.4. Some elementary examples of Riemann surfaces.

• The complex plane C, equipped with its standard topology, can be given a complex structure A by choosing the atlas containing
a single chart (C, idC). We may, however, also give C a different complex structure A′ by choosing the chart map φ : z 7→ z
instead. Indeed, A ̸= A′ since the map φ ◦ id−1

C = φ is not holomorphic and hence the atlases {(C, idC)} and {(C, φ)} are not
equivalent. This example generalizes to any domain D ⊆ C.

• Let D ⊆ C be a domain and consider any holomorphic function f : D → C. Then the graph Γf := {(z, f (z)) : z ∈ D}, equipped
with the subspace topology inherited from C2, can be given a complex structure by choosing the chart map π : Γf → D :
(z, f (z)) 7→ z. More generally, the set X of roots of an irreducible1 polynomial f ∈ C [z, w] where every root has at least one
non-vanishing partial derivative, called a smooth affine plane curve, is a Riemann surface. Indeed, if ∂f/∂w is non-zero at
p = (z0, w0), then the Implicit Function Theorem furnishes a holomorphic function g (z) defined on a neighborhood of z0 such
that X = Γg on some neighborhood U ∋ p. Then, as above, the projection πz : U → C is a homeomorphism onto its image,
giving us the desired chart map. ♦

1The irreducibility of the polynomial ensures that its set of roots is connected. Its proof requires some algebraic geometry, which we take for granted.
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1.1.1 The Riemann Sphere Ĉ

A particularly important Riemann surface is the Riemann sphere Ĉ, which admits several constructions. Here, we equip standard
constructions of topological spheres with three complex structures, which a priori need not be biholomorphic (in the sense of Definition
1.13), but in fact are; see Example 1.14 for a proof. In fact, any Riemann surface that is topologically the sphere is the Riemann
sphere, which we prove in Theorem 4.1.

Example 1.5 (One-point Compactification of C). Let ∞ be a symbol not belonging to C and set C∞ := C ∪ {∞}. We declare a set
U ⊆ C∞ to be open if either U ⊆ C is open or U = Kc ∪ {∞} for some compact subset K ⊆ C. This makes C∞, equipped with the
collection T of all such open sets, a second-countable Hausdorff space. Indeed, the fact that T is a topology on C∞ follows from De
Morgan’s Laws and the Heine-Borel Theorem; it is Hausdorff since any p ∈ C can be separated from ∞ by neighborhoods B (p, r) and
B (p, r)

c ∪ {∞}, respectively; and it is second-countable since we may append, to any countable basis for the standard topology of C,
the countable collection

{
B (0, r)

c ∪ {∞}
}
r∈Q+ . To give C∞ a complex structure, we employ two charts

U1 := C∞\ {∞} = C φ1 : U1 → C : z 7→ z (φ1 := idC)

U2 := C∞\ {0} = C∗ ∪ {∞} φ2 : U2 → C : z 7→
{
1/z if z ∈ C∗

0 else.

Clearly φ1 is a homeomorphism. Since φ2 is invertible with φ−1
2 (z) := 1/z for all z ∈ C∗ and φ−1

2 (0) := ∞, and

lim
z→∞

φ2(z) = 0 = φ2(∞) and lim
z→0

φ−1
2 (z) = ∞ = φ−1

2 (0) ,

we see that φ2 is a homeomorphism too. Furthermore, φ2 ◦φ−1
1 : C∗ → C∗ : z 7→ 1/z is holomorphic, so the atlas {(U1, φ1) , (U2, φ2)}

defines a complex structure on C∞. ♦

Example 1.6 (Stereographic Projection). Consider the unit sphere S2 ⊆ R3 as a topological subspace of R3, which makes it a
second-countable Hausdorff space. Letting (x, y, w) be the standard coordinates of R3 and identifying the plane w = 0 as C, we employ
the charts

U1 := S2 \ {(0, 0, 1)} φ1 : U1 → C : (x, y, w) 7→
x+ iy

1− w

U2 := S2 \ {(0, 0,−1)} φ2 : U2 → C : (x, y, w) 7→
x− iy

1 + w
.

Clearly φ1 and φ2 are continuous, and it can be verified that they are invertible with continuous inverses

φ−1
1 (z) :=

(
2Re z

|z|2 + 1
,

2 Im z

|z|2 + 1
,
|z|2 − 1

|z|2 + 1

)
and φ−1

2 (z) :=

(
2Re z

|z|2 + 1
,
−2 Im z

|z|2 + 1
,
1− |z|2

|z|2 + 1

)
.

Observe that U1 ∩ U2 = S2 \ {(0, 0,±1)} and φ2 ◦ φ−1
1 : C∗ → C∗ : z 7→ 1/z, which is holomorphic, so the atlas {(U1, φ1) , (U2, φ2)}

defines a complex structure on Ĉ. ♦

Example 1.7 (Complex Projective Line). Consider the equivalence relation ∼ on C2 \ {(0, 0)} defined by (z1, w1) ∼ (z2, w2) iff
(z1, w1) = λ (z2, w2) for some λ ∈ C∗. Set P1 :=

(
C2 \ {(0, 0)}

)
/ ∼ and equip it with the quotient topology. Since ∼ is an open

equivalence relation2 whose graph is closed in
(
C2 \ {(0, 0)}

)2, we see that P1 is a second-countable Hausdorff space. Denoting the
equivalence class of (z, w) by [z : w], we employ the charts

U1 := P1 \ {[0 : w] : w ∈ C} φ1 : U1 → C : [z : w] 7→ w/z

U2 := P1 \ {[z : 0] : z ∈ C} φ2 : U2 → C : [z : w] 7→ z/w.

Clearly φ2 and φ2 are continuous, and it is easily verified that they are invertible with continuous inverses

φ−1
1 (z) := [1 : z] and φ−1

2 (z) := [z : 1] .

Furthermore, φ2 ◦ φ−1
1 : C∗ → C∗ : z 7→ 1/z is holomorphic, so the atlas {(U1, φ1) , (U2, φ2)} defines a complex structure on P1. ♦

1.1.2 Complex Tori

Recall that a torus is any manifold homeomorphic to T 2 := S1 × S1, which admit representations as quotients C/Γ by lattices
Γ := Zω1 ⊕ Zω2 for any linearly independent vectors ω1, ω2 ∈ C over R. By definition, there is only one torus up to homeomorphism,
but it turns out that we can equip it with many different complex structures. They arise from quotienting C by different lattices, and
we shall derive a criterion on the lattices Γ1 := Zω1 ⊕ Zω2 and Γ2 := Zη1 ⊕ Zη2 for the tori C/Γ1 and C/Γ2 to be biholomorphic.

Example 1.8 (Complex Tori). Let ω1, ω2 ∈ C be linearly independent over R and consider the lattice Γ := Zω1 ⊕ Zω2. Identifying
S1 with the unit circle in C, the quotient C/Γ is a torus in the topological sense since the map

φ : C/Γ → S1 × S1 mapping [z] 7→
(
e2πiλ1 , e2πiλ2

)
where z = λ1ω1+λ2ω2 for unique λ1, λ2 ∈ R, is a homeomorphism. Indeed, φ is well-defined since for any λ1ω1+λ2ω2 ∼ µ1ω1+µ2ω2

in C, we have (λ1 − µ1)ω1 + (λ2 − µ2)ω2 ∈ Γ and so λi − µi ∈ Z for i = 1, 2. The fact that it is a homeomorphism is clear. This
makes C/Γ a second-countable Hausdorff space, which we now endow with the following complex structure3.

Since Γ is discrete, there exists some ε > 0 such that ε < |ω| /2 for every non-zero ω ∈ Γ. Fix any such ε, which ensures that
2See [Tu10, Section 7.5] for details on the quotient topology and open equivalence relations.
3This exposition follows [Mir95, Section I.2].
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no two points in any open ball with radius ε can be equivalent. Indeed, take any z ∈ C and w1, w2 ∈ B (z, ε) =: Vz . For w1 ∼ w2, we
need some n,m ∈ Z such that w1 − w2 = nω1 +mω2. But

|w1 − w2| ≤ |z − w1|+ |z − w2| < 2ε < |nω1 +mω2|

for any n,m ∈ Z, so this is impossible. Fixing any such ε gives us a family {Vz}z∈C of open sets in C for which the projections
π|Vz

: Vz → π (Vz) are homeomorphisms. Letting Uz := π (Vz) and φz : Uz → Vz be the inverse of π|Vz
, we obtain complex charts

(Uz , φz) for all z ∈ C. We claim that the collection A := {(Uz , φz)}z∈C form an atlas, for which it suffices to take (U1, φ1) , (U2, φ2) ∈ A

and show that the transition map T := φ2 ◦ φ−1
1 : φ1(U) → φ2(U), where U := U1 ∩ U2, is holomorphic. Observe that the diagram

U

V1 = φ1(U) φ2(U) = V2

φ1 φ2

π|V1

T

π|V2

commutes, so π|V2
◦ T = π|V1

on φ1(U). Then π (T (z)) = π (z) for every z ∈ φ1(U), so T (z) ∼ z and hence ℓ (z) := T (z) − z ∈ Γ.
This holds for all z ∈ φ1(U), so we obtain a continuous function ℓ : φ1(U) → Γ : z 7→ T (z) − z. Note that Γ ⊆ C is equipped with
the subspace topology, but since it is discrete, every L ⊆ Γ is open. In particular, fix z0 ∈ φ1(U) and set γ0 := T (z0) − z0. With
L := {γ0}, continuity of ℓ shows that ℓ−1(L) is open. Thus ℓ (B (z0, δ1)) ⊆ {γ0} for some δ1 > 0, so ℓ (w) = γ0 for all w ∈ B (z0, δ1).
Thus T (z) = z + γ0 for all z in a local neighborhood around z0, so T is locally biholomorphic. Repeating this for all z0 ∈ φ1(U), we
see that T is holomorphic on φ1(U). ♦

1.2 Maps on Riemann Surfaces

We extend the notions of holomorphic and meromorphic functions from complex analysis to Riemann surfaces. We also define
holomorphic maps between Riemann surfaces, which formalizes what we mean for two Riemann surfaces to be ‘the same’. Lastly, we
study the connection between meromorphic functions f : X → C and their associated holomorphic maps F : X → Ĉ.

1.2.1 Holomorphic Functions and Maps

Definition 1.9. Let X be a Riemann surface and let W ⊆ X be open. For a fixed p ∈ W , a function f : W → C is said to be
holomorphic at p if there exists a chart (U,φ) of X containing p such that f ◦ φ−1 : φ (U) → C is holomorphic at φ (p). If f is
holomorphic at every point of W , then f is said to be holomorphic on W .

Remark. It must be checked that ‘being holomorphic’ does not depend on the choice of chart. This is indeed the case, for if (V, ψ)
is another chart containing p, then the diagram

φ (U ∩ V )

U ∩ V C

ψ (U ∩ V )

f◦φ−1

φ

ψ

f

f◦ψ−1

(1.1)

commutes. Thus f ◦ ψ−1 =
(
f ◦ φ−1

)
◦
(
φ ◦ ψ−1

)
, and since the transition map φ ◦ ψ−1 is holomorphic, we see that f ◦ φ−1 is

holomorphic at φ (p) iff f ◦ ψ−1 is holomorphic at ψ (p), as desired. ♦

Example 1.10. Some elementary examples of holomorphic functions.

• If X = C with the standard chart (C, idC), then any holomorphic function f : W → C from an open set W ⊆ C is holomorphic
in the classical sense.

• Any chart map φ : U → C of a Riemann surface is (tautologically) holomorphic in the above sense.
• If f, g :W → C are both holomorphic at some p ∈W , then so are f ± g, f · g, and λf for any λ ∈ C. This makes the set O (W )

of all holomorphic functions f :W → C into a C-algebra. Lastly, if g (p) ̸= 0, then f/g is also holomorphic at p. ♦

Definition 1.11. Let X and Y be Riemann surfaces and let W ⊆ X be open. For a fixed p ∈ W , a mapping F : W → Y is
said to be holomorphic at p if there exists a chart (U,φ) of X containing p and a chart (V, ψ) of Y containing F (p) such that
ψ ◦ F ◦ φ−1: φ (U) → ψ (V ) is holomorphic at φ (p). If F is holomorphic at every point of W , then F is holomorphic on W .

Remark. For Y := C regarded as a Riemann surface, this definition agrees with the above. Again, we must check that ‘being
holomorphic’ is well-defined, but it follows from the commutativity of the diagram below and a similar argument as above.

φ1(U1 ∩ U2) ψ1(V1 ∩ V2)

U1 ∩ U2 V1 ∩ V2

φ2(U1 ∩ U2) ψ2(V1 ∩ V2)

ψ1◦F◦φ−1
1

φ2◦φ−1
1 ψ2◦ψ−1

1

φ1

φ2

F

ψ1

ψ2

ψ2◦F◦φ−1
2

We make the convention that lower-case letters f, g, h, . . . are functions from a Riemann surface into C, while upper-case letters
F,G,H, . . . are maps between Riemann surfaces. ♦
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Example 1.12. For a Riemann surface X, the identity idX is a holomorphic map. Furthermore, for all Riemann surfaces X, Y , and
Z, and all holomorphic maps F : X → Y and G : Y → Z, the composite G ◦ F : X → Z is also a holomorphic map. Note that if
F : X → Y is an invertible holomorphic map, then its inverse F−1 : Y → X is also holomorphic. Indeed, if (U,φ) and (V, ψ) are charts
around p and F (p), respectively, making ψ ◦ F ◦ φ−1 holomorphic (in the classical sense) at φ (p), then its inverse φ ◦ F−1 ◦ ψ−1 is
also holomorphic (in the classical sense) at ψ (p). Thus F−1 is holomorphic at F (p), as desired, and justifies the following definition.♦

Definition 1.13. Let X and Y be Riemann surfaces. A biholomorphism between X and Y is an invertible holomorphic map
F : X → Y . Two Riemann surfaces X and Y are said to be biholomorphic if there exists a biholomorphism F : X → Y .

