An Introduction to Gröbner Bases

Anwyn Woodyatt

June 1, 2023

Abstract

The aim of this paper is to provide an undergraduate friendly introduction to the concept of Gröbner bases and demonstrate an elementary application. After motivating the subject we build a solid foundation before formally defining, proving the existence of, and providing the original Buchberger's algorithm to compute, said Gröbner basis. Although this paper is designed to be readable without reference, if needed we direct the reader to [1] for more background information on the construction of Gröbner bases and to [2] for algebraic definitions and theory. This paper summarizes the beginning of a diverse Directed Reading Program (DRP) project at McGill University.

1 Prerequisites

Amongst a general understanding of multi-variable polynomial rings and ideals, this paper will use, in proof, the following results from an undergraduate course in ring theory:

Definition 1. A monomial in $K\left[x_{1}, \ldots, x_{n}\right]$ is represented by x^{α} where $x=\left(x_{1}, \ldots, x_{n}\right)$ and $\alpha=\left(a_{1}, \ldots, a_{n}\right) \in \mathbb{Z}_{\geq 0}^{n}$.

Lemma 1. (cf. [1]) Let $I=\left\langle x^{\alpha} \mid \alpha \in S \subseteq \mathbb{Z}_{\geq 0}^{n}\right\rangle$ be a monomial ideal. Then a monomial x^{β} is an element of I if and only if $x^{\alpha} \mid x^{\beta}$ for some $\alpha \in S$.

Definition 2. A commutative ring with unity K is called Noetherian if and only if for every increasing chain of ideals $I_{1} \subseteq I_{2} \subseteq I_{3} \subseteq \ldots$ of $K, \exists N \in \mathbb{Z}_{\geq 0}$ such that $I_{n}=I_{N} \forall n \geq N$.

We have an equivalent definition of Noetherian:
Definition 2. A commutative ring with unity K is called Noetherian if and only if every ideal I of K is finitely generated.

Theorem 1 (Hilbert Basis Theorem). (cf. [2]) If K is a Noetherian ring then $K[x]$ is a Noetherian ring. Inductively, $K\left[x_{1}, \ldots, x_{n}\right]$ is a Noetherian ring.

Proposition 1. (cf. [2]) Every field is Noetherian.

2 Introduction

In his 1965 Ph.D. thesis, Bruno Buchberger introduced the new concept of a Gröbner basis, named after his advisor Wolfgang Gröbner. He provided the Buchberger Algorithm to compute them (the one we will state and prove in this paper) at the same time (cf. [3]).
We acknowledge that many years earlier in 1913, Nikolai Günther of Russia made a similar discovery; his work published in Russian journals but ignored internationally until it was recognized in the 1980s (cf. [3).

The Buchberger algorithm is motivated by what is known as the Ideal Membership Problem (cf. 6) which asks: given a field K and an ideal I of $K\left[x_{1}, \ldots x_{n}\right]$, how can we determine if $f \in K\left[x_{1}, \ldots, x_{n}\right]$ is an element of I ? We know that for a commutative ring, we can write an element of I as a linear combination of the generators. Thus, as one would do in the single variable case, it would be intuitive to divide our polynomial by the generators of I simultaneously using the division algorithm for multi-variable polynomial rings (cf. 3), and if the algorithm terminates with zero remainder, we have an element of I. Alas, we will show in the following section that we run into several issues using this method. Namely, unlike the division algorithm in one variable, the multi-variable division algorithm does not output a unique remainder unless the order of divisors is fixed. Consequently, an element of I can have a non-zero remainder. This dilemma says that zero remainder is sufficient for ideal membership but not necessary. We are left to wonder: can we find a basis such that the unique remainder is independent of divisor order, thus providing a sufficient and necessary way to determine elements of I ? Indeed! The Gröbner basis of I !

This relatively modern idea has led to many fascinating applications and discoveries in mathematics and science.

3 Ordering and Division Algorithm in $K\left[x_{1}, \ldots, x_{n}\right]$

In one variable, we are familiar with the terms degree of a monomial, and degree of a polynomial. How do these definitions change for multi-variable polynomials?
Let us consider the two variable case: $\mathbf{x}=(x, y)$. Suppose you have the monomials $x^{2} y$ and $x y^{2}$. Both have the same total degree $(1+2=2+1=3)$. Which one would you define as greater than the other? In fact, it depends on the definition of monomial ordering you choose. We provide a few common examples of monomial orderings before outlining the formal criteria.

