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Abstract

Einstein constraint equations (ECE) is a well studied problem in the mathematical

construction of general relativity. More specifically, solution to the ECE provide us with

suitable initial data that can evolve into solutions of the spacetime Einstein equations.

Despite its application in physics, mathematically, ECE problem relates with classical

problems in Riemannian or semi-Riemannian geometry, such as scalar curvature pre-

scription problems and related geometric partial differential equation (PDE) problems,

which further motivates their analysis.

This report aims to do a brief introduction to Einstein constraint equations, and the

method of solving it. We will mainly emphasize on the constant mean-curvature (CMC)

case, some brief mention on near-CMC case, and some toy examples on non-CMC case.

Keywords: Einstein constraint equations, general relativity, manifold, differential ge-

ometry, partial differential equations
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1 Conventions and Notations

Throughout this report, we use Einstein summation notation for contracting repeated upper-

lower index pairs, unless otherwise stated. Manifolds will be assumed to be Hausdorff and

second countable. When specifying the dimension of a manifold M , we write Md for a

d-dimensional manifold.

I will adapt the following notations:

1. The Lie derivative with respect to a vector field v is denoted as Lv; it satisfies

Lvw
µ = vν∂νw

µ − wν∂νv
µ.

2. Our conventions for the extrinsic curvature are

K(X, Y ) := ḡ(II(X, Y ), n), for all X, Y ∈ Γ(TM),

II(X, Y ) := (∇̄X̄ Ȳ )⊥,

where X̄, Ȳ denotes arbitrary extension to V and II : Γ(TM)×Γ(TM) 7→ Γ(TM)⊥ de-

notes the second fundamental form ofM ↪→ (V, ḡ). K stands as the extrinsic curvature

of M ↪→ (V, ḡ).

3. We use the vector operator ∇ to denote covariant differentiation with respect to some

given connection.

4. We use parentheses and square brackets respectively fro symmetrization and antisym-

metrization of indices.

5. Our convention for the Riemann tensor may be expecified by

[∇a,∇b] = Rab.

6. We use the usual notation Γσ
µν to denote the Christoffel symbols, where the Greek

letters signify its indices.
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7. We adopt the notation τ := trgK for the mean curvature.

2 Preliminaries on General Relativity and Differential

Geometry

We first introduce some basic definitions. We refer to The Einstein Constant Equations [1]

by Rodrigo Avalos and Jorge H. Lira for their basic concepts on the subject.

Definition 2.1. A semi-Riemannian manifold (V, g) will be called Lorentzian if the metric

g has constant index equal to 1.

Definition 2.2. Let (V, g) be a Lorentzian manifold and let p ∈ V . We will say that a

vector v ∈ TpV , v ̸= 0, is time-like if gp(v, v) < 0, light-like (or null) if gp(v, v) = 0, and

space-like if gp(v, v) > 0. Along these lines, we define the light-cone (or null-cone) at p

as the subset of TpV formed by all the null-vectors.

Definition 2.3. The manifold Rn+1 equipped with the Lorentzian metric η given by

η = −dx0 ⊗ dx0 +
n∑

i=1

dxi ⊗ dxi,

where {xα}nα = 0 stand for (global) canonical coordinates for Rn, is referred to as the

Minkowski space-time, and we denote it by Mn+1.

As a subject to general relativity, we will always consider time-orientable Lorentzian mani-

folds, which we shall also refer to as space-times.

Definition 2.4. Let (V, g) be a Lorentzian manifold. At each point p ∈ V , we have two

null-cones in TpV . A choice of one of these null-cones is a time-orientation for TpV . A

smooth function τ on V which assigns to each p ∈ V a null-cone in TpV is said to be a time-

orientation for V . We say (V, g) is time-orientable if it admits such a time-orientation

function.

It is straightforward to see that a Lorentzian manifold is time-orientable if and only if it admits

a global time-like vector field. Its general structure also inherit some properties reserving the

causal structure for a physical problem. Here we introduce some relevant concepts.

2



Definition 2.5. Let (V, g) be a time-orientable Lorentzian manifold and p, q ∈ V , we will

write

1. p≪ q if there is a future-pointing time-like curve in V from p to q.

2. p < q if there is a future-pointing causal curve in V from p to q.