Example 1.14 (Biholomorphisms between Riemann spheres). Let C∞, S2, and P1 denote the three constructions for the Riemann
sphere Ĉ presented in Examples 1.5, 1.6, and 1.7, respectively. We claim that the maps

F : S2 → P1 : (x, y, w) 7→ [1− w : x+ iy] and G : S2 → C∞ : (x, y, w) 7→


x+ iy

1− w
if w ̸= 1

∞ else

are biholomorphisms, which shows that all three constructions are biholomorphic. Indeed F is holomorphic since with the charts

U := S2 \ {(0, 0, 1)} φ : U → C : (x, y, w) 7→
x+ iy

1− w

V := P1 \ {[0 : w] : w ∈ C} ψ : V → C : [z : w] 7→
w

z
,

we see that (
ψ ◦ F ◦ φ−1

)
(z) = ψ

(
F

(
2Re z

|z|2 + 1
,

2 Im z

|z|2 + 1
,
|z|2 − 1

|z|2 + 1

))
= ψ

([
1−

|z|2 − 1

|z|2 + 1
:

2z

|z|2 + 1

])
= ψ ([1 : z]) = z

for all z ∈ φ (U) = C, which is clearly holomorphic. Furthermore, it can be checked that F is invertible with a well-defined inverse

F−1 ([z : w]) :=

(
2Re (zw) , 2 Im (zw) , |z|2 − |w|2

)
|z|2 + |w|2

,

so F is a biholomorphism. For G, we take the same chart (U,φ) as above and choose V := C∞ \ {∞} = C and ψ := idC. A similar
calculation then shows that

(
ψ ◦G ◦ φ−1

)
(z) = z for all z ∈ φ (U) = C, and that G is invertible with inverse G−1(z) := φ−1(z) if

z ∈ C and G−1(∞) := (0, 0, 1). ♦

Proposition 1.15. Any holomorphic function f : X → C on a compact Riemann surface X is constant.

Proof. Since f is holomorphic, the function |f | : X → R defined by |f | (x) := |f (x)| is continuous on X. But X is compact, so |f |
achieves its maximum at some point p ∈ X. Choosing a connected chart (U,φ) centered at p, we see that f ◦φ : U → C is holomorphic.
Then |f ◦ φ| : U → R has a local maximum at 0, so, since U is connected, f ◦ φ is constant by the Maximum Principle. Then f is
locally constant around p, so, since X is connected, f is constant on X. ■

1.2.2 Singularities of Functions
Throughout this section, let X be a Riemann surface, let p ∈ X, and let f : W → C be defined and holomorphic on a punctured
neighborhood W of p. As above, we can study the behaviour of f at p from its chart representation f ◦ φ−1.

Definition 1.16. Let f :W → C be a holomorphic function on a punctured neighborhood of p. We say that f has a removable
singularity (resp. pole, essential singularity) at p if there exists a chart (U,φ) of X containing p such that f ◦ φ−1 : φ (U) → C
has a removable singularity (resp. pole, essential singularity) at φ (p).

Proof. (Well-definedness). The commutativity of the diagram in Equation (1.1) shows that those notions are chart independent; the
composition of f ◦ φ−1 having a singularity at p with a transition map that is holomorphic at p yields a function with the same type
of singularity at p. ■

Remark. Functions having an essential singularity at p are very ill-behaved. Indeed, this occurs iff |f (x)| has a non-zero oscillation
near p. Other singularities behave much better:

• A removable singularity occurs iff |f (x)| is bounded in a neighborhood of p, and can be ‘filled in’ by defining f̃ (p) := limx→p f (x).
This extends, by Riemann’s Removable Singularities Theorem, to a holomorphic function f̃ :W ∪ {p} → C.

• A pole occurs iff |f (x)| → ∞ as x→ p, which can also be ‘filled in’ by defining the map

F :W → Ĉ mapping x 7→
{
∞ if x = p

f (x) else

that extends the codomain of f to the Riemann sphere4 Ĉ; since |f (x)| → ∞ as x → p, we see that F is continuous. To show
that F is holomorphic, let (U,φ) and (V, ψ) be charts around x and F (x), respectively. Since f is holomorphic on U \ {p}, we
see that ψ ◦ F ◦ φ−1 is holomorphic on φ (U) \ φ (p). Observe that φ (p) is a removable singularity of ψ ◦ F ◦ φ−1, which can be
extended as above to make ψ ◦ F ◦ φ−1 holomorphic on φ (U).

Thus we see that every such function f :W → C having pole at p can be holomorphically extended to a map F :W → Ĉ. Conversely,
every holomorphic map F : W → Ĉ (that is not identically infinity) can be regarded as a function f : W \ F−1 (∞) → C that is
holomorphic everywhere except where F (x) = ∞, in which case it has a pole. This motivates the following definition. ♦

4Here, we consider Ĉ = C∞.
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Definition 1.17. A function f : W → C is said to be meromorphic at p if it does not have an essential singularity at p; that
is, if it is either holomorphic, has a removable singularity, or has a pole at p. If f is meromorphic at every point of W , then f
is meromorphic on W .

Remark. The previous remark can now be rephrased by saying that the set of all meromorphic functions f :W → C are in one-to-one
correspondence with the set of all holomorphic maps F : W → Ĉ (which are not identically infinity). That is, meromorphic functions
are the holomorphic maps to the Riemann sphere. ♦

Example 1.18. As in Example 1.10, if f, g : W → C are both meromorphic at p, then so are f ± g and f · g. Furthermore, g is not
identically 0, then so is f/g. This makes the set M (W ) of all meromorphic functions f :W → C into a field. ♦

Proposition 1.19. Every meromorphic function on Ĉ is a rational function.

Proof. Let f : Ĉ → C be meromorphic. Since Ĉ is compact, the discreteness of poles imply that f has finitely-many poles. Without
loss of generality, assume that ∞ is not a pole of f (since we may consider 1/f instead). Now, for each pole λi ∈ C of f , consider its
principal part

hi(z) =

−1∑
j=−mi

cij (z − λi)
j

for some mi > 1. Then the function g := f −
∑
i hi is holomorphic function on Ĉ, and since Ĉ is compact, it is constant by Proposition

1.15. Thus f = g +
∑
i hi, which is a rational function. ■

Definition 1.20. Let f :W → C be meromorphic at p and consider its Laurent series fφ(z) :=
(
f ◦ φ−1

)
(z) =

∑
i ci (z − z0)

i

under a chart (U,φ) of X with z0 := φ (p). The order of f at p is

ordp(f) := min {n ∈ Z : 0 ̸= (z − z0)
nfφ(z) ∈ O (W )} .

Remark. Note that f , being meromorphic, ensures that its Laurent series has finitely-many negative terms, so the definition makes
sense. If f is not meromorphic, we take ordp(f) := ∞. ♦

Proof. (Well-definedness). Let z be the local coordinates given by (U,φ) and suppose that (V, ψ) is another chart with w0 := ψ (p)
giving another local coordinate w. Then the transition function T := φ◦ψ−1 is holomorphic, so it admits a power series representation

z = T (w) =
∑
n≥0

an (w − w0)
n = z0 +

∑
n≥1

an (w − w0)
n .

Since T ′ (w0) ̸= 0, we see that a1 ̸= 0. Suppose now that the Laurent series of f at p in the coordinate z is c−n0 (z − z0)
−n0 + higher

order terms, so that the order of f at p computed by employing z is n0. Then the Laurent series of f at p in the coordinate w is

c−n0

∑
n≥1

an (w − w0)
n

−n0

+ higher order terms,

whose lowest order term is c−n0a
−n0
1 (w − w0)

−n0 . Observe that b−n0
:= c−n0a

−n0
1 ̸= 0, so the order of f at p computed via w is

also n0. ■

Remark. The arithmetic of ordp is straightforward. Indeed, if f, g :W → C are meromorphic at p, then

• ordp(fg) = ordp(f) + ordp(g).
• ordp(f/g) = ordp(f)− ordp(g), if g ̸= 0.
• ordp(f ± g) ≥ min {ordp(f) , ordp(g)}. ♦

The order ordp(f) can be used to classify the behaviour of f at p. Indeed, it is readily verified that f is holomorphic at p iff ordp(f) ≤ 0,
in which case f (p) = 0 iff ordp(f) < 0. Similarly, f has a pole at p iff ordp(f) > 0, so f has neither a zero nor a pole at p iff ordp(f) = 0.
This motivates the following definition. ♦

Definition 1.21. Let f : W → C be meromorphic at p. We say that f has a pole of order n at p if ordp(f) = n > 0, and a
zero of order n at p if ordp(f) = n < 0.

Example 1.22. Let f : Ĉ → C be meromorphic, so f (z) = p (z)/q (z) for some p, q ∈ C [z]. Then f is holomorphic at all points z ∈ C
such that q (z) ̸= 0, and has a pole otherwise. Also, f (∞) ∈ C if deg p = deg q, vanishes if deg p < deg q, and has a pole otherwise. In
any case, f is meromorphic on Ĉ. To compute ordz(f) at all z ∈ Ĉ, we split p and q into linear factors to write f uniquely as

f (z) = c
∏

(z − λi)
αi

where c ̸= 0 and each λi is distinct. Fix i. Setting gj(z) := (z − λj)
αj for all j, we see that ordλi

(gi) = −αi and ordλj
(gi) = 0 for all

i ̸= j. Thus
ordλi

(f) =
∑
j

ordλi
(gj) = −αi.

Moreover, if αi > 0 (resp. αi < 0), then gi has a pole (resp. zero) of order |αi| at ∞. It follows then that ord∞(gi) = αi, so

ord∞(f) =
∑
i

ord∞(gi) =
∑
i

αi.

Lastly, it is clear that ordz(f) = 0 for all z ̸= λi,∞. ♦

Remark. Thus if f is a meromorphic function on Ĉ, then
∑
z ordz(f) = 0. In fact, this holds for all compact Riemann surfaces,

which we prove in Proposition 1.26 with the tools from Chapter 2. ♦
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1.2.3 Local Normal Form and the Multiplicity
Holomorphic maps have some remarkable ‘local’ properties, one of which, called the Local Normal Form, is presented here. Roughly
speaking, every holomorphic map F : X → Y looks locally like a power map z 7→ zm for some unique m ≥ 1. Summing this local
invariant over the fiber F−1(q) for any q ∈ Y gives us the degree of F , a global invariant independent of q, which we prove in Section
2.1 using tools from covering spaces.

Theorem 1.23 (Local Normal Form). Let X and Y be Riemann surfaces and let F : X → Y be a non-constant holomorphic
map. Then, for every p ∈ X, there exists a unique m ≥ 1 such that for any chart (U2, φ2) of Y centered at F (p), there exists
a chart (U1, φ1) of X centered at p such that φ2 ◦ F ◦ φ−1

1 : z 7→ zm for all z ∈ φ1 (U1).

Proof. Let (U2, φ2) be a chart of Y centered at F (p) and consider any chart (V, ψ) ofX centered at p. Then the function h := φ2◦F◦ψ−1

is holomorphic, so it admits a power series representation h (w) =
∑∞
i=0 ciw

i for all w ∈ ψ (V ). Note that h (0) = φ2 (F (p)) = 0, so
c0 = 0. Let m ≥ 1 be the smallest integer such that cm ̸= 0, so

h (w) =
∑
i≥m

ciw
i = wm

∑
i≥0

ci−mw
i =: wmg (w) .

Then g is holomorphic at 0 with g (0) = cm ̸= 0, so there is a function r holomorphic on some neighborhood W of 0 such that
(r (w))m = g (w) for all w ∈ W . Thus h (w) = (wr (w))m, so set η (w) := wr (w) for all w ∈ W . Note that η′ (0) = r (0) ̸= 0, so η is
invertible on some neighborhood W ′ ⊆W of 0. Set U1 := ψ−1 (W ′) and φ1 := η ◦ψ. Then (U1, φ1) is a chart of X centered at p such
that (

φ2 ◦ F ◦ φ−1
1

)
(z) =

(
φ2 ◦ F ◦ ψ−1 ◦ η−1

)
(z) = h

(
η−1 (z)

)
=
[
η
(
η−1 (z)

)]m
= zm

for all z ∈ φ1 (U1). To show uniqueness, it suffices to show that such an m is chart-independent. But this is clear, for if a different
chart U ′

2 is chosen such that F acts as z 7→ zn for some neighborhood U ′
1 of p, then zn = zm on φ1 (U1) ∩ φ′

1

(
U ′
1

)
forces n = m. ■

Definition 1.24. With the above notation, the unique m ≥ 1 such that there are local coordinates around p and F (p) where F
acts like z 7→ zm is called the multiplicity of F at p, denoted multp(F ).

Remark. Consider the power function f (z) := zm where m := multp(F ). Then, for all z ∈ C∗, we see that f−1(z) has exactly m
elements given by the m distinct mth roots of zm. Thus the map f causes C to ‘cover itself m times’, and those coverings meet at the
fixed point 0. But f−1(0) = {0} has only 1 element, which prevents f to be a m-sheeted covering of C. To remedy this, we count 0
with multiplicity; see Chapter 2 for a more formal discussion. Since F is locally represented by f , and (U1, φ1) is centered at p, we see
that m counts the multiplicity at which neighbors of p are mapped to F (p). ♦

Remark. This theorem also give easy proofs of some elementary properties of holomorphic maps, which we collect here; see [For81,
Section 1.2] for details. Throughout, F : X → Y is a non-constant holomorphic map between Riemann surfaces X and Y .

• F is an open map.

• If F is injective, then it is biholomorphic onto its image.

• If Y = C, then |F | does not attain its maximum.

• If X is compact, then F is surjective and Y is compact.

Together, the last two claims give an alternative proof for Proposition 1.15. ♦

Remark. We give a simple way of computing multp(F ) that does not involve casting F into Local Normal Form, or even having to
find local coordinates centered at p and F (p). Indeed, let (U1, φ1) and (U2, φ2) be charts around p and F (p), say with z0 := φ1 (p)
and w0 := φ2 (F (p)). Letting f := φ2 ◦ F ◦ φ−1

1 , we see that f (z0) = w0 and hence its power series representation has the form

f (z) = f (z0) +
∑
i≥m

ci (z − z0)
i

for some m ≥ 1 with cm ̸= 0. Then, since z− z0 and w−w0 = f (z)− f (z0) are local coordinates centered at p and F (p), respectively,
we see from the above proof that multp(F ) = m. Thus to compute multp(F ), it suffices to case F into local coordinates (U1, φ1)

around p and (U2, φ2) around F (p) and find the lowest non-zero power of the Taylor series of f := φ2 ◦ F ◦ φ−1
1 . ♦

Proposition 1.25. Let f be a meromorphic function on a Riemann surface X and let F : X → Ĉ be its associated holomorphic
map. Fix p ∈ X.

• If p is a not a pole of f , then multp(F ) = − ordp(f − f (p)).

• If p is a pole of f , then multp(F ) = ordp(f).