Definition 3. (Lexicographic Order) Let $\alpha=\left(a_{1}, \ldots, a_{n}\right), \beta=\left(b_{1}, \ldots, b_{n}\right) \in \mathbb{Z}_{\geq 0}^{n}$. If $\alpha-\beta$ has a positive leftmost non-zero entry, then we say $\alpha>_{\text {lex }} \beta$, i.e. the degree α is greater than degree β with respect to lexicographic ordering. We can equivalently say that x^{α} is greater than x^{β} as monomials.

Example. $x>y>z$ since $x=x^{1} y^{0} z^{0}, y=x^{0} y^{1} z^{0}, z=x^{0} y^{0} z^{1}$ and
$(1,0,0)-(0,1,0)=(1,-1,0),(0,1,0)-(0,0,1)=(0,1,-1)$, i.e. we have alphabetical ordering.

Definition 4. (Graded Lex Order) Let α, β as above. If

$$
|\alpha|=\sum_{i=1}^{n} a_{i}>|\beta|=\sum_{i=1}^{n} b_{i}
$$

or

$$
|\alpha|=|\beta| \text { and } \alpha>_{\text {lex }} \beta,
$$

then we say $\alpha>_{\text {grlex }} \beta$.
$|\alpha|$ is denoted the total degree.
Example. We first notice that again we have alphabetical ordering of the variables.
Another example is $x^{4} y^{7} z>_{\text {grlex }} x^{4} y^{2} z^{3}$ since $|(4,7,1)|=12>9=|(4,2,3)|$.
Definition 5. (Graded Reverse Lex Order) Let α, β as above. If

$$
|\alpha|=\sum_{i=1}^{n} a_{i}>|\beta|=\sum_{i=1}^{n} b_{i}
$$

or

$$
|\alpha|=|\beta| \text { and the rightmost nonzero entry of } \alpha-\beta \text { is negative, }
$$

then we say $\alpha>_{\text {grevlex }} \beta$.
Example. We have the same example as above: $x^{4} y^{7} z>_{\text {grevlex }} x^{4} y^{2} z^{3}$ because grevlex and grlex both order by total degree first, but break ties in different ways.
Another example is $(2,3,2)>_{\text {grevlex }}(0,0,7)$ since $(2,3,2)-(0,0,7)=(2,3,-5)$.
Definition 6. We call $>$ a monomial ordering on the set of monomials $\left\{x^{\alpha} \mid x=\left(x_{1}, \ldots, x_{n}\right), \alpha \in\right.$ $\left.\mathbb{Z}_{\geq 0}^{n}\right\}$ in $K\left[x_{1}, \ldots, x_{n}\right]$ if it is a relation satisfying the following conditions:
(i) $>$ is a total (linear) ordering, i.e. exactly one of

$$
x^{\alpha}>x^{\beta}, x^{\alpha}=x^{\beta}, x^{\beta}>x^{\alpha}
$$

is true and the ordering in transitive.
(ii) If $x^{\alpha}>x^{\beta}, \gamma \in \mathbb{Z}_{\geq 0}^{n}$, then $x^{\alpha+\gamma}>x^{\beta+\gamma}$
(iii) $>$ is a well-ordering, i.e. there exists a (not necessarily unique) minimal monomial.

You may be wondering... Do we have to impose an ordering? If we do not, then we also run into uniqueness of remainder problems as mentioned in the introduction.

We need just a few more pieces of terminology before we have the foundation to discuss Gröbner bases.

Definition 7. Let $f=\sum_{i=1}^{n} c_{i} x^{\alpha_{i}} \in K\left[x_{1}, \ldots, x_{n}\right]$ (without loss of generality, none of the α_{i} are equal, otherwise combine them). The leading term of f is $L T(f)=c_{k} x^{\alpha_{k}}$ such that $\alpha_{k}>\alpha_{i} \forall i . c_{k}$ is denoted the leading coefficient.

Definition 8. As above, let $f=\sum_{i=1}^{n} c_{i} x^{\alpha_{i}} \in K\left[x_{1}, \ldots, x_{n}\right]$. The leading monomial of f is $L M(f)=x^{\alpha_{k}}$ such that $\alpha_{k}>\alpha_{i} \forall i$.

For the definition and proof of the division algorithm in $K\left[x_{1}, \ldots, x_{n}\right]$, we reference [1] (chapter 2.3). It is easy to grasp by examples, which follow. Like normal division, we have a divisor, dividend, quotient and remainder; what's different is that we can have multiple divisors and quotients. Essentially, we start by dividing the leading term (determined by the choice of ordering) of the dividend by divisor one (top most), which builds quotient one, and if in any particular step we cannot divide by divisor one, we move to divisor two and build quotient two, etc. If at any step we cannot divide the leading term by any of the divisors, that leading term becomes the remainder of that step (bold in below examples) and we continue the division by carrying down the remaining terms. At the end, we add the remainders of each step for a total remainder.