3. Given a subset A ⊆ V , we define the chronological future I+(A) and past I−(A)

of A by

I+(A) := {q ∈ V : ∃ p ∈ A with p≪ q},

I−(A) := {q ∈ V : ∃ p ∈ A with p≫ q},

and the causal future J +(A) and past J −(A) of A by

J +(A) := {q ∈ V : ∃ p ∈ A with p ≤ q},

J −(A) := {q ∈ V : ∃ p ∈ A with p ≥ q},

Definition 2.6. Let (V, g) be a Lorentzian manifold. We will say that the strong causality

condition holds at p ∈ V if for any given neighbourhood U of p, there is a neighbourhood

V ⊆ U of p such that every causal curve with endpoints in V is entirely contained in U .

Given two points p, q ∈ V and p < q, we use the notation J (p, q) := J +(p) ∩ J −(q), which

is the smallest set containing all future-pointing causal curves from p to q.

Definition 2.7. A Lorentzian manifold (V, g) is globally hyperbolic if:

1. The strong causality condition holds in V ;

2. If p, q ∈ V and p < q, then J (p, q) is compact.

Definition 2.8. A Cauchy hypersurface in a Lorentzian manifold (V, g) is a subset M

that is met exactly once by every inextendible time-like curve in V .

The following result links the two notions of global hyperbolicity and Cauchy surfaces:
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Theorem 2.1. Any globally hyperbolic space-time (V, g) admits a smooth space-like Cauchy

hypersurface M . Furthermore, V is diffeomorphic to R×M .

Furthermore, the above result can be strengthened, establishing that (V, g) is isometric to

(R×M,−N2d T 2+ ḡ), where T : R×M 7→ R is the natural projection, N : R×M 7→ (0,∞)

is a smooth function, and ḡ is a symmetric (0, 2)-tensor field which, for each T , restricts to a

Riemannian metric on T ×M ∼= M . Note that ∇T is time-like and past-pointing, i.e, T is a

time-function. A further generalisation of these ideas can be obtained for globally hyperbolic

manifolds with appropriate boundary.

There are a couple of interesting consequences of the above theorem. First, notice that any

non-trivial topology in a globally-hyperbolic spacetime must be contained within its Cauchy

surface. Second, a Cauchy hypersurface in a globally hyperbolic space-time is a suitable

subset where we can pose initial conditions for evolution problems. In fact, our task will be

to start with a Cauchy surfaceM and and initial data on it, and then show that we can evolve

such initial data to create space-time solutions to the Einstein equations. Although general

existence results only provide us with a slab [0, T ] ×M on which the spacetime solution is

guaranteed to exist, whenever solutions are guaranteed to exist for all times, we recover a

globally-hyperbolic spacetime by evolution.

3 Introduction to Einstein Constraint Equations

We will first state the Einstein field equation (EFE), which relates the geometry of a spacetime

to the distribution of matter within it,

Gµν + Λgµν = T (ḡ, ψ̄), (3.1)

where on the left hand side, Gµν is the Einstein tensor, Λ denotes the cosmological constant.

The Einstein tensor is defined as Gµν := Ricḡ− 1
2
Rḡ ḡ with Ricḡ and Rḡ respectively denoting

the Ricci tensor and scalar curvature associated to ḡ. On the right-hand side, T denotes

the energy-momentum tensor field associated to the matter fields sourcing the gravitational

field, which will typically depend on the space-time metric ḡ, and some collection of physical
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fields, here collectively denoted by ψ̄.

Now we will introduce the initial value formulation to the problem. Let us start by considering

globally hyperbolic vacuum (n + 1)-dimensional spacetime (V n+1 = R ×Mn, ḡ) so that the

Einstein equations get reduced to

Ricḡ = 0. (3.2)

The objective is to be able to give initial data on M and guarantee that we can evolve it into

such a solution. But there are some immediate subtleties in this procedure. First, notice

that in this analysis we will have to make a clear spacetime splitting, and therefore, we will

introduce a time parameter t along the R factor, and the global future pointing time-like

vector-field ∂t tangent to the time-curves t 7→ (t, x) ∈ V . We also denote the tangential

component of ∂t to Mt by X, which is a time-dependent vector field tangent to M known

as the shift vector, and the normal component to Mt will be denoted by a function N > 0

referred to as the lapse function. These objects allow us to build adapted local frames {eα}nα=0

of the form

e0 = ∂t −X ⊥Mt,

ei = ∂xi ,
(3.3)

for for any coordinate system {xi}ni=1 on M , and their dual co-frames {θα}nα=0 are

