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Abstract. This write-up consists of a crash course in Descriptive Set Theory and
a classical application of the concepts therein to infinite graphs, culminating in a
proof of the 𝔾0 Dichotomy. Special attention was paid to ensure it would be com-
prehensible to an undergraduate student with some familiarity with basic topology,
as well as to build intuition, even in complex and intricate parts of proofs.

It was completed as part of McGill University’s Directed Reading Program, un-
der the supervision of advisor Sam Murray.

1. A Crash Course in Descriptive Set Theory
We assume a knowledge of basic topology (definitions of topological spaces, con-

tinuity, etc.) but no knowledge of Descriptive Set Theory for this write-up. As such,
this section serves mainly to bring a curious reader with no experience in the field
up to speed, and can be safely skipped by those with some basic knowledge. It also
attempts to give a curious reader a taste for the particularities of the field and the
insights Descriptive Set Theorists can provide.

1.1. Perfect Polish Spaces. In Descriptive Set Theory, we like to work in a
very particular kind of topological space known as a perfect Polish space. A perfect
Polish space 𝒳 is a perfect, separable, completely metrizable topological space. That
is,

• a topological space,
• on which some metric may be defined,
• such that that metric is complete, i.e. every Cauchy sequence converges,
• that contains a countable dense subset, so is separable,
• and that does not count any singletons as open sets, so has no isolated

points, and is thus perfect.

This is a bit of a large definition, but its not any particularly exotic type of space.
ℝ, after all, is a perfect Polish space. However, certain properties of ℝ make it
undesirable to Descriptive Set Theorists, particularly the fact that the space is
connected – it cannot be written as a union of disjoint nonempty open subsets. For
this reason, they turn to some slightly strange spaces.

1.1.1. The Cantor Space. Formally, we can define the Cantor space, notated 2𝜔,
as the topological space with points in 2𝜔 and with basic open sets 𝑁(2𝜔, 𝑠) for
𝑠 ∈ 2<𝜔 defined by 𝑁(2𝜔, 𝑠) ≔ {𝜎 ∈ 2𝜔 : 𝑠 ⊑ 𝜎}.

To understand what that actually means, imagine an infinitely tall binary tree:
the root has two children, labeled 0 and 1, each of those children has two children
labeled 0 and 1, ad infinitum. If you traveled down from the root to a depth of 𝑛,
then the list of the labels of each of the nodes you visited on the way down forms
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an 𝑛-length binary string. If you did this forever, you would get an infinitely long
binary string.

∅

0

0

0

⋮ ⋮

1

⋮ ⋮

1

0

⋮ ⋮

1

⋮ ⋮

1

0

0

⋮ ⋮

1

⋮ ⋮

1

0

⋮ ⋮

1

⋮ ⋮

Figure 1. The infinite binary tree underlying the Cantor space.

These infinitely long binary strings are in fact the points of our space, and we
notate them by 2𝜔, with 2 standing in for {0, 1} and the ⋅𝜔 notating that we’re
considering countably infinite strings (strings indexed by 𝜔).¹ Likewise, we use 2𝑛

¹If you have not yet seen 𝜔 used like this, think of it as like ℕ. I will also use 𝑖 < 𝜔 to mean
the same as 𝑖 ∈ 𝜔. This is because 𝜔 is the first countably infinite ordinal, ordinals being a sort
of extension of ℕ to infinities. For now, just think of this as a notational quirk.

to notate the set of binary strings of length 𝑛, and 2<𝜔 for finite strings of any
length.

To topologize this, for each node, let 𝑠 ∈ 2<𝜔 be the finite string representing
the path you take to get to that node. We label the set of all infinite strings that
pass through that node

𝑁(2𝜔, 𝑠) ≔ {𝜎 ∈ 2𝜔 : 𝑠 ⊑ 𝜎} ⊆ 2𝜔,

with ⊑ notating that 𝜎 is an extension of 𝑠. These are the basic open sets of our
space, and so any open set consists of a countable union of these 𝑁(2𝜔, 𝑠)’s.

1.1.2. The Baire Space. The Baire space 𝜔𝜔 is very similar, except instead
of taking binary strings we consider strings of natural numbers. Formally,
we define it as the space with points in 𝜔𝜔 and with basic open sets
𝑁(𝜔𝜔, 𝑥) ≔ {𝜉 ∈ 𝜔𝜔 : 𝑥 ⊑ 𝜉} for 𝑥 ∈ 𝜔<𝜔. This space is extremely important in
Descriptive Set Theory, as there is a continuous surjection from the Baire space
onto any perfect Polish space, making it in some ways act as a prototype for any
other perfect Polish space.