As we will see in the coming examples, the choice of ordering can simplify or complicate polynomial division in $K\left[x_{1}, \ldots, x_{n}\right]$ (sometimes greatly). We also see that, unless order of divisors is fixed, the remainder is not unique - even with a chosen ordering.

The following problems and the worked example in 4 are taken from [1], where additional examples and exercises can be found, but worked out independently.

Example. Order of divisors matters. We use lex ordering in the following two divisions.

$$
\begin{array}{r}
\left.\begin{array}{c}
q_{1}=x+y \\
q_{2}=1 \\
y^{2}-1
\end{array}\right) x^{2} y+x y^{2}+y^{2} \\
-\quad\left(x^{2} y-x\right) \\
x y^{2}+x+y^{2} \\
\frac{-\left(x y^{2}-y\right)}{\mathbf{x}+y^{2}+y} \\
y^{2}+y \\
-\quad\left(y^{2}-1\right) \\
\frac{\mathbf{y}+1}{\mathbf{1}}
\end{array}
$$

With remainder $\mathbf{x}+\mathbf{y}+\mathbf{1}$.
We conclude that $x^{2} y+x y^{2}+y^{2}=(x+y) \cdot(x y-1)+1 \cdot\left(y^{2}-1\right)+x+y+1$.

On the other hand, switching the order of divisors gives

$$
\begin{aligned}
& \underset{\substack{y^{2}-1 \\
x y-1}}{x^{2} y+x y^{2}+y^{2}} \\
& \frac{-\left(x^{2} y-x\right)}{x y^{2}+x+y^{2}} \\
& \frac{-\quad\left(x y^{2}-x\right)}{\frac{2 \mathbf{x}+y^{2}}{y^{2}}} \\
& \frac{-\quad\left(y^{2}-1\right)}{1}
\end{aligned}
$$

With remainder $\mathbf{2 x}+\mathbf{1}$.
We conclude that $x^{2} y+x y^{2}+y^{2}=(x+1) \cdot\left(y^{2}-1\right)+x \cdot(x y-1)+2 x+1-$ a different remainder!

We now compute the second division again, this time using grlex ordering:

$$
\begin{aligned}
& \left.\begin{array}{r}
\begin{array}{c}
q_{1}=x+1 \\
q_{2}=x
\end{array} \\
y^{2}-1 \\
x y-1
\end{array}\right) x^{2} y+x y^{2}+y^{2} \\
& \frac{-\left(x^{2} y-x\right)}{x y^{2}+y^{2}+x} \\
& \frac{-\left(x y^{2}-x\right)}{y^{2}+2 x} \\
& \begin{array}{r}
-\quad\left(y^{2}-1\right) \\
\hline 2 \mathbf{x}+\mathbf{1}
\end{array}
\end{aligned}
$$

We highlight that we were able to continue dividing by f_{1} at step 3 , unlike before, because $y^{2}>_{\text {grlex }} 2 x$ whereas $2 x>_{\text {lex }} y^{2}$.

4 Algorithm to Construct Gröbner Bases and Proof of Existence

The preceding section brings to light the obstacle that the Ideal Membership Problem faces. With a fixed ordering, we now construct a new basis from our original basis of I such that division in any order of this new basis results in a unique remainder.

Definition 9. Let K be a field. Let $I \triangleleft K\left[x_{1}, \ldots, x_{n}\right]$. We say the set $G=\left\{g_{1}, \ldots, g_{n}\right\}$ is a Gröbner basis for I if $\left\langle L T\left(g_{1}\right), \ldots L T\left(g_{n}\right)\right\rangle=\langle L T(I)\rangle$, where $\langle L T(I)\rangle$ is the ideal generated by the set of leading terms of elements of I. It follows that $\left\langle g_{1}, \ldots, g_{n}\right\rangle=I$.
Definition 10. Let x^{α}, x^{β} be monomials. Let $\operatorname{lcm}\left(x^{\alpha}, x^{\beta}\right)=x^{\gamma}, \gamma=\left(c_{1}, \ldots c_{n}\right)$, $c_{i}=\max \left\{a_{i}, b_{i}\right\}$. We define $S(f, g)=\frac{x^{\gamma}}{L T(f)} \cdot f-\frac{x^{\gamma}}{L T(g)} \cdot g$ where $x^{\gamma}=\operatorname{lcm}(L M(f), L M(g))$.
 Then $G=\left\{g_{1}, \ldots, g_{d}\right\}$ is a Gröbner basis if and only if $\overline{S\left(g_{i}, g_{j}\right)^{G}}=0 \forall i, j \in\{1, \ldots, d\}$, where ${\overline{S\left(g_{i}, g_{j}\right)}}^{G}$ denotes the remainder of $S\left(g_{i}, g_{j}\right)$ divided by the set G.