θ0 = dt,

θi = dxi +X i dt.
(3.4)

Using such frames, the space-time metric can be locally put in the form

ḡ = −N2dt⊗ dt+ ḡt, (3.5)

where the induced metric ḡt on Mt has the local form ḡt = ḡij θ
i ⊗ θj. Notice that the future

pointing unit normal to each Mt can then be written as

n =
1

N
(∂t −X). (3.6)
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In the above space-time splitting, the choice of our family of time-like curves defined by the

vector field ∂t is uniquely determined by the choice of lapse and shift, since ∂t = Nn + X.

So, each choice of N > 0 and X satisfying −N2 + |X|2ḡt< 0 determines a unique such family

of space-time observers and vice-versa. So our choice of space-time splitting according to a

preferred ∂t should work merely as a gauge choice.

To make the problem of more clear, we attempt to prescribe a Riemannian manifold (Mn, g)

equipped with a symmetric (0, 2)-tensor fieldK and initial data for the lapse-shift (N,X, ∂tN, ∂tX)|t=0,

which determine the family of observers along whose integral curves we intend to evolve the

initial data, and then find an isometric embedding ι : (M, g) 7→ (V = I ×M, g) with I ⊆ Rn

such that ḡ solves the space-time Einstein equations. In the vacuum case given by Ricḡ = 0.

Our objective is to utilize the freedom in choosing the flow lines along which we evolve

the data. This demands having enough freedom so as to guarantee that at the end of the

problem ∂t|t=0= (Nn + X)|t=0 is time-like. From the well-known Gauss–Codazzi equations

for hypersurfaces, which for a space-like hypersurface (M, g,K) isometrically immersed in a

Lorentzian manifold (V, ḡ) such that

ḡ(R̄(X, Y )Z,W ) = g(R(X, Y )Z,W )− (K(X,Z)K(Y,W )−K(Y, Z)K(X,W )), (3.7)

ḡ(R̄(X, Y )Z, n) = (∇XK)(Y, Z)− (∇YK)(X,Z). (3.8)

Equations (3.7) and (3.8) are Gauss’ and Codazzi’s equations respectively. We haveX, Y, Z ∈

Γ(TM), n stands for the future-pointing unit normal vector field to M , and the quantities

without a bar on top are constructed with the intrinsic induced Riemannian metric g on M .

The above equations are a priori necessary conditions that (g,K) must satisfy

Proposition 3.1. Let (M, g,K) be a space-like hypersurface isometrically immersed in a

Lorentzian manifold (V, ḡ) satisfying the Einstein equations Gḡ + Λḡ = T for some energy-

momentum tensor T . Then g and K satisfy the following constraint equations on M :

Rg − |K|2ḡ+(trgK)2 − 2Λ = 2ϵ,

divgK − d (trgK) = J,
(3.9)

where ϵ := T (n, n) and J := −T (n, ·) ∈ Γ(TM) denote the energy and momentum densities
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induced on M .

We will then briefly introduce the procedure of deriving above Einstein constraint equations

in the following proof.

Proof. Given any local orthonormal frame {n, ei}ni=1from the Gauss equation we can compute

that

n∑
i,j=1

ḡ(R̄(ei, ej)ej, ei) =
n∑

i,j=1

g(R(ei, ej)ej, ei)−
n∑

i,j=1

(K(ei, ej)K(ej, ei)−K(ej, ej)K(ei, ei))

= Rg −
n∑

i,j=1

(K(ei, ej)K(ej, ei)−K(ej, ej)K(ei, ei))

= Rg − |k|2g−(trgK)2.

(3.10)

Since

Ricḡ(ei, ej) =
n∑

α=0

ḡ(eα, eα)ḡ(R̄(eα, ei)ej, eα)

= −ḡ(R̄(n, ei)ej, n) +
n∑

k=1

ḡ(R̄(ek, ei)ej, ek),

(3.11)

we get that

Rg − |k|2g−(trgK)2 = Ricḡ(n, n) +
n∑

i=1

Ricḡ(ei, ei)

= 2Ricḡ(n, n) + (−Ricḡ(n, n) +
n∑

i=1

Ricḡ(ei, ei))

= 2Ricḡ(n, n) +Rḡ = 2

(
Ricḡ −

1

2
ḡRḡ

)
(n, n)

= 2(T − Λḡ)(n, n) = 2T (n, n) + 2Λ.