∅

0 1 2 3 4

⋯

⋮ ⋮ ⋮ ⋮
0 1 2
⋮ ⋮ ⋮

⋯
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Figure 2. The infinite natural number tree underlying the Baire space.

1.1.3. Product Spaces. One nice feature of perfect Polish spaces is that if you
take a (countable) product of perfect Polish spaces and give it the natural product
topology, this again is a perfect Polish space. This natural topology is exactly what
you would expect in the case of finite products—a set is open if and only if it is
a product of sets open in their respective spaces—but has a wrinkle in the case of
infinite products. In this case, we add the condition that only finitely many of the
sets in the product are not trivial, in the sense that they do not contain every point
of their space. In other words, where 𝐼 is countable, 𝑈 ⊆ ∏𝑖∈𝐼 𝒳𝑖 is open if and
only if we can write 𝑈 = ∏𝑖∈𝐼 𝑈𝑖, where 𝑈𝑖 ⊆ 𝒳𝑖 is open for all 𝑖 ∈ 𝐼 and 𝑈𝑖 = 𝒳𝑖
for all but finitely many 𝑖 ∈ 𝐼 .²

²If we do not add this condition, we get a topology known as the box topology. It coincides
with the product topology for finite products of spaces, but diverges in the case of infinite
products, having more open sets than the product topology. As the product topology is less fine
and still has the properties we want out of a product construction, we consider it the more
“natural” construction.

This gives rise to a few distinctive ways that sets are used in Descriptive Set
Theory. The graph of a function 𝑓 : 𝑋 → 𝑌  is defined as {(𝑥, 𝑦) : 𝑓(𝑥) = 𝑦}, and it
is common for set theorists of all types to identify a function with its graph. By
considering the product space, we can consider a function 𝑓 : 𝒳 → 𝒴 between per-
fect Polish spaces to be a subset of the product space 𝒳 × 𝒴. In fact, any relation
between perfect Polish spaces is again a subset of their product space, allowing us
to give relations topological properties such as being closed or open.

It also allows us to be somewhat “vague” about the space we are working in. The
product space construction ensures that, for the most part, all topological proper-
ties of the set 𝑆 as a subset of 𝒳 are equivalent to those of 𝑆 × 𝒴 as a subset of
𝒳 × 𝒴. Descriptive Set Theorists will thus often identify these two sets as identical,
as they are identical for their purposes.

1.2. Borel Sets. Probably the most fundamental concept in Descriptive Set
Theory is the concept of Borel sets. These will be our “nice” sets — Borel sets are
those sets that can be formed from open sets using some basic operations, and as
such they are very well-behaved topologically. If all sets were Borel, the field of
Analysis would be a lot simpler.

Formally, in any given perfect Polish space 𝒳, the set of Borel sets is the 𝜎-
algebra generated by the open sets—i.e, every open set is Borel, compliments of
Borel sets are Borel, and countable unions and intersections of Borel sets are Borel.

1.2.1. Closure Properties of Borel Sets. The property of being a Borel set (in
any arbitrary space) is preserved across a number of operations. In particular, Borel
sets are closed under:

• (countable) unions,
• (countable) intersections,
• compliments,
• products,
• continuous inverse images,
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• and a generalized form of continuous inverse images known as continuous
substitution, in which for a Borel set 𝐵 ⊇ ∏𝑖∈𝐼 𝒳𝑖, where (𝑓𝑖 : 𝒳𝑖 → 𝒴𝑖)𝑖∈𝐼
are continuous functions, the set

{(𝑦𝑖)𝑖∈𝐼 : (𝑓(𝑦𝑖))𝑖∈𝐼 ∈ 𝐵}

is Borel.

1.3. Analytic Sets. The analytic sets are the Mr. Hyde to the Borel sets’ Dr.
Jekyll. Originally thought to be one and the same as Borel sets, these sets can
be difficult to construct or describe and highly pathological. There are a number
of equivalent ways to define them. A set 𝐴 ⊆ 𝒳 is analytic if one of the following
equivalent conditions are met:

• It is a continuous image of a Borel set.
• It is either empty or a continuous image of the Baire space.
• It is a continuous image of a closed subset of the Baire space.
• There is a closed set 𝐶 ⊆ 𝜔𝜔 × 𝒳 such that

proj𝒳[𝐶] = {𝑦 : ∃𝑥 ∈ 𝜔𝜔 : (𝑥, 𝑦) ∈ 𝐶} = 𝐴.