Proof. (\Leftarrow :) We need to show that $\left\langle L T\left(g_{1}\right), \ldots L T\left(g_{d}\right)\right\rangle=\langle L T(I)\rangle$.
$\left\langle L T\left(g_{1}\right), \ldots L T\left(g_{d}\right)\right\rangle \subseteq\langle L T(I)\rangle$ is clear since g_{i} in $I \Rightarrow L T\left(g_{i}\right) \in\langle L T(I)\rangle \forall i \in\{1, \ldots, d\}$. Thus $\left\langle L T\left(g_{1}\right), \ldots L T\left(g_{d}\right)\right\rangle \subseteq\langle L T(I)\rangle$ since $\langle L T(I)\rangle$ is closed under finite linear combinations and an arbitrary element of $\left\langle L T\left(g_{1}\right), \ldots L T\left(g_{d}\right)\right\rangle$ is $f_{1} L T\left(g_{1}\right)+\ldots+f_{d} L T\left(g_{d}\right)$ for $f_{i} \in K\left[x_{1}, \ldots, x_{n}\right]$. It remains to show that $\langle L T(I)\rangle \subseteq\left\langle L T\left(g_{1}\right), \ldots L T\left(g_{d}\right)\right\rangle$, and by the same reasoning as above, it is sufficient to show that $L T(I) \subseteq\left\langle L T\left(g_{1}\right), \ldots L T\left(g_{d}\right)\right\rangle$. Let f be arbitrary $\in I$,
$L T(f)=a_{n} x^{\alpha_{n}} \in L T(I)$. Write:

$$
f=a_{n} x^{\alpha_{n}}+a_{n-1} x^{\alpha_{n-1}}+\ldots+a_{0}=\sum_{i=1}^{d} h_{i} g_{i}, h_{i} \in K\left[x_{1}, \ldots, x_{n}\right]
$$

We can write f this way since it is assumed that $I=\left\langle g_{1}, \ldots, g_{d}\right\rangle$.
By Lemma 1, we need to show that $a_{n} x^{\alpha_{n}}$ is divisible by one of $\operatorname{LT}\left(g_{i}\right), \ldots, L T\left(g_{d}\right)$. Let $\delta=\max \left(\operatorname{deg}\left(h_{i} g_{i}\right)\right)$. There are two cases:

1. $\delta=\operatorname{deg}(f)=\alpha_{n}$, the case with no cancellation in the sum of f.
2. $\delta>\operatorname{deg}(f)$, the case with cancellation in the sum of f.

Let's deal with case 1 first, then we will produce $f=\sum_{i=1}^{d} h_{i}^{\prime} g_{i}$ such that $\max \left(\operatorname{deg}\left(h_{i}^{\prime} g_{i}\right)\right)=\delta^{\prime}<\delta$, so we can inductively reduce to case 1 .

Suppose $f=h_{1} g_{1}+\ldots+h_{d} g_{d}$ with $\operatorname{deg}(f)=\delta$ and $\operatorname{deg}\left(h_{i} g_{i}\right) \leq \delta$ (at least one equality). Then for some $i \in\{1, \ldots, d\}, L M(f)=L M\left(h_{i} g_{i}\right)=L M\left(g_{i}\right) L M\left(h_{i}\right)$. So in this case, $L M\left(g_{i}\right) \mid L M(f)$ and hence $L T\left(g_{i}\right) \mid L T(f)$ since

$$
\begin{aligned}
L M(f) & =x^{\delta}=L M\left(h_{i}\right) L M\left(g_{i}\right) \\
\Rightarrow a_{n} x^{\delta} & =a_{n} L M\left(h_{i}\right) L M\left(g_{i}\right) \\
& =\frac{a_{n}}{b_{i}} L M\left(h_{i}\right) \cdot b_{i} L M\left(g_{i}\right) \\
& :=\frac{a_{n}}{b_{i}} L M\left(h_{i}\right) L T\left(g_{i}\right)
\end{aligned}
$$

where $b_{i} \neq 0$ since $L T\left(g_{i}\right) \neq 0$. This gives case 1 .
We now look at case 2. We will need a lemma which we state and prove now.
 $\sum_{i=1}^{n} p_{i}=\sum_{i, j}^{n} a_{i j} S\left(p_{i}, p_{j}\right)$.