(3.12)

Thus, fromthedefinition T (n, n) := ϵ, we get

Rg − |K|2g+(trgK)2 = 2(ϵ+ Λ). (3.13)
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Now considering the Codazzi equation,

Ricḡ(n, ei) =
n∑

α=0

ḡ(eα, eα)ḡ(R̄(eα, n)ei, eα) =
n∑

j=1

ḡ(R̄(ej, n)ei, ej)

=
n∑

j=1

ḡ(R̄(ei, ej)ej, n) =
n∑

j=1

(∇eiK)(ej, ej)−
n∑

j=1

(∇ejK)(ei, ej)

= trg(∇eiK)− divgK(ei) = ∇ei trgK − divgK(ei).

(3.14)

Since Ricḡ(n, ei) = T (n, ei), we get

d (trgK)(ei)− divgK(ei) = T (n, ei).

Finally, from the definition of the physical momentum density is J := −T (n, ·), we arrive at

the momentum constraint:

divgK − d (trgK) = J, (3.15)

which finishes the derivations.

To briefly describe the main steps in this construction, let us equip M with a some fixed

smooth and complete Riemannian metric e, then trivially embed M into V = R ×M and

fix a background Riemannian metric ê = dt2 + e on V . From now on, quantities constructed

from ê will be denoted with a hat on top. The idea is first to consider the reduced Einstein

equations given by

Ric
(ê)
ḡ = 0. (3.16)

The advantage now is that this is a set of quasi-linear wave equations where some standard

PDE theory theorems guarantee that, for appropriate initial data on ḡ, the system possesses

one and only one solution. By appropriate initial data we mean (g,K,N) in some appropriate

H̊s
loc-Sobolev space and K, ∂tN |t=0, ∂tX|t=0 in the corresponding H̊s−1

loc , with s > n
2
+ 1.

The solution to this problem provides us with a Lorentzian metric ḡ on [0, T ) × M for

some T > 0. We want to show that if our initial data set (M, g,K) solves the vacuum

constraint equations (3.9) with ϵ = Λ = J = 0, then an appropriate choice of the gauge data

∂tN |t=0, ∂tX|t=0 guarantees that F̂ = 0 and then Ricḡ = 0 and (V, ḡ) is therefore our desired
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Cauchy development of (M, g,K). If F̂ |t=0= ∂tF̂ |t=0= 0, then F̂ = 0. If

1. The initial data for the solution ḡ to Equation (3.16) solves the vacuum constraints

associated to Equations (3.9);

2. F̂ |t=0= 0,

then ∂tF̂ |t=0= 0. Now, let us consider an adapted frame {eα}nα=0 of the form of Equation (3.3)

and assume that we have constructed ḡ out of initial data M, g,K satisfying the constraints

and with N |t=0= 1 and X|t=0= 0. Then a straightforward computation gives

F 0|t=0 = −(∂tN |t=0+g
ijKij),

Fi|t=0 = −∂tXi|t=0+gijg
kl(Γj

kl(g)− Γj
kl(e)).

Therefore, we can fix the initial conditions ∂tN |t=0, ∂tXi|t=0 on M so as to satisfy F̂ |t=0=

0. Such a solution ḡ solves the full vacuum Einstein equations on V and is therefore an

appropriate short-time Cauchy development of (M, g,K).

Notice that if we have two Cauchy developments (Vi, ḡi), i = 1, 2, of the same geometric

data (M, g,K), and therefore implying that their initial data can differ only via the initial

data of N,X which selects the space-time observers, then these developments are isometric

and also geometrically unique. Also, there is unique, up to isometries, maximal globally

hyperbolic development of any such vacuum initial data set. The solutions to these problems

have the right causality behaviour, i.e., they exhibit the finite-speed propagation associated

to solutions of wave equations inherited via hyperbolic theory applied to Equation (3.16). In

particular, the limit speed of propagation is given by that of that of the null curves of ḡ.