1.3.1. Closure Properties of Analytic Sets. Analytic sets are closed under some
different operations than Borel sets:

• (countable) unions,
• (countable) intersections,
• products,
• continuous images,
• and continuous inverse images.

Note that they are not closed under compliments, and indeed by Suslin’s theorem
analytic sets whose compliments are analytic are Borel.

1.4. Theorems. We now introduce and prove two basic theorems that will be
very important for our journey.

Theorem 1.1. (Separation Theorem). Let 𝒳 be a perfect Polish space, and
𝐴1, 𝐴2 ⊆ 𝒳 be two analytic subsets with 𝐴1 ∩ 𝐴2 = ∅. Then there is a Borel set
𝐵 ⊆ 𝒳 such that 𝐵 ⊆ 𝐴1, 𝐴2 ∩ 𝐵 = ∅.

Proof. We will notate 𝑁(𝜔𝜔, 𝑥) by 𝑁𝑥 in the following proof for brevity.
As discussed above, given that 𝐴1 and 𝐴2 are analytic we may obtain continuous

surjections 𝜑 : 𝜔𝜔 → 𝐴1, 𝜓 : 𝜔𝜔 → 𝐴2. For each 𝑥 ∈ 𝜔<𝜔, we define 𝐴(𝑥)
1 = 𝜑[𝑁𝑥]

and 𝐴(𝑥)
2 = 𝜓[𝑁𝑥], and consider each pair individually. For (𝑥, 𝑦) ∈ 𝜔𝑛 × 𝜔𝑛 with

𝑛 ∈ 𝜔, we call the pair “good” if there exists a Borel 𝐵𝑥,𝑦 separating 𝐴(𝑥)
1  and 𝐴(𝑦)

2
(i.e. 𝐴(𝑥)

1 ⊆ 𝐵𝑥,𝑦 and 𝐴(𝑦)
2 ∩ 𝐵𝑥,𝑦 = ∅), and “bad” otherwise. Our goal will be to

prove that no bad pairs exist.
Note that as 𝐴(𝑥)

1  is the union of its “children” 𝐴(𝑥⌢𝑖)
1 ³ for 𝑖 ∈ 𝜔 and likewise

for 𝐴(𝑦)
2 , if every one-step extension (𝑥 ⌢ 𝑖, 𝑦 ⌢ 𝑗) for 𝑖, 𝑗 ∈ 𝜔 of a pair is good, we

³𝑥 ⌢ 𝑖 notates 𝑥 concatenated with 𝑖.

then have separations 𝐵𝑥⌢𝑖,𝑦⌢𝑗 that we can use to construct a separation for 𝐴(𝑥)
1

and 𝐴(𝑦)
2 :
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𝐴(𝑥)
1 = ⋃

𝑖∈𝜔
𝐴(𝑥⌢𝑖)

1 ⊆ ⋃
𝑖∈𝜔

⋂
𝑗∈𝜔

𝐵𝑥⌢𝑖,𝑦⌢𝑗

𝐴(𝑦)
2 = ⋃

𝑗∈𝜔
𝐴(𝑡⌢𝑗)

2 ⊆ ⋃
𝑗∈𝜔

(⋃
𝑖∈𝜔

𝐵𝑥⌢𝑖,𝑦⌢𝑗)
∁

= ⋃
𝑗∈𝜔

⋂
𝑖∈𝜔

(𝐵𝑥⌢𝑖,𝑦⌢𝑗)
∁ ⊆ ⋂

𝑖∈𝜔
⋃
𝑗∈𝜔

(𝐵𝑥⌢𝑖,𝑦⌢𝑗)
∁

= (⋃
𝑖∈𝜔

⋂
𝑗∈𝜔

𝐵𝑥⌢𝑖,𝑦⌢𝑗)
∁

⟹ 𝐴(𝑦)
2 ∩ (⋃

𝑖∈𝜔
⋂
𝑗∈𝜔

𝐵𝑥⌢𝑖,𝑦⌢𝑗) = ∅.