Proof. $S\left(p_{i}, p_{j}\right)=\frac{x^{\delta}}{L T\left(p_{i}\right)} \cdot p_{i}-\frac{x^{\delta}}{L T\left(p_{j}\right)} \cdot p_{j}$ where $L T\left(p_{i}\right)=b_{i} x^{\delta}$ and $L T\left(p_{j}\right)=b_{j} x^{\delta}$.
Fix j. Then,

$$
\begin{aligned}
\sum_{\substack{i=1 \\
i \neq j}}^{n} b_{i}\left(\frac{p_{i}}{b_{i}}-\frac{p_{j}}{b_{j}}\right) & =\sum_{\substack{i=1 \\
i \neq j}}^{n}\left(p_{i}-\frac{b_{i}}{b_{j}} p_{j}\right) \\
& =\sum_{\substack{i=1 \\
i \neq j}}^{n} p_{i}-\frac{p_{j}}{b_{j}} \sum_{\substack{i=1 \\
i \neq j}}^{n} b_{i} \\
& =\sum_{i=1}^{n} p_{i}
\end{aligned}
$$

Where $\left(\frac{p_{i}}{b_{i}}-\frac{p_{j}}{b_{j}}\right)=S\left(p_{i}, p_{j}\right)$ and $\sum_{\substack{i=1 \\ i \neq j}}^{n} b_{i}=0$ since the sum has degree $<\delta$.

Now write:

$$
f=\sum_{\operatorname{deg}\left(h_{i} g_{i}\right)>\operatorname{deg}(f)} h_{i} g_{i}+\sum_{\operatorname{deg}\left(h_{i} g_{i}\right) \leq \operatorname{deg}(f)} h_{i} g_{i}
$$

$\operatorname{deg}\left(h_{i} g_{i}\right)=\delta \Rightarrow \operatorname{deg}\left(L T\left(h_{i}\right) g_{i}\right)=\delta$ by well-ordering, so we have

$$
\begin{aligned}
& =\sum_{\operatorname{deg}\left(h_{i} g_{i}\right)=\delta} L T\left(h_{i}\right) g_{i}+\sum_{\operatorname{deg}\left(h_{i} g_{i}\right)=\delta}\left(h_{i}-L T\left(h_{i}\right)\right) g_{i} \\
& +\sum_{\operatorname{deg}(f)<\operatorname{deg}\left(h_{i} g_{i}\right)<\delta} h_{i} g_{i}+\sum_{\operatorname{deg}\left(h_{i} g_{i}\right) \leq \operatorname{deg}(f)} h_{i} g_{i}
\end{aligned}
$$

Where the first sum must have degree $<\delta$ and the second sum subtracts $L T\left(h_{i}\right)$, thus has degree $<\delta$.

So, using the above Lemma 2, there exists $a_{i j}$ such that

$$
\begin{aligned}
\sum_{\operatorname{deg}\left(h_{i} g_{i}\right)=\delta} L T\left(h_{i}\right) g_{i} & =\sum_{i, j}^{d} a_{i j} S\left(L T\left(h_{i}\right) g_{i}, L T\left(h_{j}\right) g_{j}\right) \\
& =\sum_{i, j}^{d} a_{i j}\left(\frac{x^{\delta}}{L T\left(h_{i} g_{i}\right)} L T\left(h_{i}\right) g_{i}-\frac{x^{\delta}}{L T\left(h_{j} g_{j}\right)} L T\left(h_{j}\right) g_{j}\right) \\
& =\sum_{i, j}^{d} a_{i j}\left(\frac{x^{\delta}}{L T\left(h_{i}\right) L T\left(g_{i}\right)} L T\left(h_{i}\right) g_{i}-\frac{x^{\delta}}{L T\left(h_{j}\right) L T\left(g_{j}\right)} L T\left(h_{j}\right) g_{j}\right) \\
& =\sum_{i, j}^{d} a_{i j}\left(\frac{x^{\delta}}{x^{\alpha_{i j}}} \frac{x^{\alpha_{i j}} g_{i}}{L T\left(g_{i}\right)}-\frac{x^{\delta}}{\alpha_{i j}} \frac{x^{\alpha_{i j}} g_{j}}{L T\left(g_{j}\right)}\right) \\
& =\sum_{i, j}^{d} \frac{x^{\delta}}{x^{\alpha_{i j}}} a_{i j} S\left(g_{i}, g_{j}\right)
\end{aligned}
$$

Where we use that $L T\left(L T\left(h_{k} g_{k}\right)\right)=L T\left(h_{k} g_{k}\right)$ and $L T\left(h_{k} g_{k}\right)=L T\left(h_{k}\right) L T\left(g_{k}\right)$ by wellordering, and $x^{\alpha_{i j}}=\operatorname{lcm}\left(L M\left(g_{i}\right) L M\left(g_{j}\right)\right)$.
Now by assumption, ${\overline{S\left(g_{i}, g_{j}\right)}}^{G}=0$, so $S\left(g_{i}, g_{j}\right)=\sum_{k=1}^{d} p_{k} g_{k}$ with $\operatorname{deg}\left(p_{k} g_{k}\right) \leq \operatorname{deg}\left(S\left(g_{i}, g_{j}\right)\right)<\alpha_{i j}$, where the first inequality follows from the division algorithm and the second since $S\left(g_{i}, g_{j}\right)$ cancels the leading term.