Proof. Suppose that p is not a pole of f , so f (p) = F (p) ∈ C. Since the set of all poles of a meromorphic function forms a discrete
set, let p ∈ U ⊆ X be small enough so that f |U is holomorphic. Let (U,φ) be a chart of X and consider the chart (C, ψ) of Ĉ around
F (p) defined by ψ (z) := z − F (p). Then f − f (p) = ψ ◦ F on U , so

(f − f (p))φ := (f − f (p)) ◦ φ−1 = ψ ◦ F ◦ φ−1

on φ (U). Expanding in power series around z0 := φ (p) ∈ φ (U), we see that(
ψ ◦ F ◦ φ−1

)
(z) = (f − f (p))φ(z) =

∑
i≥m

ci (z − z0)
i
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for some m ∈ N with cm ̸= 0. Note that (f − f (p))φ(z0) = (f − f (p)) (p) = 0, so m > 0 and hence multp(F ) = m. But m is also the
smallest integer such that

0 ̸= (z − z0)
−m(f − f (p))φ(z) ∈ O (U) ,

so ordp(f − f (p)) = −m. Suppose now that p is a pole of f , so F (p) = ∞. Since limz→p 1/f (z) = 0, we may let p ∈ U ⊆ X be small
enough so that the function f̃ : U → C defined by

f̃ (x) :=

{
0 if x = p

1/f (x) else

is holomorphic. Let (U,φ) be a chart of X and consider the chart
(
Ĉ\{0} , ψ

)
of Ĉ defined by ψ (z) := 1/z for all z ∈ C∗ and ψ (∞) := 0.

Then f̃ = ψ ◦ F on U , so f̃φ := f̃ ◦ φ−1 = ψ ◦ F ◦ φ−1 on φ (U). By the same argument as above, we see that multp(F ) = − ordp(f̃).
Now ordp(f) = − ordp(f̃), so the result follows. ■

Remark. Let F : X → Y be a non-constant holomorphic map from a compact Riemann surfaces X to a Riemann surface Y . Define
the degree of F to be degF :=

∑
p∈F−1(q) multp(F ) for any q ∈ Y , which we prove in Theorem 2.10 to be independent of q. Using

this invariant, we give an application of the previous result, which extends the computation in Example 1.22 to all compact Riemann
surfaces X. ♦

Proposition 1.26. If f is a non-constant meromorphic function on a compact Riemann surface X, then
∑
p ordp(f) = 0.

Proof. Let F : X → Ĉ be its associated holomorphic map and consider the points {xi} and {yj} of X mapping to 0 and ∞, respectively.
By Theorem 2.10, the degree of F is an invariant, so

degF =
∑
i

multxi (F ) =
∑
j

multyj (F ) .

Note that {xi} and {yj} are precisely the zeros and poles of f , and any other point p ∈ X has zero order. By Proposition 1.25, we see
that ordxi (f) = multxi (F ) and ordyj (f) = −multyj (F ), so∑

p

ordp(f) =
∑
i

ordxi (f) +
∑
j

ordyj (f) =
∑
i

multxi (F )−
∑
j

multyj (F ) = 0,

as desired. ■
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Chapter 2

Covering Spaces

We develop the basics of covering space theory. More specifically, Section 2.1 develops the notion of the degree to derive a criterion for
a compact Riemann surface X to be biholomorphic to the Riemann sphere Ĉ, and Section 2.2 studies the liftings of mappings along
covering maps. Those tools will be used in Sections 4.1.1 and 4.2 to compute the moduli spaces of S2 and T 2, respectively. Section
2.2 requires some background on homotopies of paths, for which we refer the reader to [Hat02, Chapter 1].

2.1 Covering Maps and the Degree

We devote this section to develop the tools necessary to define the degree of a proper holomorphic map, which, intuitively, is the
number of sheets in which it covers its image. However, there are points in the image which are not covered ‘evenly’, so they must be
counted with multiplicity.

2.1.1 Proper and Covering Maps
We first gather some basic results on the theory of covering spaces from topology. Throughout this section, let E and X be locally-
compact topological spaces. This assumption ensures that proper maps are closed.

Definition 2.1. A map π : E → X is said to be proper if the preimage of every compact set is compact.

Proposition 2.2. For a proper map π : E → X, every p ∈ X and every neighborhood V of π−1(p) admits a neighborhood U
of p such that π−1(U) ⊆ V .

Proof. Since E \ V is closed and π is proper, we see that π (E \ V ) is closed too. Clearly p ̸∈ π (E \ V ) =: W , so U := X \W is a
neighborhood of p. Then π−1(U) ⊆ V , since for all π (ζ) ∈ U , we see that π (ζ) ̸∈ π (E \ V ) and so ζ ̸∈ E \ V . ■

Definition 2.3. A map π : E → X is said to be a covering map if every point p ∈ X admits a neighborhood U such that
π−1(U) =

∐
j∈J Vj , where Vj are disjoint open sets in E, each homeomorphic to U via π|Vj

. In this case, we say that U is
evenly-covered by {Vj} and that E is a covering space of X.

Example 2.4. Let m ≥ 2 be a natural number and consider the power map f : C∗ → C∗ mapping z 7→ zm. We claim that f is a
covering map, so take b ∈ C∗ and let a ∈ C∗ be any one of its mth roots. Since f is a local homeomorphism, there exist neighborhoods
V0 of a and U of b such that f |V0

: V0 → U is a homeomorphism. We claim that

f−1(U) =

m−1∐
j=0

ωjV0,

where ω is an mth root of unity. Indeed, for all f (c) ∈ U , there exists some a′ ∈ V0 such that f (a′) = f (c). Then c = ωja′ for
some 0 ≤ j ≤ m − 1, so c ∈ ωjV0. Conversely, if c ∈ ωjV0 for some 0 ≤ j ≤ m − 1, then c = ωja′ for some a′ ∈ V0 and hence
f (c) = f

(
ωja′

)
= f (a′) ∈ U . Now, since f−1(b) is discrete, the sets Vj := ωjV0 can be made small enough so that they are pairwise

disjoint. Then each f |Vj
: Vj → U is a homeomorphism, as desired. ♦

Example 2.5. For any lattice Γ ⊆ C, the projection π : C → C/Γ is a covering map. Indeed, take z+Γ ∈ C/Γ and let w ∈ C be such
that π (w) = z +Γ. Since π is a local homeomorphism1, there exist neighborhoods V of w and U of z +Γ such that π|V : V → U is a
homeomorphism. We claim that

π−1(U) =
∐
λ∈Γ

(λ+ V ) .

Indeed, for all π (z) ∈ U , there exists some w′ ∈ V such that π (z) = π (w′). Then z + Γ = w′ + Γ, so z = w′ + λ for some λ ∈ Γ.
Conversely, if z ∈ λ + V for some λ ∈ Γ, then z = w′ + λ for some w′ ∈ V and hence π (z) = π (w′ + λ) = π (w) ∈ U . Now, the sets
Vλ := λ+ V are all disjoint and each π|Vλ

: Vλ → U is a homeomorphism, as desired. ♦

Proposition 2.6. Let π : E → X be a covering map. If X is connected, then the fibers π−1(p) at each p ∈ X are equinumerous.

Proof. Consider the equivalence relation ∼ on X defined by p ∼ p′ iff the fibers over p and p′ are equinumerous. We claim that the
equivalence classes are all open, and since they partition X, the connectedness of X then shows that there is only one equivalence
class. Indeed, take p ∈ X and let U ∋ p be evenly-covered by {Vj}. For any p′ ∈ U , the set π−1(p′)∩ Vj is a singleton for all j ∈ J , so∣∣π−1(p′)

∣∣ = |J |. In particular, since p ∈ U , we have p ∼ p′, as desired. ■

1This follows directly from our construction of complex tori in Example 1.8, where for every w ∈ C, a small enough neighborhood V was found so that
π|V is injective.
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Proposition 2.7. Any proper local homeomorphism is a covering map.

Proof. Let π : E → X be a proper local homeomorphism and take p ∈ X. We claim that π−1(p) is finite.

• For each ζ ∈ π−1(p), there exist neighborhoods Wζ of ζ and U of p such that π|Wζ
: Wζ → U is a homeomorphism. Then the

sets Wζ must be disjoint, for if ζ′ ∈ Wζ ∩Wζ′ for some ζ′ ̸= ζ, then π|Wζ
(ζ) = p = π|Wζ

(ζ′), contradicting that π|Wζ
is a

homeomorphism. Thus π−1(p) must be finite, lest the cover
{
Wζ

}
admits no finite subcover.

Thus π−1(p) = {ζ1, . . . , ζn} for some ζj ∈ E. Letting Wj := Wζj as above, we see that
∐n
j=1Wj is a neighborhood of π−1(p). By

Proposition 2.2, there is a neighborhood U of p such that π−1(U) ⊆
∐n
j=1Wj , so π−1(U) =

∐n
j=1 Vj where the sets Vj :=Wj∩π−1(U)

are all disjoint and each π|Vj
: Vj → U is a homeomorphism. ■

2.1.2 Ramification Points and the Degree
Throughout this section, let F : Y → X be a (non-constant) proper holomorphic map between Riemann surfaces X and Y . We extend
Proposition 2.6 to F , which is ‘almost’ a covering map, and define the degree of F .

Definition 2.8. A point q ∈ Y is said to be a ramification/branch point of F if F |V is not injective for any neighborhood
V of q, in which case F (q) ∈ X is said to be a critical point of F . If F has no ramification points, then F is said to be an
unbranched holomorphic map.

Remark. It is immediate that F is unbranched iff it is a local homeomorphism. Indeed, if F is unbranched, then for every q ∈ Y
there exists a neighborhood V of q such that F |V is injective. By the Open Mapping Theorem, F is open and hence F |V maps V
homeomorphically to the open set F (V ). Conversely, if F is a local homeomorphism, then for every q ∈ Y there exists a neighborhood
V of q that is mapped homeomorphically onto an open set in X. Thus F |V is injective, so F is unbranched at q.

In particular, this shows that every covering map is unbranched. Conversely, Proposition 2.7 shows that every unbranched proper
map is a covering map, so all fibers are equinumerous. On the other hand, if F is branched, then it is a covering map over X with all
ramification points removed. Including the ramification points, however, the fibers of F are not necessarily equinumerous anymore,
but the next best thing happens and we only need to count the fibers with multiplicity. First, we need a lemma. ♦

Lemma 2.9. For all q ∈ Y , the map F : Y → X has a ramification point at q iff multq(F ) ≥ 2.

Proof. By Theorem 1.23, there exist charts (V, ψ) centered at q and (U,φ) centered at F (q) such that f := φ ◦ F ◦ ψ−1 is the power
map z 7→ zm where m := multq(F ). Since φ and ψ are, in particular, injections, we see that F is locally injective at q iff f is locally
injective at 0. But this occurs precisely when m = multq(F ) < 2, so the result follows. ■

Definition/Theorem 2.10. The degree of F is the cardinality of any fiber F−1(p) for p ∈ X, counted with multiplicity. That
is, degF :=

∑
q∈F−1(p) multq(F ) is independent of p ∈ X.

Proof. For non-critical points p ∈ X, Lemma 2.9 shows that multq(F ) = 1 for any q ∈ F−1(p). Then degF =
∣∣F−1(p)

∣∣, and since
Proposition 2.7 shows that F is a covering map when all ramification points are removed, it is, by Proposition 2.6, constant over all
non-critical points.

Otherwise, let p be a critical point of F . Since F−1(p) is compact, it is finite by Discreteness of Preimages, say F−1(p) = {q1, . . . , qn}
for qi ∈ Y . Fix 1 ≤ j ≤ n and set mj := multqj (F ). We claim that there exist neighborhoods Vj of qj and Uj of p such that∣∣F−1(r) ∩ Vj

∣∣ = mj for all r ∈ Uj \ {p}. Indeed, by Theorem 1.23, there exist charts (Vj , ψj) of Y centered at qj and (Uj , φj) of X
centered p such that F acts as the power function f (z) := zmj on ψj(Vj). Since the set of ramification points of F is discrete, we may
choose Uj small enough so that every r ∈ Uj \ {p} is unramified. Take r ∈ Uj \ {p} and set w := φj(r

′) ̸= 0. Then
∣∣f−1(w)

∣∣ = mj , so
we have ∣∣F−1(r) ∩ Vj

∣∣ = ∣∣ψj (F−1(r)
)∣∣ = ∣∣∣ψj (F−1

(
φ−1
j (w)

))∣∣∣ = ∣∣f−1(w)
∣∣ = mj .

Now, since Vj is a neighborhood of qj , we see that F−1(Uj) ⊆ Vj by restricting Uj in accordance with Proposition 2.2, if necessary.
Then, with U :=

⋂n
i=1 Ui, we see that F−1(U) ⊆

∐n
i=1 Vi where the sets Vi are all disjoint. Take any r ∈ U \ {p}. Then r ∈ Ui \ {p}

for all 1 ≤ i ≤ n, so ∣∣F−1(r)
∣∣ = ∣∣∣∣∣F−1(r) ∩

n⋃
i=1

Vi

∣∣∣∣∣ =
∣∣∣∣∣
n⋃
i=1

(
F−1(r) ∩ Vi

)∣∣∣∣∣ =
n∑
i=1

∣∣F−1(r) ∩ Vi
∣∣ = n∑

i=1

mi.

But r is not a critical point of F , so degF =
∣∣F−1(r)

∣∣ =∑n
i=1mi and the result follows. ■

Example 2.11. We extend Example 2.4 by considering the same power map z 7→ zm for m ≥ 2, this time as a map f : C → C. Away
from 0, the map f is a proper local homeomorphism as before, so the cardinality of any fiber is m. At 0, we see that mult0(f) = m ≥ 2,
so f has a ramification point at 0. Counting multiplicities, the cardinality of f−1(0) is m, so deg f = m. ♦

Corollary 2.11.1. If Y is compact, then a holomorphic map F : Y → X is a biholomorphism iff degF = 1.

Proof. Since Y is compact, we see that F is proper surjection. Observe that F is an injective iff it has no critical points, and by
Lemma 2.9, this occurs iff multq(F ) = 1 for all q ∈ Y .

• (⇒) If F is an injection, then
∣∣f−1(q)

∣∣ = 1 for all q ∈ Y . Thus degF = 1.

• (⇐): Since multq(F ) ≥ 1 for all q ∈ Y , the above theorem forces multq(F ) = 1. ■
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Corollary 2.11.2. If X is compact and there exists a meromorphic function f : X → C with a single simple pole, then X ∼= Ĉ.