Finally, the above discussion can be readily extended along the same lines to non-vacuum

situations. These last cases which involve an electromagnetic field actually present one further

subtlety, which is that the Maxwell equations of electromagnetism also impose constraints

on the admissible initial data for the electromagnetic 2-form F . Due to the limited space of

this report, I will not extend on this subject. But I suggest the readers to further read on

their own if this topic interest you.
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4 Constant Mean Curvature (CMC) Method and Some

Classical Results

Now we will start our analysis of the constraint equations for the general relativistic initial

data sets. The first objective is to cast the ECE as system of geometric elliptic PDEs. Notice

that the ECE seen as equations for (g,K) on Mn are a highly under-determined system,

and in particular, we have some freedom to look for a useful decomposition of (g,K) into

prescribed data and unknowns which may turn it into a determined elliptic system. The

ideal objective would be that such splitting is natural both from a geometric and a physical

stand point. The best known method to the problem is the so called conformal method. This

method splits g into a prescribed conformal class and an unknown conformal factor, while

it splits K into a prescribed trace part (mean curvature) and unknown traceless part, which

itself undergoes a further slitting allowing to write the momentum constraint as an elliptic

equation on some vector field X. We will discuss how under special geometric conditions

which involve a constant mean curvature (CMC) hypothesis, the conformal method decouples

the Gauss–Codazzi constraints (3.9). It is in such situations that this method is most effective.

In particular, we will present results which include the CMC vacuum classification of Isenberg

(1995) as well as the more recent remarkable developments of Maxwell (2005).

4.1 The Conformal Method

Recall that the constraint Equations (3.9) stands as a highly under-determined system posed

for (g,K), and we attempt to exploit this freedom to split (g,K) in some clever way into

prescribed data and unknowns for the system following the the confor- mal method, which

translates Equations (3.9) into a determined elliptic PDE system. In this context, the energy

constraints have the form of a generalised scalar curvature prescription problem, and therefore

the conformal deformations work quite nicely. We have the following computational result.

Proposition 4.1. Let (Mn, g) be a Riemannian manifold with n ≥ 3. Suppose that g =

φ
4

n−2γ for some other Riemannian metric γ on M . Then, the following transformation rule
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for the scalar curvature holds

Rg = φ−n+2
n−2

(
Rγφ− 4(n− 1)

n− 2
∆γφ

)
, (4.1)

where ∆γ stands for the negative Laplace operator.

In the above context we will denote by ∇ the Riemannian connection associated to g, and

by D the corresponding connection associated to γ. Also, the second order linear operator

appearing in the right hand side of Equation (4.1), given by Lg := ∆γ − cnRγ will be referred

to as the conformal Laplacian. Equation (4.1) transforms the energy constraint into:

∆γφ− cnRγ φ+ cn (|K|2g−τ 2 + 2ϵ)φ
n+2
n−2 = 0, (4.2)

where cn = 1
4
n−2
n−1

.

We now split extrinsic curvature into its trace and traceless parts, so that we can freely

specify the trace as a parameter. The trace part τ = trgK of K will naturally inherit some

scaling under conformal deformations. We need to impose scaling for the traceless part under

conformal transformations, following the York splitting as follows:

K = φ−2K̃ +
τ

n
g,

where K̃ is a γ-traceless, and thus g-traceless, (0, 2)-tensor field, where we take the convention

that K̃ moves its indices with the conformal metric γ, while the physical extrinsic curvature

K moves its indices with the physical metric g, i.e.,

Kij = φ−2K̃ij +
τ

n
gij,

Kij = φ−2n+2
n−2 K̃ij +

τ

n
gij.

(4.3)

This in particular implies that

|K|2g= φ− 4n
n−2 |K̃|2γ+

τ 2

n
.

To obtain a similar form for the momentum constraint and rewrite it as a determined elliptic
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PDE system natually, we first consider the following computational result.

Proposition 4.2. Consider the Riemannian manifold (M, g), with g = φ
4

n−4γ for some other

Riemannian metric γ on M . Let K ∈ Γ(T 0
2M) be symmetric and split it as in Equations

(4.3). The the g and γ divergences of K are related via the following expression

divgK = φ− 2n
n−2 divγK̃ +

1

n
d τ. (4.4)

The above proposition shows that the choice of scaling avoids the first order contributions.