So, continuing we have,

$$
\begin{aligned}
\sum_{\operatorname{deg}\left(h_{i} g_{i}\right)=\delta} L T\left(h_{i}\right) g_{i} & =\sum_{i, j}^{d} \frac{x^{\delta}}{x^{\alpha_{i j}}} a_{i j} \sum_{k=1}^{d} p_{k} g_{k} \\
& =\sum_{i, j}^{d} \sum_{k=1}^{d} \frac{x^{\delta}}{x^{\alpha_{i j}}} p_{k} g_{k}
\end{aligned}
$$

With degree strictly less than δ.
This concludes case 2 and the reverse direction.
$\left(\Rightarrow\right.$:) We need to show that ${\overline{S\left(g_{i}, g_{j}\right)}}^{G}=0 \forall g_{i}, g_{j} \in G$ under the assumption that $G=\left\{g_{1}, \ldots, g_{d}\right\}$ is Gröbner.

$$
\begin{aligned}
& S\left(g_{i}, g_{j}\right)=\frac{x^{\gamma}}{L T\left(g_{i}\right)} \cdot g_{i}-\frac{x^{\gamma}}{L T\left(g_{j}\right)} \cdot g_{j} \in I \\
& \Rightarrow L T\left(S\left(g_{i}, g_{j}\right)\right) \in\langle L T(I)\rangle=\left\langle L T\left(g_{i}\right), \ldots, L T\left(g_{d}\right)\right\rangle
\end{aligned}
$$

So we can move to next step of division algorithm without remainder by dividing by some $L T\left(g_{k}\right)$ (by Lemma 1, since $L T\left(S\left(g_{i}, g_{j}\right)\right)$ is a monomial in a monomial generated ideal).
The next step is dividing $S\left(g_{i}, g_{j}\right)-\left(\frac{L T\left(S\left(g_{i}, g_{j}\right)\right)}{L T\left(g_{k}\right)} \cdot g_{k}\right) \in I$ by G. By same reasoning as above, we can move to the next step.

The division algorithm terminates by well-ordering, thus we conclude that

$$
{\overline{S\left(g_{i}, g_{j}\right)}}^{G}=0 .
$$

This concludes the proof.

This suggests an algorithm (Buchberger's Algorithm) to construct a Gröbner basis from an original generating set G by adding ${\overline{S\left(g_{i}, g_{j}\right)}}^{G} \neq 0$ to G, and repeating the process with this newly defined G until ${\overline{S\left(g_{i}, g_{j}\right)}}^{G}=0 \quad \forall i, j \in\{1, \ldots, n\}$.

Proposition 2. The Buchberger Algorithm terminates.
Proof. Let $G=\left\{g_{1}, \ldots g_{d}\right\}$ be a potential Gröbner basis. If ${\overline{S\left(g_{i}, g_{j}\right)}}^{G} \neq 0$, let $G^{\prime}=G \cup$ $\left\{\overline{S\left(g_{i}, g_{j}\right)}{ }^{G}\right\}$. We note that

$$
S\left(g_{i}, g_{j}\right)=\sum_{i=1}^{d} p_{i} g_{i}+{\overline{S\left(g_{i}, g_{j}\right)}}^{G} \Rightarrow{\overline{S\left(g_{i}, g_{j}\right)}}^{G} \in I .
$$

So $G \subsetneq G^{\prime}$, and we also have that $\langle L T(G)\rangle \subsetneq\left\langle L T\left(G^{\prime}\right)\right\rangle$ otherwise ${\overline{S\left(g_{i}, g_{j}\right)}}^{G}$ would not be the remainder. Suppose that the algorithm never terminates. But this would imply that

$$
\langle L T(G)\rangle \subsetneq\left\langle L T\left(G^{\prime}\right)\right\rangle \subsetneq\left\langle L T\left(G^{\prime \prime}\right)\right\rangle \subsetneq \ldots
$$

which contradicts that $K\left[x_{1}, \ldots, x_{n}\right]$ is Notherian.
Thus, the Buchberger Algorithm terminates.