Proof. Let f : X → C be a meromorphic function with only a simple pole at p and consider its associated holomorphic map F : X → Ĉ.
By Proposition 1.25, we see that multp(F ) = ordp(f) = 1 and hence p is unramified. Since p is the only pole of f , we see that
degF =

∣∣F−1(∞)
∣∣ = 1. Thus F is a biholomorphism, as desired. ■

Remark. This criterion finally reduces to problem of showing that the moduli space of S2 is a point to showing that every Riemann
surface X that is topologically the sphere admits a meromorphic function f : X → C with a single simple pole. We dedicate Chapter
3 to find such a meromorphic function. ♦

2.2 Liftings along Covering Maps

Using the Homotopy Lifting Property of covering maps, we prove that every map F : Y → X from a simply-connected space Y admits
a lift F̃ : Y → E along a covering map π : E → X. Unless otherwise stated, X, Y , and E are all topological spaces and all maps are
continuous.

Definition 2.12. Let π : E → X and F : Y → X be maps. A lift of F (along π) is a map F̃ : Y → E such that π ◦ F̃ = F ;
that is, such that the diagram below commutes.

E

Y X

πF̃

F

Remark. If X, Y , and E are all Riemann surfaces and π : E → X is an unbranched holomorphic map, then any lift F̃ : Y → E of a
holomorphic F : Y → X is also holomorphic. Indeed, π admits a local inverse χ, which is holomorphic, so F̃ is locally a composition
of a holomorphic map F with χ. ♦

2.2.1 Liftings of Paths and Homotopies

Proposition 2.13 (Homotopy Lifting Property). If π : E → X is a covering map, then for any homotopy F : Y × [0, 1] → X

and any fixed map f̃0 : Y × {0} → E lifting the restriction of F on Y × {0}, there exists a unique homotopy F̃ : Y × [0, 1] → E

lifting F that restricts to f̃0 on Y × {0}. In other words, the following diagram commutes.

Y × {0} E

Y × [0, 1] X

f̃0

ι π

F

F̃

Proof. Since π is a covering map, there exists an open cover {Uα} of X, each evenly-covered by
{
Vαβ

}
. Fix q0 ∈ Y . For each

(q0, ti) ∈ Y × [0, 1], let Ui ⊆ X be an open set containing F (q0, ti). Continuity of F then furnishes an open set Ni × (ai, bi) ∋ (q0, ti)
such that F (Ni × (ai, bi)) ⊆ Ui ⊆ X. The collection {Ni × (ai, bi)} covers {q0} × [0, 1], so by compactness one obtains an open set
N :=

⋂
Ni containing q0 and a partition 0 = t0 < t1 < · · · < tn = 1 of [0, 1] such that each F (N × [ti, ti+1]) ⊆ Ui is evenly-covered.

We define F̃ : N × [0, ti] → E by induction on i; for i = 0, we let F̃ := f̃0 so that F̃ restricts to f̃0 on N × {0}.

Suppose a lift F̃ : N × [0, ti] → E has been constructed for some i ≥ 0. Then, since F (q0, ti) ∈ Ui, there exists a unique open
set Vi ⊆ π−1(Ui) containing F̃ (q0, ti) that maps homeomorphically onto Ui. Replacing N × {ti} by its intersection with F̃−1(Vi), if
necessary, we may assume that F̃ (N × {ti}) ⊆ Vi. Since π is invertible on Vi, extend F̃ so that

Vi

N × [ti, ti+1] Ui

π

F

F̃

commutes. Our modification of N × {ti} ensures that the restriction of F̃ to N × {ti} coincides with this extension, so the functions
inductively glue to give a lift F̃ of F on N × [0, 1]. We now argue that such a lifting is unique when Y is a point2; abusing notation,
we drop Y from the notation and write F : [0, 1] → X, etc., instead.

• Suppose that F̃ ′ : [0, 1] → E is another lift of F such that F̃ (0) = F̃ ′(0) = f̃0(0). As above, we may obtain a partition
0 = t0 < t1 < · · · , tn = 1 of [0, 1] such that each F ([t0, ti+1]) ⊆ Ui is evenly-covered. Proceeding by induction, suppose that
F̃ = F̃ ′ on [0, ti]. Since [ti, ti+1] is connected, F̃ ([ti, ti+1]) is connected too and thus lies in a single open set Vi ⊆ π−1(Ui)

containing F̃ (ti) that maps homeomorphically onto Ui. Similarly for F̃ ′([ti, ti+1]), but since F̃ (ti) = F̃ ′(ti), they lie in the same
open set Vi. Since π ◦ F̃ = π ◦ F̃ ′ on [ti, ti+1] and π is injective on Vi, we see that F̃ = F̃ ′ on [ti, ti+1], as desired.

Thus, when restricted to {q} × [0, 1] for each q ∈ N , the lift F̃ : N × [0, 1] → E of F is unique. In general, this shows that if the same
construction is repeated for some other q′0 ∈ Y to obtain a lift F̃ ′ : N ′ × [0, 1] → E of F , and if N ∩N ′ ̸= ∅, the lifts F̃ and F̃ ′ must
agree on (N ∩N ′)× [0, 1]. Thus F̃ is well-defined on Y × [0, 1], and is continuous since it is continuous on each N × [0, 1]. ■

2Here, we are not necessary assuming that Y = {q0}.
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Corollary 2.13.1. Every covering map lifts paths and homotopies. More precisely:

• For each path γ : [0, 1] → X starting at some point p ∈ X and each ζ0 ∈ π−1(p), there exists a unique path γ̃ : [0, 1] → E
starting at ζ0 lifting γ.

• For each homotopy γt : [0, 1] → X of paths and each lift γ̃0 : I → E of γ0, there exists a unique homotopy γ̃t : I → E of
paths starting at γ̃0 lifting γt.

Proof. In the notation of the preceding proposition, let Y be a singleton and [0, 1], respectively. Note that the resulting homotopy
γ̃t is a homotopy of paths3 since as t varies, the endpoints γ̃t(0) and γ̃t(1) are paths in E that lift the constant paths at γt(0) and
γt(1), respectively. By uniqueness of liftings of paths, we see that γ̃t(0) and γ̃t(1) are constant paths at the lifts of γt(0) and γt(1),
respectively, as desired. ■

2.2.2 Liftings of Mappings

We return to the problem of the liftings of mappings. The tools that we have developed actually proves a stronger statement4 than is
needed in this paper, but for sake of brevity we only present a special case. Throughout, let π : E → X be a covering map.

Lemma 2.14. If Y is connected, then any two lifts F̃1, F̃2 : Y → E of F : Y → X agreeing at one point in Y agrees everywhere.

Proof. Let S := {q ∈ Y | F̃1(q) = F̃2(q)}, which we claim to be both open and closed. For a fixed q ∈ Y , let U be a neighborhood
of F (q) that is evenly-covered by open sets Vi ⊆ E. Let V1 and V2 be sheets above U containing F̃1(q) and F̃2(q), respectively. By
continuity of F̃1 and F̃2, there exists a neighborhood V of q such that F̃i(V ) ⊆ Vi for i = 1, 2.

• If q ∈ S, then V := V1 = V2. Then, since p ◦ F̃1 = p ◦ F̃2 and p is injective on V , we see that F̃1 = F̃2 on V . This shows that S
is open.

• Otherwise, V1 ̸= V2 and hence they are disjoint. Then, since F̃i(V ) ⊆ Vi for i = 1, 2, we see that F̃1(q′) ̸= F̃2(q′) for all q′ ∈ V .
This shows that Y \ S is open, whence S is closed too. ■

Proposition 2.15. Fix q0 ∈ Y and let ζ0 ∈ π−1(F (q0)). If Y is simply-connected and locally path-connected, then every map
F : Y → X admits a unique lift F̃ : Y → E such that F̃ (q0) = ζ0.

Proof. By the lemma, such a lift is unique if it exists. To construct a lift, let q ∈ Y and let γ be a path from q0 to q. Then Fγ := F ◦ γ
is a path starting at F (q0), which, by Corollary 2.13.1, admits a unique lift F̃γ starting at ζ0. Define F̃ (q) := F̃γ(1). Assuming that
F̃ is well-defined and continuous, we have that (π ◦ F̃ ) (q) = π(F̃γ(1)) = F (γ (1)) = F (q), so F̃ lifts F . It remains to show that F̃ (q)

is well-defined for all q ∈ Y , and that the map F̃ is continuous.

• (Well-definedness). Let δ be another path from q0 to q. By simply-connectedness of Y , the paths γ and δ are homotopic, so Fγ
and Fδ are homotopic too. Again by Corollary 2.13.1, this homotopy lifts to a homotopy of paths from F̃γ to F̃δ starting at ζ0,
so they have the same endpoint.

q0

γ

δ

q

F F (q0)

Fγ

Fδ

F (q)

π

ζ0

F̃γ

F̃δ

F̃ (q)

F̃

• (Continuity). Let q ∈ Y , p := F (q), ζ := F̃ (q), and let V0 be a neighborhood of ζ. For an evenly-covered neighborhood U
of p, let Vζ denote the sheet above U containing ζ. Set V := V0 ∩ Vζ , so π is a homeomorphism when restricted to V . Thus
π (V ) is open, so by continuity F−1(π (V )) is open too. By local path-connectedness of Y , this set contains a path-connected
neighborhood W of q. We claim that F̃ (W ) ⊆ V , so take w ∈ W and let σ be a path from q to w contained in W . Then Fσ is
a path in F (W ) ⊆ π (V ) starting at p, which lifts to a path F̃σ in V starting at ζ. But since the end point of F̃γ constructed
above is ζ = F̃ (q), the concatenation of F̃γ ∗ F̃σ is well-defined and is a path starting at ζ0. This path lifts F ◦ (γ ∗ σ), and since
γ ∗ σ is a path from q0 to w, we see that F̃ (w) is the end point of F̃γ ∗ F̃σ . But this end point is F̃γ(1), which lies in V . ■

Example 2.16. Let φ : C/Γ → C/Γ′ be a holomorphic map between complex tori. By Example 2.5, the projection π : C → C/Γ is
an unbranched holomorphic map, and since C is simply-connected (and locally path-connected), the map φ ◦ π : C → C/Γ′ admits a
unique holomorphic lift φ̃ : C → C along the projection π′ : C → C/Γ′ that fixes 0.

C C

C/Γ C/Γ′

φ̃

π π′

φ

If φ is a biholomorphism, then lifting φ−1 too gives us a unique biholomorphism φ̃ : C → C. A classical result from complex analysis
then forces φ̃ (z) = αz + β for some α, β ∈ C with α ̸= 0. This result tightly constrains the behaviour of biholomorphisms between
complex tori, which we leverage in the proof of Theorem 4.8. ♦

3As opposed to a free homotopy.
4See [Hat02, Proposition 1.33], which actually characterizes when such a lift exists.
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Chapter 3

Čech Cohomology

Using the language of sheaves and cohomology, we prove the existence of certain global meromorphic functions on a compact Riemann
surface X. Section 3.1 introduces the language, 3.2 studies the sheaf E of differentiable functions on X, which includes differentiation
and integration of forms, and 3.3 studies its associated cohomology. The latter sections require some background in linear algebra and
the theory of smooth manifolds, for which we refer the reader to [Lee12].

3.1 Sheaves and their Cohomology

Unless otherwise stated, let X be a topological space with T its system of open sets. Our exposition on sheaves and their cohomology
roughly follows [For81, Sections 6 & 12] and [Mir95, Chapter IX].

3.1.1 Presheaves, Sheaves, and Stalks

Definition 3.1. A presheaf of Abelian groups on X is a pair (F , ρ) consisting of

• a family F := {F (U)} of Abelian groups F (U) for every U ∈ T ,

• a family ρ :=
{
ρUV
}

of group homomorphisms ρUV : F (U) → F (V ) for every U, V ∈ T with V ⊆ U ,

such that ρUU = idF(U) and ρVW ◦ ρUV = ρUW for every U, V,W ∈ T with W ⊆ V ⊆ U .

Remark. We may analogously define a presheaf of sets, rings, vector spaces, C-algebras, etc, by requiring that F (U) and ρ are
objects and maps of the appropriate ‘category’. ♦

Remark. Presheaves give us a way of tracking data associated with open sets of a topological space in such a way that makes
restricting to a smaller open set V ⊆ U well-behaved. Consider, for instance, a Riemann surface X and the presheaf of all holomorphic
functions O on X.

• To every open set U ⊆ X we consider the C-algebra O (U) of all holomorphic functions f : U → C. For any open V ⊆ U , we
define ρUV (f) := f |V . The properties then state that restricting to the domain does nothing and that restricting once to V and
then to W ⊆ V yields the same function as restricting to W directly, which are obviously true.

Similarly, we have the presheaf of all meromorphic functions M on X. Other examples include the presheaf O∗ and M ∗ of multiplicative
Abelian groups defined respectively by holomorphic functions f : U → C∗ and meromorphic functions on U that do not vanish identically
on any connected component of U . However, those examples are much more than presheaves since global information about elements
in F (X) can be obtained locally by ‘restricting’ to locally U . The notion of a sheaf makes this precise. ♦

Definition 3.2. A presheaf F on X is said to be a sheaf if for every open set U ⊆ X and every family {Ui}i∈I of open subsets
that cover U , the following two properties hold:

• (Identity): For every f, g ∈ F (U), if ρUUi
(f) = ρUUi

(g) for every i ∈ I, then f = g.

• (Gluing): For every family {fi}i∈I with fi ∈ F (Ui), if ρUi
Ui∩Uj

(fi) = ρ
Uj

Ui∩Uj
(fj) for all i, j ∈ I, then there is some

f ∈ F (U) such that ρUUi
(f) = fi for every i ∈ I.

Example 3.3. It is immediate that O, O∗, M , and M ∗ are all sheaves on X. Indeed, if we have a family {fi} that agree on all
pairwise common domains, then there exists a globally defined function f whose restrictions are fi’s. We only need to show that this
globally defined function is of the ‘right type’, but this can be checked easily. ♦

Example 3.4. We give an example of a presheaf that is not a sheaf. Let X be a normed R-vector space. For all U ∈ T , let B (U)
be the R-vector space of all bounded functions f : U → R, which gives us a presheaf B on X. The problem arises when we consider
glueing1. For instance, let Ui := {p ∈ X : ∥p∥ < i} and observe that {Ui}i∈R+ covers X. Consider the family

{
idUi

}
, which clearly

agrees on pairwise intersections an glues up to the identity idX . But idX is not bounded, so B is not a sheaf. ♦

Example 3.5. We give two examples of sheaves relating to divisors on a Riemann surface X; that is, functions D : X → Z whose
supports {p ∈ X : D (p) ̸= 0} are discrete2 subsets of X.