Contrapositively, if a bad pair (𝑥, 𝑦) did exist, then there would have to exist some
extension (𝑥 ⌢ 𝑖, 𝑦 ⌢ 𝑗) with 𝑖, 𝑗 ∈ 𝜔 that was also bad. Moreover, at least one
parent must be bad. As such, if there are any bad pairs at all then they form a
rooted infinite tree; following the bad parents up we get that (∅, ∅) must be a bad
pair and by following the trail of bad children downwards we find at least one
sequence of compatible bad pairs that never ends. Just as we find infinite strings
at the “bottom” of infinitely tall trees, by doing the same here we obtain a pair of
infinite strings (𝜉, 𝜁) ∈ 𝜔𝜔 × 𝜔𝜔 such that for each 𝑛 ∈ 𝜔, (𝜉 ↾ 𝑛, 𝜁 ↾ 𝑛) is bad.4

4𝜉 ↾ 𝑛 notates the first 𝑛 characters of 𝜉.

As 𝐴1 ∩ 𝐴2 = ∅, we must have that 𝜑(𝜉) ≠ 𝜓(𝜁). As 𝒳 is metrizable, it is Haus-
dorff, and so we may obtain open sets 𝑈, 𝑉  such that 𝜑(𝜉) ⊆ 𝑈 , 𝜓(𝜁) ⊆ 𝑉 , and
𝑈 ∩ 𝑉 = ∅.5 But then by continuity of 𝜑 and 𝜓, there must be 𝑛 large enough that

5More elementarily, we may justify this by recalling 𝒳 is metrizable, recovering a metric 𝑑,
and using it to find open balls with centers 𝜑(𝜉) and 𝜓(𝜁) and radius 𝑑(𝜑(𝜉), 𝜓(𝜁)).

𝐴(𝜉↾𝑛)
1 = 𝜑[𝑁𝜉↾𝑛

] ⊆ 𝑈

𝐴(𝜁↾𝑛)
2 = 𝜓[𝑁𝜁↾𝑛

] ⊆ 𝑉 ∩ 𝑈 = ∅

and so 𝑈  is a Borel set separating 𝐴(𝜉↾𝑛)
1  and 𝐴(𝜁↾𝑛)

2 , contradicting that (𝜉 ↾𝑛, 𝜁 ↾𝑛)
is bad! □
Theorem 1.2. (Analytic Perfect Set Theorem). For any perfect Polish space 𝒳
and any analytic subset 𝐴 ⊆ 𝒳, precisely one of the following is true:

1. 𝐴 is countable.
2. There is a continuous injection 2𝜔 ↪ 𝐴.

Proof. Clearly, both cannot be true, as 2𝜔 is uncountable. We proceed to show one
holds.

We will use the fourth equivalent definition of analytic sets from Section 1.3,
 and so fix a closed set 𝐶 ⊆ 𝜔𝜔 × 𝒳 such that proj𝒳[𝐶] = 𝐴. We let (𝑈𝑖)𝑖∈𝜔 be a
countable basis of open sets for 𝜔𝜔 × 𝒳.6

6Any separable and metrizable space is second countable, meaning it has a countable basis of
open sets.
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We call a point in a set 𝑆 ⊆ 𝒳 isolated if there is an open set 𝑈  such 𝑈 ∩ 𝑆 = {𝑥},
and a set perfect if it has no isolated points.7 The first step of our proof will be to

7Note that this corresponds with the definiton we’ve previously given in defining perfect
Polish spaces when 𝑆 = 𝒳.

try “sandblasting” away all of the isolated points, leaving a perfect set, which is
sometimes called the perfect kernel. To do this, we define

𝐶∗ ≔ 𝐶 \ ⋃{𝑈𝑖 : proj𝒳[𝑈𝑖 ∩ 𝐶] is countable}.

Noting that (proj𝒳[𝑈𝑖])𝑖∈𝜔 must be a basis of open sets for 𝒳, if 𝑥 ∈ 𝐴 is isolated
then some 𝑈𝑖 has proj𝒳[𝑈𝑖 ∩ 𝐶] = proj𝒳[𝑈𝑖] ∩ 𝐴 = {𝑥}.

Now, note that after this process, if 𝐶∗ = ∅, then we’ll have removed countably
many countable sets from 𝐶 and found ourselves left with nothing, and so 𝐶 is a
countable union of countable sets and thus is itself countable. On the other hand,
after this process if 𝐶∗ ≠ ∅, then we can move on to constructing an injection.