Corollary 1. A Gröbner basis always exists.
Proof. Directly follows from Theorem 1 and Proposition 2.

We provide a working example of the construction of a Gröbner basis using grlex ordering.
Example. Let $G_{1}=\left\{x^{3}-2 x y, x^{2} y-2 y^{2}+x\right\}, f_{1}:=x^{3}-2 x y, f_{2}:=x^{2} y-2 y^{2}+x$, our potential Gröbner basis. We test this hypothesis:
$S\left(f_{1}, f_{2}\right)=y \cdot\left(x^{3}-2 x y\right)-x \cdot\left(x^{2} y-2 y^{2}+x\right)=-x^{2}:=f_{3}$
$\overline{S\left(f_{1}, f_{2}\right)}{ }^{G_{1}}=f_{3} \neq 0$ (we omit this division calculation since the remainder occurs immediately)

Let $G_{2}=\left\{x^{3}-2 x y, x^{2} y-2 y^{2}+x,-x^{2}\right\}$
${\overline{S\left(f_{1}, f_{2}\right)}}^{G_{2}}=0$ (due to above)
$S\left(f_{1}, f_{3}\right)=\left(x^{3}-2 x y\right)-(-x) \cdot\left(-x^{2}\right)=-2 x y:=f_{4}$
$\overline{S\left(f_{1}, f_{3}\right)}{ }^{G}=f_{4} \neq 0$ (we omit this division calculation since the remainder occurs immediately)

Let $G_{3}=\left\{x^{3}-2 x y, x^{2} y-2 y^{2}+x,-x^{2},-2 x y\right\}$
${\overline{S\left(f_{1}, f_{2}\right)}}^{G_{3}}=0$ (as before)
$\overline{S\left(f_{1}, f_{3}\right)}{ }^{G_{3}}=0$ (due to above)
$S\left(f_{1}, f_{4}\right)=y \cdot\left(x^{3}-2 x y\right)-\left(-\frac{1}{2} x^{2}\right) \cdot(-2 x y)=-2 x y^{2}$
$\left.\overline{S\left(f_{1}, f_{4}\right.}\right)^{G_{3}}=0$ (we omit this division calculation since it is only one step)
$S\left(f_{2}, f_{3}\right)=\left(x^{2} y-2 y^{2}+x\right)-(-y)\left(-x^{2}\right)=-2 y^{2}+x:=f_{5}$
$\overline{S\left(f_{2}, f_{3}\right)}{ }^{G_{3}}=f_{5} \neq 0$ (we omit this division calculation since the remainder occurs immediately)

Let $G_{4}=\left\{x^{3}-2 x y, x^{2} y-2 y^{2}+x,-x^{2},-2 x y,-2 y^{2}+x\right\}$
$\overline{S\left(f_{1}, f_{2}\right)}{ }^{G_{4}}=\overline{S\left(f_{1}, f_{3}\right)}{ }^{G_{4}}={\overline{S\left(f_{1}, f_{4}\right)}}^{G_{4}}=0$ as before.
By adding f_{5} we have ${\overline{S\left(f_{2}, f_{3}\right)}}^{G_{4}}=0$.
$\frac{\text { It remains }}{S\left(f_{1} f_{5}\right)}$ to check that
${\overline{S\left(f_{1}, f_{5}\right)}}^{G_{4}}, \overline{S\left(f_{2}, f_{4}\right)}{ }^{G_{4}},{\overline{S\left(f_{2}, f_{5}\right)}}^{G_{4}},{\overline{S\left(f_{3}, f_{4}\right)}}^{G_{4}},{\overline{S\left(f_{3}, f_{5}\right)}}^{G_{4}},{\overline{S\left(f_{4}, f_{5}\right)}}^{G_{4}}=0$.
Note that we do not need to check $S\left(f_{2}, f_{1}\right)$ etc. since $S\left(f_{i}, f_{j}\right)=-S\left(f_{j}, f_{i}\right), 1 \leq i<j \leq 5$, and -1 clearly does not affect divisibility as a unit.
$S\left(f_{1}, f_{5}\right)=y^{2} \cdot\left(x^{3}-2 x y\right)-\left(-\frac{1}{2} x^{3}\right) \cdot\left(-2 y^{2}+x\right)=-2 x y+\frac{1}{2} x^{4}$
We now compute $\overline{S\left(f_{1}, f_{5}\right)}{ }^{G_{4}}$:

$$
\begin{aligned}
& \begin{array}{l}
q_{1}=\frac{1}{2} x \\
q_{2}=-1 \\
q_{3}=0 \\
q_{4}=1 \\
q_{5}=1
\end{array} \\
& \left.\begin{array}{l}
f_{1} \\
f_{2} \\
f_{3} \\
f_{4} \\
f_{5} \\
f_{5}
\end{array}\right)-2 x y+\frac{1}{2} x^{4} \\
& \frac{-(-2 x y)}{\frac{1}{2} x^{4}} \\
& \frac{-\left(\frac{1}{2} x^{4}-x^{2} y\right)}{-x^{2} y} \\
& \frac{-\left(-x^{2} y+2 y^{2}-x\right)}{-2 y^{2}+x} \\
& -\quad\left(-2 y^{2}+x\right)
\end{aligned}
$$