• Let D be a divisor on X. For every U ∈ T , let O [D] (U) denote the Abelian group of all meromorphic functions f : X → C
such that ordp(f) ≤ D (p) for all p ∈ X. The usual restriction homomorphisms make O [D] is a sheaf of Abelian groups. This
construction generalizes both O and M . Intuitively, the use of divisors here allow us to ‘bound’ the orders of the poles of f at
specific points p, thereby restricting how badly-behaved it can be.

• For every U ∈ T , let D (U) denote the group of all divisors on U . This makes D into a sheaf since for every family {Di}, the
function D : X → Z that glues them together is also discretely-supported. ♦

1In other words, boundedness is a global property. To check if a function is bounded, it does not suffice to check it on an arbitrary neighborhood.
2Note that if X is compact, then D : X → Z is a divisor iff it has finite support, so the set of divisors of X is the free Abelian group of X.
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Definition 3.6. Let (F , ρ) and (G , σ) be two sheaves of Abelian groups on X. A morphism of sheaves η : F → G is a family
{ηU}U∈T of group homomorphisms ηU : F (U) → G (U) such that for every U ∈ T and every open set V ⊆ U , the following
diagram commutes.

F (U) G (U)

F (V ) G (V )

ηU

ρUV σU
V

ηV

Example 3.7. Some examples relating to divisors of a Riemann surface X.

• For divisors D1 and D2 of a Riemann surface X, we write D1 ≤ D2 if D1(p) ≤ D2(p) for all p ∈ X. This induces an inclusion
morphism ι : O [D1] ↪→ O [D2] defined by ιU (f) := f for all U ∈ T and f ∈ O [D1] (U), which makes sense since if D1 ≤ D2 and
the poles of f are bounded by D1, then they are also clearly bounded by D2. This inclusion also respect restrictions, so it is
indeed a morphism of sheaves. In particular, we have the inclusions O ↪→ O [D] ↪→ M for any divisor D of X.

• For all U ∈ T , we associate to each f ∈ M ∗(U) the function div f : U → Z : p 7→ ordp(f), which is a divisor by discreteness of
zeros and poles. This induces a morphism of sheaves div : M ∗ → D since for all U ∈ T and all open sets V ⊆ U , the restriction
of the divisor of any f ∈ M ∗(U) coincides with the divisor of the restriction f |V . ♦

Definition 3.8. Let F be a presheaf of Abelian groups on X and fix p ∈ X. The stalk of F at p is the Abelian group

Fp :=

(∐
U∋p

F (U)

)
/∼p

where ∼p is the equivalence relation3on the disjoint union, defined, for all f ∈ F (U) and g ∈ F (V ), by f ∼p g iff there exists
an open set W ∈ T with p ∈W ⊆ U ∩ V such that ρUW (f) = ρVW (g). For f ∈ F (U), its equivalence class [f ]p is called the germ
of f at p.

Example 3.9. Let D be a divisor on a Riemann surface X and consider the stalk Op[D]. Fix a chart centered at p. Since every
meromorphic function f admits a Laurent series, we see that the function germ [f ]p is represented by a Laurent series

∑∞
i=i0

ciz
i for

some i0 ≥ −D (p). Conversely, the germ of a Laurent series
∑∞
i=i0

ciz
i with i0 ≥ −D (p) and whose principal part has positive radius

of convergence represents a meromorphic function germ [f ]p, so this defines a bijection between Op[D] and the set of all such Laurent
series. This isomorphism depends on the chosen chart map, so it is not canonical. ♦

Remark. The sheaf axioms guarantee that if F is a sheaf of Abelian groups on X and U ∈ T , then an element f ∈ F (U) is zero iff
all germs [f ]p, for p ∈ U vanish. Indeed, let 0 ∈ F (U) denote the zero element, so f ∼p 0 for all p ∈ U furnishes a family {Wp} of
open sets Wp ⊆ U containing p such that ρUWp

(f) = ρUWp
(0). This family covers U , so f = 0 by the first sheaf axiom. ♦

3.1.2 Čech Cohomology Groups

We define the first Čech cohomology group Ȟ1(X,F ) of a sheaf F of Abelian groups on X by first defining it on an open cover A of
X, which refines via a direct limit, and then prove the Leray Criterion to calculate such groups. Throughout this section, let F be a
sheaf of Abelian groups on X and let A := {Ui} be an open covering of X.

Definition 3.10. For all n ∈ N, the nth cochain group of F (w.r.t. A) is the direct product

Čn(A,F ) :=
∏

(i0,...,in)

F (Ui0 ∩ · · · ∩ Uin ) .

Remark. For n = 0, the group Č0(A,F ) contains tuples (fi) where each fi is defined on Ui. For n = 1, the group Č1(A,F ) contains
tuples (fij) where each fij is defined on Ui ∩Uj . Intuitively, (fi) induces an element (gij) ∈ Č1(A,F ) by setting gij := fj − fi, which
‘chains’ (fi) on Ui ∩ Uj by measuring their difference. The following definition formalizes this intuition. ♦

Definition 3.11. For all n ∈ N, the nth coboundary operator is the map δn : Čn(A,F ) → Čn+1(A,F ) mapping (fi0,...,in ) to
the cochain

(
gi0,...,in+1

)
defined by4

gi0,...,in+1
:=

n+1∑
k=0

(−1)k ρ
(
f
i0,...,îk,...,in+1

)
.

Define the nth cocycle group Žn(A,F ) := ker δn and the nth splitting cocycle group B̌n(A,F ) := im δn−1, whose quotient

Ȟn(A,F ) := Žn(A,F ) /B̌n(A,F )

is called the nth cohomology group of F (w.r.t. A).

Remark. A calculation shows that B̌n(A,F ) ⊆ Žn(A,F ), so the quotient makes sense. In particular, δn+1 ◦ δn = 0. ♦

3The relation ∼p is transitive since ρVW ◦ ρUV = ρUW for all U, V,W ∈ T such that W ⊆ V ⊆ U . This condition on ρ is known as a directed system,
which all admit a direct limit whose construction is formally similar to that of Fp. We refer the interested reader to [Lan10, Chapter III].

4The ‘hat’ notation represents a deletion. Also, ρ is the appropriate restriction mapping of F .
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Remark. For n = 0, we have δ0(fi) = (fj − fi) for all (fi) ∈ Č0(A,F ). This gives us a glueing condition, that if (fi) ∈ Ž0(A,F ),
then5 ρ (fi) = ρ (fj) for all i, j and hence the sheaf axioms furnish a unique f ∈ F (X) such that ρ (f) = fi for all i. Thus

Ȟ0(A,F ) = Ž0(A,F ) ∼= F (X) ,

so Ȟ0(A,F ) is independent of the covering A and we may define the 0th cohomology group of F as Ȟ0(X,F ) := F (X). ♦

Remark. For n = 1, we have δ1(fij) =
(
fjk − fik + fij

)
for all (fij) ∈ Č1(A,F ). Elements (fij) ∈ Ž1(A,F ) satisfy the cocycle

condition, which states fik = fij + fjk on Ui ∩ Uj ∩ Uk for all i, j, k. In particular, it implies that fii = 0 for all i and fij = −fji on
Ui ∩Uj for all i, j. Note that every splitting cocycle is a cocycle, but not every cocycle splits. In other words, Ȟ1(A,F ) measures how
1-cocycles fail to split. We now define the 1st cohomology group of F by ‘refining’ the open cover A. ♦

Definition 3.12. Let A := {Ui}i∈I and B := {Vk}k∈K be open coverings of X. We say that B is finer than A, and write
B ⪯ A, if there exists a refining map r : K → I such that Vk ⊆ Ur(k) for all k ∈ K.

Remark. The refining map r induces a map r̃ : Ž1(A,F ) → Ž1(B,F ) by sending (fij) into (gkl) defined by gkl := fr(k),r(l) on
Vk ∩ Vl for all k, l ∈ K. Observe that if δ1A(fij) = 0, then fi1i3 = fi1i2 + fi2i3 on Ui1 ∩ Ui2 ∩ Ui3 for all i1, i2, i3 ∈ I. In particular,
we have fr(k1),r(k3) = fr(k1),r(k2) + fr(k2),r(k3) on Vk1 ∩ Vk2 ∩ Vk3 for all k1, k2, k3 ∈ K, so δ1B(r̃ (fij)) = 0. Thus r̃ sends splitting
cocycles into splitting cocycles, so we may descend r̃ into the quotient, giving us a map

Ȟ (r) : Ȟ1(A,F ) → Ȟ1(B,F ) mapping [fij ] 7→ [r̃ (fij)] . ♦

Proposition 3.13. In the above notation, the map ȞA
B

:= Ȟ (r) is independent of r and is injective.

Proof. Take (fij) ∈ Ž1(A,F ) and suppose that r′ : K → I is another refining map. Inducing the map r̃′ similarly, let (gkl) := r̃ (fij) =(
fr(k),r(l)

)
and (g′kl) := r̃′ (fij) =

(
fr′(k),r′(l)

)
. Observe then that

gkl − g′kl = fr(k),r(l) − fr′(k),r′(l)

= fr(k),r(l) + fr(l),r′(k) − fr(l),r′(k) − fr′(k),r′(l)

= fr(k),r′(k) − fr(l),r′(l)

on Vk ∩ Vl for all k, l ∈ K. Since r and r′ are refining maps, we see that Vk ⊆ Ur(k) ∩ Ur′(k) for all k ∈ K, so we may define
hk := fr(k),r′(k) on the restriction to Vk. Then

(
gkl − g′kl

)
= (hk − hl) = δ0(hk) on Vk ∩ Vl, so (gij)− (g′ij) ∈ B̌1(B,F ). Thus their

equivalence classes coincide, as desired. Now, to show that ȞA
B is injective, take (fij) ∈ ker ȞA

B. Thus
(
fr(k),r(l)

)
= ȞA

B(fij) splits, so
there exist gk ∈ F (Vk) such that fr(k),r(l) = gk − gl on Vk ∩ Vl for all k, l ∈ K. Then

gk − gl = fr(k),i + fi,r(l) = fi,r(l) − fi,r(k)

on Ui∩Vk∩Vl for all i ∈ I and hence gk+fi,r(k) = gl+fi,r(l) on the same domain. Fixing i ∈ I and glueing the family
{
gk + fi,r(k)

}
k∈K

defined on the cover {Ui ∩ Vk}k∈K of Ui, we obtain an element hi ∈ F (Ui) such that hi = gk + fi,r(k) on Ui ∩ Vk for all k ∈ K.
Observe then that

fij = fi,r(k) − fj,r(k) = hi − gk − hj + gk = hi − hj

on Ui ∩ Uj ∩ Vk. Note that both fij and hi − hj are defined on Ui ∩ Uj , and since they coincide on the restriction to Vk, uniqueness
of the glueing gives us fij = hi − hj on Ui ∩ Uj . Thus (fij) = δ0(hi), so (fij) splits. ■

Remark. If C ⪯ B ⪯ A are open coverings of X, we have that ȞB
C ◦ ȞA

B = ȞA
C . This allows us to give a construction of Ȟ1(X,F )

that is formally similar to that of stalks (see Definition 3.8 and its associated footnote). ♦

Definition 3.14. The 1st cohomology group of F is the Abelian group

Ȟ1(X,F ) :=

(∐
A

Ȟ1(A,F )

)
/∼

where ∼ is the equivalence relation on the disjoint union, defined, for all ξ ∈ Ȟ1(A,F ) and ξ′ ∈ Ȟ1(A′,F ), by ξ ∼ ξ′ iff there
exists a refinement B ⪯ A,A′ such that ȞA

B(ξ) = ȞA′
B (ξ′).

Remark. Note that Ȟ1(X,F ) vanishes iff Ȟ1(A,F ) = 0 for all open coverings A of X. The converse direction is trivial, and for the
forward, let A be an open covering of X. By Proposition 3.13, the canonical maps Ȟ1(A,F ) → Ȟ1(B,F ) are injective for all open
coverings B ⪯ A. Descending into the quotient, the induced map Ȟ1(A,F ) → Ȟ1(X,F ) is also injective, as desired. ♦

Proposition 3.15 (Leray). If A := {Ui}i∈I is an open covering of X such that Ȟ1(Ui,F ) vanishes for every i ∈ I, then

Ȟ1(X,F ) ∼= Ȟ1(A,F ) .

Such a covering A of X is called a Leray covering of X.

5Henceforth, we suppress the restriction maps ρ for ease of notation, but will always mention on which domain the relation is valid on.
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Proof. Let B := {Vk}k∈K be an open covering of X with B ⪯ A, so there exists a refining map r : K → I. We claim that ȞA
B is an

isomorphism, from which the result follows by descending into the quotient. By Proposition 3.13, this map is injective, and to show
that it is surjective, we must show that every cocycle (fkl) ∈ Ž1(B,F ) admits a cocycle (Fij) ∈ Ž1(A,F ) such that(

Fr(k),r(l)
)
− (fkl) ∈ B̌1(B,F ) .

For each i ∈ I, consider the open cover Ui ∩ B := {Ui ∩ Vk}k∈K of Ui. Since Ȟ1(Ui,F ) = 0, we see that Ȟ1(Ui ∩B,F ) = 0.
Restricting to Ui, we see that (fkl) ∈ Ž1(Ui ∩B,F ) and hence there exist gik ∈ F (Ui ∩ Vk) such that fkl = gik − gil on Ui ∩ Vk ∩ Vl
for all i ∈ I and k, l ∈ K. Using this result on two fixed i, j ∈ I and equating, we see that gjk − gik = gjl − gil on Ui ∩ Uj ∩ Vk ∩ Vl.
This glues to an element Fij ∈ F (Ui ∩ Uj) such that Fij = gjk − gik on Ui ∩ Uj ∩ Vk for all k ∈ K, and a computation shows that
(Fij) ∈ Ž1(A,F ). Observe then that6

Fr(k),r(l) − fkl =
(
gr(l),k − gr(k),k

)
−
(
gr(l),k − gr(l),l

)
= gr(l),l − gr(k),k

on Vk ∩ Vl, so setting hk := gr(k),k ∈ F (Vk) shows that
(
Fr(k),r(l)

)
− (fkl) splits in B. ■

3.2 Differential Forms

Due to the Cauchy-Riemann equations, the theory of complex differential forms departs from that of real differential forms and has
a unique relationship with so-called holomorphic forms. Those objects thus play an central role in the structure on holomorphic
functions, so we devote this section to formalize some basic notions. Throughout this section, let W ⊆ X be an open subset of a
Riemann surface X and fix p ∈W .