Now we can make a further decomposition to the conformally formulated energy and mo-

mentum constraints, Equations (4.2), and rewrite them as

∆γφ− cnRγ φ+ cn |K̃|2γφ
− 3n−2

n−2 + cn (
1− n

n
τ 2 + 2ϵ)φ

n+2
n−2 = 0, (4.5)

divγK̃ −
(
n− 1

n
d τ + J

)
φ

2n
n−2 = 0. (4.6)

We refer to Equation (4.5) as the Lichnerowicz equation. Above equations take different

forms depending of our physical model, which determines the form of ϵ and J , as well as the

remaining geometric data, related to the extrinsic curvature. The input geometric data would

be the metric γ, which fixes the conformal class of physical metric g, the mean curvature

τ . They are posed for the conformal factor u and the traceless tensor K̃. In the case of

vacuum (ϵ = J = 0) maximal (τ = 0), the system decouples. In such a case, we first find a

traceless tensor which is γ-divergence free (such tensors are called TT-tensors, which stands

for traceless and transverse tensors), which works as an input in the resulting equation for the

conformal factor, and all of the analysis falls on the associated Lichnerowicz equation. On

the other hand, for non-vacuum and/or non-maximal solutions, in general, we have coupled

system.

Assuming that M is closed, let (Mn, γ) be a Riemannian manifold as above, with n ≤ 3,

and assume that γ ∈ W 2,p, with p > n
2
. Then, define the conformal Killing Laplacian (CKL)
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operator

∆γ,comf : W
2,p(TM) 7→ Lp(T ∗M),

X 7→ divγ(Lγ,comfX),
(4.7)

where Lγ,comfX := LXγ − 2
n
γdivγX stands for the conformal Lie derivative, whose kernel is

given by conformal Killing fields (CKF) of the metric γ. It is an elliptic operator.

Theorem 4.1. Let (Mn, γ) be a smooth closed Riemannian manifold, n ≤ 3. Then, for any

1 < p <∞, the following splitting holds

W 1,p(
◦

S2M) = ker(L1) ⊕ Im{L2}, (4.8)

where L1 : W 1,p(
◦

S2M) 7→ Lp(T ∗M) is given by L1W := divγW , where L2 : W 2,p(TM) 7→

W 1,p(
◦

S2M) is given by L2X := Lγ,comfX. We denote by
◦

S2M the vector bundle whose fibres

consist of traceless symmetric (0, 2)-tensor fields on M .

Therefore, at least for smooth data γ on closed manifolds, we can always split the traceless-

part of our extrinsic data via

K̃ = Lγ,comfX + U, (4.9)

where X is a vector field and U is the TT-tensor part associated to it by the above theorem.

Definition 4.1. We will say that the physical sources (ϵ, J) in an initial data set (g,K, ϵ, J)

are York-scaled if, under the conformal decomposition of (g,K) described above, their scaling

on the initial data set induces a change in the momentum density of the form J = φ− 2n
n−2 J̃ ,

where J̃ is a 1-form constructed with the conformal data (γ, τ, U) plus additional prescribed

data.

The feature that makes York-scaled sources special is that, under an additional CMC-

condition, they transform the conformally formulated momentum constraint into

∆γ,comfX = J̃ , (4.10)

which is completely decoupled from the associated Lichnerowicz equation. Therefore, in some
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sense, this generalises the CMC vacuum case mentioned above. In this case, we can deal with

this linear PDE, solve for X, which completes all the information in K̃, and then, once more,

the core of the analysis falls on the corresponding Lichnerowicz equation.

4.1.1 Conformal Covariance

For the relation between two different conformal initial data sets built from conformally

related metrics γ and γ′ = θ
4

n−2γ, first notice that associated to conformal data ϑ, we have

the solution (φ,X, Ẽ), from which we construct the physical initial data. Using primed or

unprimed variables, the physical solution is the same in both cases. We find an action of the

conformal group on the conformal data (ψ, ϑ), which makes it a kind of gauge group. Let us

first present the following computational result.

Proposition 4.3. Let us consider a Riemannian manifold (Mn, γ), γ ∈ W 2,p, p > n
2
, and a

conformally related Riemannian metric γ′ = θ
4

n−2γ, θ ∈ W 2,p. The conformal Laplacian oper-

ators Lγ and Lγ′ associated to γ and γ′ respectively satisfy the following conformal covariance

property:

Lγφ = θ
n+2
n−2Lγ′φ′, ∀φ ∈ W 2,p, (4.11)

where φ′ = θ−1φ ∈ W 2,p.