Note that this is not the only way to solve $\overline{S\left(f_{1}, f_{5}\right)}{ }^{G}$. Since we are free to choose the order of divisors to compute the remainder, we see that we also get 0 remainder for

$$
\begin{gather*}
\begin{array}{r}
q_{4}=1 \\
f_{4} \\
q_{3}=\frac{1}{2} x^{2}
\end{array} \\
f_{3} \\
\cdots-2 x y+\frac{1}{2} x^{4} \tag{0}\\
-(-2 x y) \\
\hline-\left(\frac{1}{2} x^{4}\right)^{\frac{1}{2} x^{4}} \\
-
\end{gather*}
$$

Similarly, one can show the remaining $\overline{S\left(f_{i}, f_{j}\right)}{ }^{G_{4}}=0$, so we conclude that G_{4} is a Gröbner basis for $\left\langle x^{3}-2 x y, x^{2} y-2 y^{2}+x\right\rangle$ with respect to grlex.

5 Minimal and Reduced Gröbner Basis

We briefly state and discuss the concept of a minimal and reduced Gröbner basis.
Definition 11. A minimal Gröbner basis is one such that all leading coefficients equal 1, and for any g_{i} such that $L T\left(g_{i}\right)$ is in $\left\langle L T\left(G \backslash\left\{g_{i}\right\}\right)\right\rangle, g_{i}$ is removed. $G \backslash\left\{g_{i}\right\}$ is still a Gröbner basis since $\langle L T(G)\rangle=\left\langle L T\left(G \backslash\left\{g_{i}\right\}\right)\right\rangle$.

An ideal I does not have a unique minimal Gröbner basis, although given a minimal Gröbner basis $\mathrm{G},\langle L T(G)\rangle$ forms the unique minimal basis of $\langle L T(I)\rangle$ (cf. [1]).

However, for $I \neq\{0\}$, I does have a unique reduced Gröbner basis for a given monomial ordering (cf. [1]):

Definition 12. A reduced Gröbner basis G is one such that all leading coefficients equal 1, and for any g_{i} in G, no monomial of g_{i} is an element of $\left\langle L T\left(G \backslash\left\{g_{i}\right\}\right\rangle\right.$.

6 The Ideal Membership Problem

How does the existence of a Gröbner basis solve the classical Ideal Membership problem introduced in 2?

Proposition 3. As usual, let $I \triangleleft K\left[x_{1}, \ldots, x_{n}\right]$ and $f \in K\left[x_{1}, \ldots, x_{n}\right]$. The remainder of f after dividing by Gröbner basis $G=\left\{g_{1}, \ldots, g_{d}\right\}$ of I yields 0 if and only if $f \in I$.

Proof. (\Rightarrow :) Remainder 0 gives $f=p_{1} g_{1}+\ldots+p_{d} g_{d}$ for p_{i} in $K\left[x_{1}, \ldots, x_{n}\right]$ and g_{i} in G, so f is an element of I as written as a linear combination of elements of G.
$(\Leftarrow:) f$ being an element of I gives that $L T(f)$ is in $\left\langle L T\left(g_{1}\right), \ldots, L T\left(g_{d}\right)\right\rangle$. So, as in the proof of the Buchberger algorithm terminating, we can continue at each step of division and thus are left with remainder 0 .

7 Acknowledgements

I would like to extend a big thank you to Hugues Bellemare for his guidance and support throughout the DRP project this semester.

References

[1] Cox, David, Little, John, and O'Shea, Donal. Ideals, Varieties, and Algorithms an Introduction to Algebraic Geometry and Commutative Algebra. Fourth edition, Berlin, Heidelberg, Springer, 1998.
[2] Dummit, David, and Foote, Richard. Abstract Algebra. Third edition, John Wiley and Sons, Inc, 2004.
[3] "Gröbner basis". Wikipedia, The Free Encyclopedia, Wikimedia Foundation, 29 January 2023, https://en.wikipedia.org/wiki/Gröbner_basis