3.2.1 The Complexified Cotangent Space
For an open set V ⊆ C, we let E (V ) denote the C-algebra of all functions f : V → C that are infinitely-differentiable with respect to
the real coordinates x and y, which we simple call differentiable. Using the partial derivative operators ∂/∂x and ∂/∂y on E (V ), we
define the operators

∂

∂z
:=

1

2

(
∂

∂x
− i

∂

∂y

)
and

∂

∂z
:=

1

2

(
∂

∂x
+ i

∂

∂y

)
on E (V ), where Cauchy-Riemann equations now reads O (V ) = ker ∂/∂z. We now lift these notions to a Riemann surface X.

Definition 3.16. A function f : W → C is said to be differentiable at p if there is a chart (U, z) of X around p such that
f ◦ z−1 : z (U) → C is differentiable at z (p). If f is differentiable at every point of W , then f is said to be differentiable on W .

Remark. As with holomorphic functions, differentiability is chart-independent. Let E (W ) denote the C-algebra of all differentiable
functions on W , which, together with the usual restriction mappings, forms a sheaf E . We may, as in C, define the partial derivative
operators, but this time with respect to a chart (U, z) instead of x and y. More precisely, for a fixed chart (U, z), we define

∂

∂z
: E (U) → E (U) mapping f 7→

∂
(
f ◦ z−1

)
∂z

by pulling back the regular partial derivative ∂/∂z on C. We similarly define the operators ∂/∂z, ∂/∂x, and ∂/∂y on E (U). ♦

Definition 3.17. Let mp ⊆ Ep be the ideal of all differentiable function germs vanishing at p. The complexified 7cotangent
space of X at p is the quotient space T ∗

C,pX := mp/m2
p. For a function f ∈ E (W ), we define its differential at p as

dpf := [f − f (p)]m2
p
∈ T ∗

C,pX.

Proposition 3.18. Let (U, z) be a chart of X around p. Then {dpx,dpy} and {dpz, dpz} are both bases for T ∗
C,pX, and if

f ∈ E (W ), then

dpf =
∂f

∂x

∣∣∣∣
p

dpx+
∂f

∂y

∣∣∣∣
p

dpy =
∂f

∂z

∣∣∣∣
p

dpz +
∂f

∂z

∣∣∣∣
p

dpz.

Proof. We first show that {dpx, dpy} is a basis for T ∗
C,pX.

• Let [η] ∈ T ∗
C,pX, so η = [f ]p ∈ mp is a differentiable function germ for some f ∈ E (W ). Taylor’s Theorem in C then furnishes

λ1, λ2 ∈ C such that
f = λ1 (x− x (p)) + λ2 (y − y (p)) + g

where g ∈ E (W ) is such that [g]p ∈ m2
p. This lifts to an equality of germs, so, taking the quotient modulo m2

p, we see that
[η] = λ1dpx + λ2dpy and thus {dpx,dpy} spans T ∗

C,pX. For linear independence, take λ1, λ2 ∈ C. The linear dependence
λ1dpx+ λ2dpy = 0 implies that

λ1 (x− x (p)) + λ2 (y − y (p)) ∈ m2
p.

Taking the partials ∂/∂x and ∂/∂y shows that λ1 = λ2 = 0.

6Here, we instantiated the relation fkl = gik − gil with i := r (l).
7Alternatively, we can define it as the complexification of the (regular) cotangent space T∗

pX as T∗
C,pX := T∗

pX⊗R C, where ⊗R is the tensor product
of two real vector spaces; see Definition 3.24.
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Suppose now that f ∈ E (W ). By Taylor’s Theorem, we have

f − f (p) =
∂f

∂x

∣∣∣∣
p

(x− x (p)) +
∂f

∂y

∣∣∣∣
p

(y − y (p)) + g

where g ∈ E (W ) is such that [g] ∈ m2
p, so lifting this to an equality of germs and taking the quotient modulo m2

p gives us

dpf =
∂f

∂x

∣∣∣∣
p

dpx+
∂f

∂y

∣∣∣∣
p

dpy.

Finally, we show the corresponding result for {dpz, dpz}. Indeed, since z = x+ iy as functions in E (W ), we have that ∂z/∂x = 1 and
∂z/∂y = i. Similarly, ∂z/∂x = 1 and ∂z/∂y = −i, so

dpz = dpx+ idpy and dpz = dpx− idpy.

Thus {dpz, dpz} is linearly-independent, so it is a basis for T ∗
C,pX. For f ∈ E (W ), a computation now shows that

dpf =
1

2

(
∂f

∂x

∣∣∣∣
p

− i
∂f

∂y

∣∣∣∣
p

)
dpz +

1

2

(
∂f

∂x

∣∣∣∣
p

+ i
∂f

∂y

∣∣∣∣
p

)
dpz =

∂f

∂z

∣∣∣∣
p

dpz +
∂f

∂z

∣∣∣∣
p

dpz. ■

Proposition 3.19 (Canonical Decomposition). Let (U, z) be a chart of X around p. Then the subspaces

T ∗
pX

(1,0) := span {dpz} and T ∗
pX

(0,1) := span {dpz}

are chart-independent and T ∗
C,pX = T ∗

pX
(1,0) ⊕ T ∗

pX
(0,1).

Proof. Let (U ′, z′) is another chart of X around p with U ∩ U ′ ̸= ∅. Since z′ ∈ O (U ∩ U ′), the expansion

dpz
′ =

∂z′

∂z

∣∣∣∣
p

dpz +
∂z′

∂z

∣∣∣∣
p

dpz

shows that ∂z′/∂z = 0, so span {dpz} = span {dpz′}. Similarly, ∂z′/∂z = 0, so span {dpz} = span
{
dpz′

}
. The decomposition then

follows by construction. ■

Remark. For all f ∈ E (W ), let ∂pf ∈ T ∗
pX

(1,0) and ∂pf ∈ T ∗
pX

(0,1) be the unique elements such that dpf = ∂pf + ∂pf . The above
proposition ensures that they are chart-independent. For computations, we descend via any chart (U, z) of X around p where we have

∂pf =
∂f

∂z

∣∣∣∣
p

dpz and ∂pf =
∂f

∂z

∣∣∣∣
p

dpz. ♦

3.2.2 Differential 1-forms

Definition 3.20. A differential 1-form on W is a map ω :W →
⋃
p∈W T ∗

C,pX such that ω (p) ∈ T ∗
C,pX for every p ∈W .

Remark. With the induced operations from T ∗
C,pX, the set of all 1-forms on W becomes a C-vector space. In fact, it is a C-algebra,

for if f :W → C is a function, then the map fω defined by (fω) (p) := f (p)ω (p) is also a 1-form on W . ♦

Example 3.21. For f ∈ E (W ), the maps df , ∂f , and ∂f defined pointwise are all 1-forms. Note that if (U, z) is a chart of X, then
every 1-form ω on W can be written as

ω = f1dx+ f2dy = f ′1dz + f ′2dz

for some f1, f2, f ′1, f
′
2 : U → C by varying ω (p) = f1(p) dpx+ f2(p) dpy = f ′1(p) dpz + f ′2(p) dpz over all p ∈ U . ♦

Definition 3.22. We define certain subspaces of 1-forms on W as follows.

• The subspace E (1)(W ) of all differentiable 1-forms ω on W such that, w.r.t. every chart (U, z) of X, ω = fdz + gdz for
some f, g ∈ E (U ∩W ).

• The subspace E (1,0)(W ) of all type (1, 0) 1-forms ω on W such that, w.r.t. every chart (U, z) of X, ω = fdz for some
f ∈ E (U ∩W ).

• The subspace E (0,1)(W ) of all type (0, 1) 1-forms ω on W such that, w.r.t. every chart (U, z) of X, ω = fdz for some
f ∈ E (U ∩W ).

• The subspace Ω(W ) of all holomorphic 1-forms ω on W such that, w.r.t. every chart (U, z) of X, ω = fdz for some
f ∈ O (U ∩W ).

Remark. More work needs to be done to define meromorphic 1-forms on W . In fact, we may analogously define the order of a pole
of a meromorphic 1-form; see [For81, Section 9.9]. ♦

Example 3.23. For f ∈ E (W ), the form df is a differentiable 1-form on W . Thus we have the map d : E (W ) → E (1)(W ), called
the exterior derivative on E (W ). Similarly, ∂f and ∂f are types (1, 0) and (0, 1) 1-forms on W , respectively, and they induce the
Dolbeault operators on E (W ). These derivatives, which are in fact morphisms of sheaves, are studied in the next section. ♦
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3.2.3 Differential 2-forms and Exterior Differentiation

Define the exterior power
∧2 V of a C-vector space V as the quotient of the tensor product V ⊗V by the ideal a := (v ⊗ v : v ∈ V ). For

completeness, we very briefly define the tensor product V ⊗ V ; for an in-depth discussion, see [Alu09, Chapter 8.2] or [Con16].

Definition 3.24. Let V be a C-vector space and consider the free vector space j : V × V → F over V × V . Letting S denote
the span of

j (v, λv1 + v2)− λj (v, v1)− λj (v, v2) and j (λv1 + v2, v)− λj (v, v1)− λj (v, v2) ,

for all v, v1, v2 ∈ V and λ ∈ C, we define the tensor product of V as the quotient space V ⊗ V := F/S equipped with the map
⊗ := π ◦ j, where π : F → F/S is the projection.

Remark. Let V be a C-vector space. For all v1, v2 ∈ V , define v1 ∧v2 ∈
∧2 V to be the equivalence class of v⊗v modulo a. It is then

immediate from the definition of V ⊗ V that (v1 + v2) ∧ v3 = (v1 ∧ v3) + (v2 ∧ v3) and (λv1) ∧ v2 = λ (v1 ∧ v2) for all v1, v2, v3 ∈ V
and λ ∈ C. Moreover,

0 = (v1 + v2) ∧ (v1 + v2) = (v1 ∧ v1) + (v1 ∧ v2) + (v2 ∧ v1) + (v2 ∧ v2) = (v1 ∧ v2) + (v2 ∧ v1) ,

so v1 ∧ v2 = − (v2 ∧ v1) for all v1, v2 ∈ V . Finally, if {ei} is a basis for V , then {ei ⊗ ej} is a basis for V ⊗ V ; see [Lee12, Proposition
12.8] for a proof. Combined with the above, we see that {ei ∧ ej}i<j is a basis for

∧2 V . ♦

Remark. We now specialize for when V = T ∗
C,pX and consider the exterior power

∧2 T ∗
C,pX. Letting (U, z) be a chart of X around

p, we see that {dpx ∧ dpy} and {dpz ∧ dpz} are both bases for
∧2 T ∗

C,pX. Thus dim
∧2 T ∗

C,pX = 1. Also, observe that

dpz ∧ dpz = (dpx+ idpy) ∧ (dpx− idpy) = −2i (dpx ∧ dpy) . ♦

Definition 3.25. A differential 2-form on W is a map ω :W →
⋃
p∈W

∧2 T ∗
C,pX such that ω (p) ∈

∧2 T ∗
C,pX for every p ∈W .

A 2-form ω is said to be differentiable if, w.r.t. every chart (U, z) of X, we have ω = fdz ∧ dz for some f ∈ E (U ∩W ).

Remark. As with 1-forms, the set of all 2-forms on W forms a vector space under the induced operations from
∧2 T ∗

C,pX. Similarly,
it is also a C-algebra by defining the map fω by (fω) (p) := f (p)ω (p) for every function f :W → C. ♦

Remark. In the above definition, dz ∧ dz is the 2-form on W defined by (dz ∧ dz) (p) := dpz ∧ dpz for every p ∈W . In general, if ω1

an ω2 are 1-forms on W , we have the 2-form ω1 ∧ ω2 defined by (ω1 ∧ ω2) (p) := ω1(p) ∧ ω2(p) for every p ∈ W . The C-vector space
of all differentiable 2-forms on W is denoted E (2)(W ). ♦

Definition/Proposition 3.26. Let ω be a differentiable 1-form on W , which, under a chart (U, z) of X, has the form
ω = f1dz+f2dz for some f1, f2 ∈ E (U ∩W ). Then the 2-form dω := df1∧dz+df2∧dz is chart-independent and differentiable,
which defines the map d : E (1)(W ) → E (2)(W ), called the exterior derivative on E (1)(W ).

Remark. Similarly, define the 2-forms ∂ω := ∂f1 ∧ dz + ∂f2 ∧ dz and ∂ω := ∂f1 ∧ dz + ∂f2 ∧ dz. The same proof shows that ∂ω and
∂ω are chart-independent, which define the operators ∂ and ∂, called the Dolbeault operators on E (1)(W ). ♦

Proof. For convenience, we write z1 := z and z2 := z, so ω =
∑
i fidzi and dω =

∑
i dfi ∧ dzi. To show that dω ∈ E (2)(W ), let (V,w)

be a chart of X. Expanding dfi and dzi in the basis {dw,dw}, we see that

dω =
2∑
j=1

(
∂fi

∂w
dw +

∂fi

∂w
dw

)
∧
(
∂zi

∂w
dw +

∂zi

∂w
dw

)
=

2∑
j=1

(
∂fi

∂w

∂zi

∂w
−
∂fi

∂w

∂zi

∂w

)
dw ∧ dw ∈ E (2)(W ) .

To show well-definition, let (U ′, z′) be another chart of X and write ω =
∑
i f

′
idz

′
i; again, write z′1 := z′ and z′2 := z′. Choose a chart

(V,w) of X. Expanding dzi and dz′i in the basis {dw,dw} and equating, we obtain by the assumption
∑
i fidzi =

∑
i f

′
idz

′
i that

2∑
i=1

fi
∂zi

∂w
=

2∑
i=1

f ′i
∂z′i
∂w

and
2∑
i=1

fi
∂zi

∂w
=

2∑
i=1

f ′i
∂z′i
∂w

.

Applying ∂/∂w and ∂/∂w respectively and subtracting yields

2∑
i=1

(
∂fi

∂w

∂zi

∂w
−
∂fi

∂w

∂zi

∂w

)
=

2∑
i=1

(
∂f ′i
∂w

∂z′i
∂w

−
∂f ′i
∂w

∂z′i
∂w

)
.

From our previous calculation of dω, the result follows. ■

Definition 3.27. A differentiable 1-form ω on W is closed if dω = 0, and is exact if ω = df for some f ∈ E (W ).

Proposition 3.28. Every exact 1-form is closed, every holomorphic 1-form is closed, and every closed 1-form of type (1, 0) is
holomorphic.

Proof. Let ω be a 1-form on W . That every exact form is closed is precisely the statement that d2f = 0 for all f ∈ E (W ), which
follows from the computation8 d2f = d (1 · df) = d1 ∧ df = 0. For the other claims, suppose that ω = fdz for some f ∈ E (W ). Then

dω = df ∧ dz =

(
∂f

∂z
dz +

∂f

∂z
dz

)
∧ dz = −

∂f

∂z
dz ∧ dz.