We can find some preferred element in a conformal class which simplifies the problem, e.g.,

when we split the space of Riemannian metrics on M into its disjoint Yamabe classes. In

such a case, our conformal class will belong to exactly one Yamabe class, and that allows

us to select a conformal representative in [γ] with fixed sign on the scalar curvature, which

can be used to control the behaviour of Lγ as well as the existence of simple barriers for

the Lichnerowicz equation. In such a case, we first fix a useful conformal representative to

solve our problem, knowing that the final physical initial data will remain unaltered by these

gauge choices.

14



4.2 CMC-Solutions on Closed Manifolds

With the physical initial data π = φ− 2n
n−2 π̃ In the case we switch-off the fluid’s contributions

and adopt the CMC hypothesis, we obtain the decoupled system given by

∆γφ− rφ+ aTTφ
− 3n−2

n−2 − aτφ
n+2
n−2 + aEφ

−3 + aF̃φ
n−6
n−2 = 0,

∆γ,confX = ωϕ − Ẽ⌟F̃ ,

divγẼ = 0,

d F̃ = 0,

(4.12)

where we have introduced the additional notations

aTT := cn

(
|K̃|2γ

)
+ π̃2, aE := cn|Ẽ|, aF̃ =

cn
2
|F̃ |.

Note that System (4.12) is completely decoupled. Since the elec- tromagnetic constraints

are completely decoupled, we assume that we have fixed a priori a closed 2-form F̃ and a γ-

divergence-free vector field Ẽ together with the remaining free data. Let us first concentrate

on the decoupled momentum constraint given by

J̃ := ∆γ,confX = −π̃dϕ+ Ẽ⌟F̃ . (4.13)

Proposition 4.4. Let (Mn, γ), n ≥ 3, be a closed Riemannian manifold with γ ∈ W 2,p and

assume that ϕ ∈ W 2,p, π̃, Ẽ, F̃ ∈ W 1,p, with p > n
2
. Then, J̃ in Equation (4.13) is Lp.

The proof of the above proposition is a straightforward application of the Sobolev multipli-

cation properties. We now aim to analyse a generic scalar equation on a closed Riemannian

manifold Mn, γ, γ ∈ W 2,p, of the form

∆γφ =
∑
I

aIφ
I , (4.14)

where the exponents I determine the type of non-linearities present in a specific problem,

and we assume aI ∈ Lp.
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4.2.1 The Monotone Iteration Scheme

Here we describe an iterative method based on the existence of barrier functions. In particu-

lar, they were introduced by Isenberg (1995) to analyse the Lichnerowicz equa- tion associated

to vacuum CMC initial data.

Lemma 4.1 (Weak Maximum Principle). Let (Mn, γ) be a closed Riemannian manifold with

γ ∈ W 2,p and p > n
2
. Consider a function V ∈ Lp and assume that V ≥ 0. Then, given

φ ∈ W 2,p the following implication holds

∆γφ− V φ ≥ 0 → φ ≤ 0. (4.15)

The above maximum principle is robust enough to allow us to establish the monotone iter-

ation scheme which is used in the analysis of CMC semi-linear equations. Nevertheless, for

geometric problems, we sometimes need a stronger version which excludes the possibility of

φ vanishing.

Lemma 4.2 (Strong Maximum Principle). Let (Mn, γ) be a closed Riemannian manifold

with γ ∈ W 2,p and p > n
2
. Consider a function V ∈ Lp and assume that V ≥ 0. Then, given

φ ∈ W 2,p satisfying the inequality

∆γφ− V φ ≥ 0, (4.16)

if φ(x) = 0 for some x ∈M , then φ ≡ 0.

Let us now introduce the following concepts concerning barriers of a CMC equation. First,

let us define

f :M × I 7→ R,

(x, y) 7→ f(x, y) :=
∑
I

aI(x) y
I ,

(4.17)

where I ⊆ R stands for an interval, and the coefficients aI ∈ Lp. Also assume that ∂yf(x, y)

exists and is continuous on I. Notice that this is an imposition on I rather than on f , since,

due to the form of f , this is satisfied by any interval I = [l,m] ⊆ R+ with l > 0.
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Definition 4.2. Let (Mn, γ) be a Riemannian manifold with γ ∈ W 2,p and p > n
2
. We say

that varphi− ∈ W 2,p is a subsolution of the equation ∆γφ = f(x, φ) if

∆γφ− ≥ f(x, φ−). (4.18)

Analogously, varphi+ ∈ W 2,p is a supersolution of the equation if

∆γφ+ ≤ f(x, φ+). (4.19)

Theorem 4.2. Let (Mn, γ) be a closed Riemannian manifold with γ ∈ W 2,p and p > n
2
.