Thus dω = 0 iff ∂f/∂z = 0, so every holomorphic 1-form is closed and every closed 1-form of type (1, 0) is holomorphic. ■
8The same computation also shows ∂2f = ∂

2
f = 0.
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3.2.4 Integration of 2-forms
Similarly to how we defined partial derivatives on a chart (U, z) of X by pulling back the partial derivative on C, we first discuss
integration of a 2-form ω on an open set V ⊆ C and then pull it back to Riemann surfaces.

Let ω of a differentiable 2-form on an open subset V ⊆ C with the standard chart x+ iy, say with ω = fdx ∧ dy for some f ∈ E (V ).
If f vanishes outside a compact subset of V , define

ˆ
V
ω =

ˆ
V
f dx ∧ dy :=

ˆ
V
f dxdy

where the right-hand side is the usual double integral on C, which simply ‘erases the wedges’. We now define the pullback of forms
under a holomorphic map, which gives us a coordinate-free description of the Change of Variables formula.

Definition 3.29. Let F : X → Y be a holomorphic map between Riemann surfaces and let V ⊆ Y be open. The pullback of F
is the map F ∗ : E (V ) → E

(
F−1(V )

)
mapping f 7→ f ◦ F . More generally, define F ∗ : E (k)(V ) → E (k)

(
F−1(V )

)
for k = 1, 2

mapping
f1dz + f2dz 7→ (F ∗f1) d (F ∗z) + (F ∗f2) d (F ∗z)

fdz ∧ dz 7→ (F ∗f) d (F ∗z) ∧ d (F ∗z) .

Proposition 3.30. Let U, V ⊆ C be open and let φ : U → V be biholomorphic. Then
´
V ω =

´
U φ

∗ω for any differentiable
2-form ω on V .

Proof. Writing ω = fdx ∧ dy for some f ∈ E (V ), we have by the Change of Variables on C that
ˆ
V
ω =

ˆ
V
f dxdy =

ˆ
U
(f ◦ φ) |detDφ| dxdy,

where Dφ is the Jacobian of φ. Decomposing φ = u+ iv for some u, v ∈ E (U) and using the Cauchy-Riemann equations, we see that

detDφ =
∂u

∂x

∂v

∂y
−
∂u

∂y

∂v

∂x
=

(
∂u

∂x

)2

+

(
∂v

∂y

)2

≥ 0.

The computation
φ∗ω = φ∗(fdx ∧ dy) = (φ∗f) d (φ∗x) ∧ d (φ∗y) = (f ◦ φ) du ∧ dv

= (f ◦ φ)
(
∂u

∂x
dx+

∂u

∂y
dy

)
∧
(
∂v

∂x
dx+

∂v

∂y
dy

)
= (f ◦ φ) (detDφ) dx ∧ dy

then gives us the desired result. ■

We now lift the integration of 2-forms to Riemann surfaces. To avoid convergence issues, we only consider differentiable 2-forms ω
that are compactly supported, where the support of ω is Supp (ω) := {p ∈ X : ω (p) ̸= 0}. Then there exist exist finitely-many charts
(Ui, φi) on X such that Supp (ω) ⊆

⋃n
i=1 Ui. This open cover {Ui} of Supp (ω) admits a partition of unity9 {ψi}, which are functions

such that Supp (ψi) ⊆ Ui for all i and
∑n
i=1 ψi = id. Using this partition of unity, we define the integral of ω on X.

Definition/Proposition 3.31. In the above notation and with Vi := φi(Ui), define

ˆ
X
ω :=

n∑
i=1

ˆ
Ui

ψiω :=
n∑
i=1

ˆ
Vi

(
φ−1
i

)∗
(ψiω) .

Proof. (Well-definition). First, note that the support of ωi := ψiω is contained in Ui, so we have to check that each integral of ωi over
Ui is independent of the chart φi, and that the integral of ω over X is independent of {Ui} and its partition of unity {ψi}.

• (Independence of φi). Note that
(
φ−1
i

)∗
ω is a differentiable 2-form on Vi. Let φ̃i be another chart of Ui and set Ṽi := φ̃ (Ui).

Since φi ◦ φ̃−1
i : Ṽi → Vi is biholomorphic and the pullback is anti-multiplicative, we have by Proposition 3.30 that

ˆ
Vi

(
φ−1
i

)∗
ωi =

ˆ
Ṽi

(
φi ◦ φ̃−1

i

)∗(
φ−1
i

)∗
ωi =

ˆ
Ṽi

(
φ̃−1
i

)∗
φ∗
i

(
φ−1
i

)∗
ω =

ˆ
Ṽi

(
φ̃−1
i

)∗
ω.

• (Independence of {Ui}). Let
{
Ũj
}m
j=1

be another finite open cover and let
{
ψ̃j
}m
j=1

be its corresponding partition of unity. We
expand the definition of

´
X ω on both charts as

n∑
i=1

ˆ
Ui

ψiω =
n∑
i=1

ˆ
Ui

 m∑
j=1

ψ̃j

ψiω =

n∑
i=1

m∑
j=1

ˆ
Ui

ψ̃jψiω

m∑
j=1

ˆ
Ũj

ψ̃jω =
m∑
j=1

ˆ
Ũj

(
n∑
i=1

ψi

)
ψ̃jω =

n∑
i=1

m∑
j=1

ˆ
Ũj

ψ̃jψiω.

Note that ψ̃jψiω is compactly supported on Ui ∩ Ũj , so their integrals over Ui and Ũj coincide and hence is well-defined. ■
9The ‘local-finiteness’ condition is irrelevant here since the cover is finite. For a proof of the existence of a partition of unity, see [Lee12, Theorem 2.23].
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3.3 Global Meromorphic Functions

In this section, we show that Ȟ1
(
Ĉ,O

)
vanishes, which proves the existence of certain meromorphic functions on a compact Riemann

surface. The crucial step of the proof is the following lemma.

3.3.1 Dolbeault’s Lemma

Lemma 3.32 (Dolbeault). For any function g ∈ E (C), there exists a differentiable function f ∈ E (C) such that ∂f = gdz.

Proof. We first prove the lemma for when g is compactly supported. In this case, define f : C → C by

f (z) := −
1

2πi

ˆ
C

g (z − ζ)

ζ
dζ ∧ dζ.

We need to show that this integral converges and depends differentiably on z. Since g is compactly supported, the integrand only has
a pole at 0 and so it suffices to show that the integral over a disk Dε := Bε := B (0, ε) converges. Indeed, we use Proposition 3.30 to
change to polar coordinates to see that

ˆ
Dε

g (z − ζ)

ζ
dζ ∧ dζ =

ˆ ε
0

ˆ 2π

0
g
(
z − reiθ

)
e−iθ drdθ,

which is convergent since g is bounded. Now, to show that f ∈ E (C), we expand the definition of f into

f (z) = −
1

2πi
lim
ε→0

ˆ
C\Bε

g (z − ζ)

ζ
dζ ∧ dζ.

The uniform convergence of the integral allows us to differentiate under the integral sign, so f ∈ E (C). Finally, to show that f solves
the differential equation, we do so explicitly for the operator ∂/∂z to obtain

∂f

∂z

∣∣∣∣
z

= −
1

2πi
lim
ε→0

ˆ
C\Bε

1

ζ

∂g

∂z

∣∣∣∣
z−ζ

dζ ∧ dζ.

Using d = ∂ + ∂ and using the fact that 1/ζ is holomorphic away from 0, we see that

d

(
g (z − ζ)

ζ
dζ

)
= ∂

(
g (z − ζ)

ζ
dζ

)
+ ∂

(
g (z − ζ)

ζ
dζ

)
=

∂

∂ζ

(
g (z − ζ)

ζ

)
dζ ∧ dζ +

∂

∂ζ

(
g (z − ζ)

ζ

)
dζ ∧ dζ

= −
1

ζ

∂g

∂ζ

∣∣∣∣
z−ζ

dζ ∧ dζ.

Thus we have by Stokes’s Theorem that

∂f

∂z

∣∣∣∣
z

=
1

2πi
lim
ε→0

ˆ
C\Bε

d

(
g (z − ζ)

ζ
dζ

)
=

1

2πi
lim
ε→0

ˆ
|ζ|=ε

g (z − ζ)

ζ
dζ.

This integral can be calculated in polar coordinates as ζ = εeiθ for 0 ≤ θ < 2π, so

ˆ
|ζ|=ε

g (z − ζ)

ζ
dζ =

ˆ 2π

0

g
(
z − εeiθ

)
εeiθ

εieiθ dθ = i

ˆ 2π

0
g
(
z − εeiθ

)
dθ.

It follows then that
∂f

∂z

∣∣∣∣
z

=
1

2π
lim
ε→0

ˆ 2π

0
g
(
z − εeiθ

)
dθ,

which is the average value of g (z) on the circle of radius ε around z. In the limit ε→ 0, we see that ∂f/∂z = g and hence ∂f = g dz.

Now, for the general case, we consider an increasing sequence of radii {Rn} converging to infinity and their associated balls Bn :=
B (0, Rn). For all n, there exists a function ψn ∈ E (C) such that Supp (ψn) ⊆ Bn+1 and ψn|Bn

= id; for instance, take bump func-
tions. Extending ψng by zero outside Bn+1, they become differentiable functions in C with compact supports and hence ∂fn = ψng dz
for some fn ∈ E (C). We shall inductively construct a new sequence

{
f̃n
}

of differentiable functions on C such that

1. ∂f̃n = g dz on Bn and

2.
∥∥f̃n+1 − f̃n

∥∥
Bn

≤ 2−n.

Here, ∥f∥Bn
:= supx∈Bn

|f (x)| is the supremum norm. Set f̃1 := f1 and suppose that the functions f̃1, . . . , f̃n are defined. Then

∂
(
fn+1 − f̃n

)
= ∂fn+1 − ∂f̃n = (ψn+1g − g) dz = 0

on Bn, so the function fn+1 − f̃n is holomorphic on Bn. Thus there exists a polynomial p ∈ C [z] such that∥∥fn+1 − f̃n − p
∥∥
Bn

≤ 2−n,
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so take f̃n+1 := fn+1 − p ∈ E (C). This satisfies (2), and since

∂f̃n+1 = ∂fn+1 = ψn+1gdz = gdz

on Bn+1, we see that (1) holds too. By (2), the (pointwise) limit f̃n(z) converges to some f (z), where we claim that f ∈ E (C) and
that ∂f = g dz. Note that the series

Fn :=
∑
k≥n

(
f̃k+1 − f̃k

)
converges (uniformly) on Bn, and since ∂

(
f̃k+1 − f̃k

)
= 0 on Bn for all k ≥ n, it is holomorphic on Bn. This shows that f = f̃n + Fn

is differentiable and that
∂f = ∂f̃n + ∂Fn = ∂f̃n = g dz

on Bn. But this holds for all n, so f ∈ E (C) with ∂f = g dz globally. ■

Remark. Dolbeault’s Lemma is a special case of the ∂-Poincaré Lemma. Indeed, it can be reformulated to saying that the sequence
of sheaves

0 O E E (0,1) 0ι ∂

is exact. The only nontrivial claim to verify is that ∂ is surjective, which is precisely the statement of the lemma. ♦

3.3.2 Vanishing of Ȟ1
(
Ĉ,O

)
Lemma 3.33. Let X be a Riemann surface and consider the sheaf of differentiable functions E on X. Then Ȟ1(X, E ) = 0.

Proof. Let A := {Ui}i∈I be an open covering of X and let (fij) ∈ Ž1(A, E ) be a cocycle; it suffices to show that (fij) splits, for then
Ȟ1(A, E ) = 0 and we are done since A is arbitrary. To do so, we use the fact that there exists a partition of unity subordinate to A;
that is, a family {ψi}i∈I of differentiable functions such that:

• Supp (ψi) := {p ∈ X : ψ (p) ̸= 0} ⊆ Ui for every i ∈ I.

• Every point in X admits a neighborhood whose intersection with {Supp (ψi)}i∈I is finite.

•
∑
i∈I ψi = id.

Consider the function ψjfij on Ui ∩ Uj , which may be differentiably extended to Ui by zero outside Supp (ψj). Consider the function
gi :=

∑
j∈I ψjfij ∈ E (Ui), which is legal since there is a neighborhood around every point of Ui such that ψjfij = 0 for all but

finitely-many j ∈ I. Observe that

gi − gj =
∑
k∈I

ψk
(
fik − fjk

)
=
∑
k∈I

ψk
(
fik + fkj

)
=
∑
k∈I

ψkfij = fij

on Ui ∩ Uj , so (fij) = (gi − gj) = δ0(gi) splits. ■

Theorem 3.34. The 1st cohomology groups Ȟ1(C,O) and Ȟ1
(
Ĉ,O

)
vanish.

Proof. We first prove that Ȟ1(C,O) vanishes, for which it suffices to take any open covering A := {Ui} of C and show that every
cocycle (fij) ∈ Ž1(C,O) splits. Indeed, since Ž1(A,O) ⊆ Ž1(A, E ) and Ȟ1(C, E ) vanishes by Lemma 3.33, there exists a cochain
(gi) ∈ Č0(A, E ) such that fij = gi − gj on Ui ∩ Uj . But ∂fij = 0, so ∂gi = ∂gj on Ui ∩ Uj for all i, j and hence glues to a global
function h ∈ E (C) such that h|Ui

dz = ∂gi. Dolbeault’s Lemma then furnishes some g ∈ E (C) such that ∂g = hdz. Define g̃i := gi−g,
and since ∂g̃i = ∂gi − ∂g = 0 on Ui, we see that (g̃i) ∈ Č0(A,O). Observe that fij = gi − gj = g̃i − g̃j so (fij) splits.

For the Riemann sphere, consider the cover A := {U1, U2} given in Example 1.5. Since U1, U2
∼= C, we see from the vanishing of

Ȟ1(C,O) that A is a Leray covering of X, so Ȟ1
(
Ĉ,O

) ∼= Ȟ1(A,O) by Proposition 3.15. Thus it suffices to show that any cocycle
(fij) ∈ Ž1(A,O) splits; by symmetry, it suffices to find functions fi ∈ O (Ui) such that f12 = f1 − f2 on U1 ∩ U2 = C∗. Note that f12
is not necessarily holomorphic at 0, so it admits a Laurent series expansion

∑∞
n=−∞ cnzn on C∗. But the series f1(z) :=

∑∞
n=0 cnz

n

and f2(z) :=
∑−1
n=−∞ cnzn converge on U1 and U2, respectively, so fi ∈ O (Ui). Clearly f12 = f1 − f2, as desired. ■

Remark. Let X be a compact Riemann surface and consider the vector space structure on Ȟ1(X,O) induced from O. We appeal to
the following theorems.