Consider the equation ∆γφ = f(x, φ) with f given in

∆γφk+1 − aφk+1 = f(x, φ+ k)− aφk. (4.20)

If this equation admits a pair of W 2,p sub and supersolutions 0 < l ≤ φ− ≤ φ+ ≤ m with

[l,m] ∈ I, then there is a solution φ ∈ W 2,p satisfying φ− ≤ φ ≤ φ+.

The above theorem will be our main tool when proving existence results for the Lichnerowicz

equation. Therefore, we see that our task will be reduced to finding suitable barrier functions

φ− ≤ φ+ to our associated equation. In doing so, we will see that the behaviour of the linear

term ar in Equation (4.14) plays a particularly special role. Therefore, certain classification

results concerning conformal deformations of scalar curvature are specially useful, which

motivates the analysis presented in the next section concerning the Yamabe problem.

4.2.2 The Yamabe Classification

Lemma 4.3. Let Mn, γ be a closed Riemannian manifold with γ ∈ W 2,p, p > n
2
, and n ≥ 3.

Then, the functionals Jγ, q are all bounded from below for any 1 ≤ q ≤ n
n−2

.

The following theorem is key in the low-regularity Yamabe classification.

Theorem 4.3. Let Mn, γ be a closed Riemannian manifold with γ ∈ W 2,p, p > n
2
, and n ≥ 3.

Then, there exists a W 2,p function φ > 0 such that

−an∆γφ+Rγφ = λγφ. (4.21)
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In particular, γ is conformal to a metric with continuous scalar curvature having the same

sing as λγ.

We now state the Yamabe classification.

Theorem 4.4. Let Mn, γ be a closed Riemannian manifold with γ ∈ W 2,p, p > n
2
, and n ≥ 3.

Then, the following statements hold:

1. Y([γ]) > 0 if and only if γ is conformal to a metric of continuous positive scalar

curvature;

2. Y([γ]) = 0 if and only if γ is conformal to a metric of continuous zero scalar curvature;

3. Y([γ]) < 0 if and only if γ is conformal to a metric of continuous negative scalar

curvature,

where in the three cases above the conformal deformation is of the form g = φ
4

n−2 , with

φ ∈ W 2,p.

4.2.3 Non-Existence and Uniqueness

The following theorem concerns some straightforward non-existence results.

Theorem 4.5 (Non-Existence). Let Mn, γ be a closed Riemannian manifold with γ ∈

W 2,p, p > n
2
, and n ≥ 3. Consider the Lichnerowicz equation (4.5). If all the coefficients are

in L1, then, if either of the following situations

1. ar, aτ ≥ 0 and aTT , aE, aF̃ ≤ 0;

2. ar, aτ ≤ 0 and aTT , aE, aF̃ ≥ 0,

and not all of these coefficients vanish identically. Then, the above equation admits no positive

solutions.

Let us now present the following uniqueness result, which makes use of the geometric origin

of Lichnerowicz’s equation.

18



Theorem 4.6 (Uniqueness). Let Mn, γ be a closed Riemannian manifold with γ ∈ W 2,p, p >

n
2
, and assume that the coefficients of Equation (4.5) satisfy the hypotheses of Proposition 4.4.

Suppose, furthermore, that n ≤ 6 and aτ ≥ 0, and let φ1 and φ2 be two positive W 2,p-solution

of Equation (4.5), then either φ1 ≡ φ2 or aTT , aτ , aE, aF̃ ≡ 0,SY([y]) = 0 and φ1 = cφ2 for

some constant c > 0.

Remark 4.1. Notice that in the above theorem the dimensional restriction n ≤ 6 relates only

to the magnetic term |F̃ |2γ.

5 Conclusion

In this article, we discussed the problem with Einstein constraint equations, with special

investigation in vacuum Einstein constraint case with CMC methods. The far from CMC

solutions for Einstein constraint equations is still a current area of research of many mathe-

maticians and open for investigation.
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