• The dimension g := dim Ȟ1(X,O) is finite10 and is referred to as the genus of X. The above theorem states that Ĉ has genus 0.

• The genus of X depends only on the smooth manifold structure on X. In particular, since Ȟ1
(
Ĉ,O

)
vanishes, the genus of any

simply-connected compact Riemann surface X is 0. ♦

Corollary 3.34.1. Let X be a simply-connected compact Riemann surface and fix p ∈ X. Then there exists a meromorphic
function f ∈ M (X) which has a pole of order 1 at p and is holomorphic everywhere else.

Proof. Let (U1, z) be a chart of X centered at p and set U2 := X \ {p}, so A := {U1, U2} is an open cover of X. Consider the
holomorphic function z−1 on U1 ∩U2 = U1 \ {p}. Since X is simply-connected, it has genus 0 and hence Ȟ1(X,O) vanishes. Thus the
cocycle

(
z−1

)
∈ Ž1(A,O) splits, so there exist functions fi ∈ O (Ui) such that z−1 = f2 − f1. Observe that f1 + z−1 agrees with f2

on U1 ∩ U2, so they glue to a global function f ∈ M (X) which has a pole of order 1 at p and is holomorphic everywhere else. ■

10See [For81, Section 14] for a proof.
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Chapter 4

Moduli Spaces

For any genus g, we let Mg denote the moduli space of compact Riemann surfaces of genus g, defined as the set of all Riemann surfaces
of genus g up to biholomorphism. Using the language and machinery developed in Chapters 1, 2, and 3, we compute M0 and M1,
which are the moduli spaces of the sphere S2 and the torus T 2, respectively.

We also give a brief discussion of the Uniformization Theorem and the Classification of Riemann Surfaces.

4.1 Simply-connected Riemann Surfaces

The Uniformization Theorem states that every simply-connected Riemann surface is biholomorphic to either the Riemann sphere Ĉ,
the complex plane C, or the upper-half plane H of C. In the compact case, this is precisely the statement that there is a unique
complex structure on the sphere, which we prove below. The non-compact case requires tools that we have yet to develop, so only a
proof sketch is given.

4.1.1 Moduli Space of S2

We show that the moduli space of the sphere S2 is a point1. That is, there is a unique complex structure on the sphere.

Theorem 4.1. Every simply-connected compact Riemann surface X is biholomorphic to the Riemann sphere Ĉ.

Proof. The Classification Theorem of Surfaces shows that such a Riemann surface X, being simply-connected and compact, is home-
omorphic to the sphere S2. Theorem 3.34 shows that Ȟ1

(
Ĉ,O

)
vanishes, and since the genus is a topological invariant, we see that

Ȟ1(X,O) vanishes too. Hence X has genus 0, so for any fixed point p ∈ X, Corollary 3.34.1 furnishes a meromorphic function
f ∈ M (X) with a single simple pole at p. Thus X ∼= Ĉ by Corollary 2.11.2, as desired. ■

4.1.2 The Uniformization Theorem

Theorem 4.2 (Uniformization). Every simply-connected Riemann surface X is biholomorphic to either the Riemann sphere
Ĉ, the complex plane C, or the upper-half plane H := {z ∈ C : Im z > 0}.

Proof sketch. This sketch follows [Kro19]. Fix p ∈ X. Using tools from Dolbeault cohomology, we obtain a meromorphic function
f ∈ M (X) with a single simple pole at p. Let F : X → Ĉ be its associated holomorphic map, so F (p) = ∞.

• First, it can be shown that ImF (x) → 0 as ‘x → ∞’ in X. That is, for every ε > 0, there is a large enough compact subset K
of X such that ImF (x) < ε for all x ∈ X \K.

• It can also be shown that imF is open, contains the ‘top and bottom halves’ of Ĉ, and is a biholomorphism onto its image.

Thus X ∼= imF = Ĉ\I for some I ⊆ R. By simple-connectedness of X, we see that I is connected and hence we have three possibilities.

• If I = ∅, then F : X → Ĉ is a biholomorphism, which reduces to Theorem 4.1.

• If I is a singleton, then Ĉ \ I ∼= C, so X ∼= C.

• If I is an interval [a, b], we may without loss of generality take a = 0 and b = ∞. Then the (usual branch of the) square root
function sends Ĉ \ [0,∞] to H. ■

Remark. It turns out that one can construct a simply-connected Riemann surface X̃ from any Riemann surface X. Since X̃ is exactly
one of three types, this leads to a classification of Riemann surfaces. ♦

Definition 4.3. Let X and E be connected topological spaces. A covering map π : E → X if said to be the universal covering of
X if for every covering π′ : E′ → X on a connected topological space E′ and every e ∈ E and e′ ∈ E′ such that π (e) = π′ (e′),
there exists a unique continuous map σ : E → E′ with σ (e) = e′ making the below diagram commute.

E E′

X

∃!σ

π π′

Remark. As with all ‘universal properties’, the universal covering of X is unique up to isomorphism. Note that σ is the lifting of of
π along π′, so if E is simply-connected, then by Proposition 2.15 such a lifting exists and is unique. In this case, any covering map is
the universal covering of X. We quote the following theorem that guarantees the existence of such a simply-connected space. ♦

1This result is an easy corollary of the Riemann-Roch Theorem, but its proof is beyond the scope of this paper. We refer the interested reader to
[For81, Section 16].
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Theorem 4.4 ([For81, Theorem 5.3]). Suppose X is a connected manifold. Then there exists a connected, simply-connected
manifold X̃ and a covering map π : X̃ → X.

Example 4.5. Recall from Example 2.5 that for any lattice Γ ⊆ C, the projection π : C → C/Γ is a covering map. Since C is
simply-connected, we see that π is the universal covering of C/Γ. ♦

Remark. For any Riemann surface X, let X̃ be its simply-connected universal covering. If X̃ ∼= Ĉ (resp. C, H), then X is said to be
elliptic (resp. parabolic, hyperbolic)2.

• Since Ĉ is simply-connected, it is the universal covering of itself and hence Ĉ is elliptic.

• Since C is the universal covering of any torus C/Γ, we see that C/Γ is parabolic.

It turns out that the universal covering for any compact Riemann surfaces with g > 1 is H, so they are all hyperbolic3. ♦

4.2 Moduli Space of T 2

We show that the moduli space of the torus T 2 is H/PSL2(Z), where H is the upper-half plane of C and PSL2(Z) := SL2(Z)/{±I} is
the modular group, which acts on H via (

a b
c d

)
τ :=

aτ + b

cτ + d
.

We first need a technical lemma, which gives an equivalent condition for a biholomorphism between tori in terms of their lattices.

Lemma 4.6. Let Γ,Γ′ ⊆ C be two lattices and suppose αΓ ⊆ Γ′ for some α ∈ C∗. Then z 7→ αz descends to a holomorphic
map φ : C/Γ → C/Γ′, which is biholomorphic iff αΓ = Γ′.

Proof. Let Γ := Zω1 ⊕ Zω2 and Γ′ := Zω′
1 ⊕ Zω′

2. Define φ (z + Γ) := αz + Γ′ for all z ∈ C, which is clearly holomorphic if it is
well-defined in the first place. Indeed, take z1, z2 ∈ C such that z1 + Γ = z2 + Γ. Then z1 − z2 ∈ Γ, so z1 − z2 = mω1 + nω2 for some
n,m ∈ Z. Observe that

αz1 − αz2 = α (z1 − z2) = m (αω1) + n (αω2) ∈ αΓ ⊆ Γ′,

so αz1+Γ′ = αz2+Γ′. This shows that φ is well-defined. Furthermore, it is invertible with holomorphic inverse φ−1(z + Γ′) := z/α+Γ
iff φ−1 is well-defined, in which case φ is a biholomorphism. We claim that this occurs iff αΓ = Γ′.

• (⇒): It suffices to show that Γ′ ⊆ αΓ, so take mω′
1 + nω′

2 ∈ Γ′. Then φ−1
(
mω′

1 + nω′
2 + Γ′) = (mω′

1 + nω′
2

)
/α + Γ, but since

mω′
1 + nω′

2 + Γ′ = 0 + Γ′ and φ−1(0 + Γ′) = 0 + Γ, we see that
(
mω′

1 + nω′
2

)
/α ∈ Γ.

• (⇐): Take z1, z2 ∈ C such that z1 + Γ′ = z2 + Γ′, so z1 − z2 ∈ Γ′ ⊆ αΓ and hence z1/α − z2/α = (z1 − z2)/α ∈ Γ. Then
z1/α+ Γ = z2/α+ Γ, so φ−1 is well-defined. ■

Lemma 4.7. Any torus C/Γ is biholomorphic to Xτ := C/(Z+ τZ) for some τ ∈ H.

Remark. Intuitively, scaling and rotating the lattice, which are biholomorphisms of the plane, should preserve the complex structure
on the torus. Thus only one complex parameter is needed to generate the torus, which we choose to be the ratio τ := ω2/ω1. ♦

Proof. Let Γ := Zω1 ⊕ Zω2 and set α := 1/ω1 and τ := ω2/ω1. Then Im τ ̸= 0, lest ω1, ω2 be linearly dependent over R. Without loss
of generality, suppose that Im τ > 0; if not, take τ := ω2/ω1. Then, since

α (mω1 + nω2) = αω1 (m+ nω2/ω1) = m+ nτ

for all m,n ∈ Z, we see that αΓ = Z⊕Zτ . By Lemma 4.6, the map z 7→ αz descends to a biholomorphism φ : C/Γ → C/(Z⊕ Zτ) = Xτ ,
so C/Γ ∼= Xτ . ■

Theorem 4.8. For any τ, τ ′ ∈ H, the tori Xτ and Xτ ′ are biholomorphic iff τ and τ ′ lie in the same orbit of the action of
PSL2(Z) on H.

Corollary 4.8.1. The moduli space of T 2 is H/PSL2(Z).

Proof. The backwards direction is relatively straightforward. Indeed, note that

τ ′ =
aτ + b

cτ + d
⇒ τ =

b− dτ ′

cτ ′ − a

for any a, b, c, d ∈ Z with ad− bc = 1. Setting Γ := Z⊕ Zτ and Γ′ := Z⊕ Zτ ′, we see with α := cτ ′ − a that αΓ ⊆ Γ′. We claim that
αΓ = Γ′, from which the result follows from Lemma 4.6. Indeed, for any m,n ∈ Z, the condition that ad− bc = 1 shows that

(
m+ nτ ′

)
/α =

(na−mc) τ + (nb−md)

a (cτ + d)− c (aτ + b)
= (nb−md) + (na−mc) τ ∈ Z⊕ Zτ,

2This classification is similar to that of Riemannian manifolds. In fact, every Riemann surface admits a Riemannian metric of constant curvature,
either of 1, 0, or −1, which respectively correspond to the curvatures of Ĉ, C, and H when equipped with the appropriate metrics.

3This fact has an analogue for three-dimensional real manifolds (called 3-manifolds). Indeed, Thurston’s Geometrization Conjecture (proven by
Grigori Perelman in 2003, for which he was awarded the Fields Medal) states that all 3-manifolds can be decomposed into pieces, each having one of eight
different geometric structures, and the richest of the eight geometries turns out to be the hyperbolic 3-manifold.

23



so Γ′ = Z ⊕ Zτ ′ ⊆ α (Z⊕ Zτ) ⊆ αΓ. For the forward direction, let φ : Xτ → Xτ ′ be a biholomorphism. By Proposition 2.15, this
biholomorphism lifts to a unique biholomorphism φ̃ : C → C fixing 0 and making the diagram

C C

C/Γ C/Γ′

φ̃

π π′

φ

commute. We claim that φ̃ (z) = αz for some α ∈ C∗.4 Indeed, fix λ ∈ Γ and consider the map fλ(z) := φ̃ (z + λ)− φ̃ (z). Then, since
z+λ+Γ = z+Γ, we see that φ (z + λ+ Γ) = φ (z + Γ) and hence the commutativity of the diagram forces φ̃ (z + λ)+Γ′ = φ̃ (z)+Γ′.
Thus fλ(z) ∈ Γ′ for all z ∈ C, so, since fλ is a continuous map into a discrete set, it must be constant. Differentiating gives us
f ′λ (z) = φ̃′ (z + λ)− φ̃′ (z) = 0, so φ̃′ (z + λ) = φ̃′ (z) for all z ∈ C. But λ ∈ Γ is arbitrary, so φ̃′ is Γ-periodic. Thus φ̃′ is a bounded
entire function and hence is constant by Liouville’s Theorem. This shows that φ̃ (z) = αz + β for some α, β ∈ C with α ̸= 0, but since
φ̃ fixes 0, we have φ̃ (z) = αz, as desired. We now claim that αΓ = Γ′.

• Indeed, for all z ∈ αΓ, we have z/α ∈ Γ and so z/α+ Γ = 0 + Γ. Applying φ to both sides and comparing gives

0 + Γ′ = φ (0 + Γ) = φ (z/α+ Γ) = φ̃ (z/α) + Γ′ = z + Γ′,

so z ∈ Γ′. The converse is similar.

Observe then that φ̃ (τ) = ατ = b− dτ ′ and φ̃ (1) = α = cτ ′ − a for some a, b, c, d ∈ Z, so

τ =
b− dτ ′

cτ ′ − a
and hence τ ′ =

aτ + b

cτ + d
.

A computation now shows that α = − (ad− bc) / (cτ + d), so ad− bc ̸= 0. Then, since(
ατ
α

)
=

(
b −d
−a c

)(
1
τ ′

)
,

we solve for τ ′ to obtain

τ ′ = −
bα+ aατ

ad− bc
=

(
−b

ad− bc

)
α+

(
−a

ad− bc

)
ατ

But τ ′ ∈ αΓ, which forces ad− bc = ±1. A little algebra now shows that

Im τ ′ =
ad− bc

|cτ + d|2
(Im τ) > 0,

so ad− bc = 1. Thus τ ′ lies in the orbit of τ , as desired. Finally, the corollary follows from Lemma 4.7. ■

4This is a classical result from complex analysis, which states that every automorphism on C is of the form z 7→ αz + β for some α, β ∈ C with α ̸= 0.
For a proof, see [Tan91, Lemma 2.8]. Since our automorphism φ̃ is more specific, we present a simpler proof, which roughly follows [Shu05, Proposition
1.3.2].
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