To do this, we recall that 𝜔𝜔 and 𝒳 are both completely metrizable and choose
complete metrics 𝑑𝜔𝜔 : 𝜔𝜔 × 𝜔𝜔 → [0, ∞) and 𝑑𝒳 : 𝒳 × 𝒳 → [0, ∞). We then de-
fine

𝑑 : (𝜔𝜔 × 𝒳) × (𝜔𝜔 × 𝒳) → [0, ∞)
((𝜉1, 𝑥1), (𝜉2, 𝑥2)) ↦ max{𝑑𝜔𝜔(𝜉1, 𝜉2), 𝑑𝒳(𝑥1, 𝑥2)}

and check that this is also a complete metric on 𝜔𝜔 × 𝒳 that is compatible with
its topology. Our goal will be to match up open sets of 𝜔𝜔 to open sets in 𝜔𝜔 × 𝒳
with uncountable intersection with 𝐶∗, and then find our injection using limits.

We start by finding a set to correspond to the open set 2𝜔. We choose 𝑦 ∈ 𝐶∗, and
choose an arbitrary open ball 𝐵 with nonzero radius less than 1 and center at 𝑦. As
this is an open set in 𝜔𝜔 × 𝒳, there must exist 𝐼 ⊆ 𝜔 such that ⋃𝑖∈𝐼 𝑈𝑖 = 𝐵. Then
𝐶∗ ∩ 𝐵 = 𝐶∗ ∩ ⋃𝑖∈𝐼 𝑈𝑖 = ⋃𝑖∈𝐼(𝐶

∗ ∩ 𝑈𝑖). Each 𝐶∗ ∩ 𝑈𝑖 ≠ ∅ must have uncountable
projection, as otherwise
proj𝒳[𝐶 ∩ 𝑈𝑖] = proj𝒳[𝐶∗ ∩ 𝑈𝑖] ∪ proj𝒳[(𝐶 \ 𝐶∗) ∩ 𝑈𝑖]

= proj𝒳[𝐶∗ ∩ 𝑈𝑖] ∪ proj𝒳[⋃{𝐶 ∩ 𝑈𝑖 : proj𝒳(𝑈𝑖 ∩ 𝐶) is countable}]

and so proj𝒳[𝐶 ∩ 𝑈𝑖] is a union of countable sets, and thus also countable, which
contradicts that 𝐶∗ ∩ 𝑈𝑖 ≠ ∅. As such, 𝐵 is a union of sets whose intersection with
𝐶∗ has uncountable projection, and thus also has countable projection after being
intersected with 𝐶∗. This actually follows for any open set that intersects 𝐶∗, and
is why finding the perfect kernel was essential.

We then proceed by induction. Let 𝐵∅ ≔ 𝐵 and 𝑦∅ ≔ 𝑦, as well as letting 𝑥∅
be the 𝒳-coordinate of 𝑦. For each 𝑛 ∈ 𝜔 and 𝑠 ∈ 2𝑛, we assume we have de-
fined 𝐵𝑠, an open ball whose intersection with 𝐶∗ has uncountable projection.
As the projection is uncountable, it certainly contains two distinct points, and so
we choose two distinct points 𝑥𝑠⌢0, 𝑥𝑠⌢1 ∈ proj𝒳(𝐶∗ ∩ 𝐵𝑠), then choose arbitrary
𝑦𝑠⌢𝑏 ∈ proj−1

𝒳 [{𝑥𝑠⌢𝑏)}] for 𝑏 ∈ {0, 1}. By choosing them in this way, we have that
proj𝒳(𝑦𝑠⌢0) ≠ proj𝒳(𝑦𝑠⌢1). We then may choose some positive radius 0 < 𝑟 < 2−𝑛

and set 𝐵𝑠⌢𝑏 to be the 𝜔𝜔 × 𝒳 unit ball with center 𝑦𝑠⌢𝑏 and radius 𝑟 for 𝑏 ∈ {0, 1},
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choosing 𝑟 be both small enough that 𝐵𝑠⌢𝑏 ⊆ 𝐵𝑠 for 𝑏 ∈ {0, 1} and smaller than
1
3𝑑𝒳(𝑥𝑠⌢0, 𝑥𝑠⌢1).

Our definition of 𝑑 then guarantees that the projection of the clo-
sure of each ball into 𝒳 do not intersect: letting Cl notate closure,
proj𝒳[Cl(𝐵𝑠⌢𝑏)] = {𝑧 ∈ 𝒳 : 𝑑𝒳(𝑥𝑠⌢𝑏, 𝑥) ≤ 𝑟} and so for 𝑧0 ∈ proj𝒳(Cl(𝐵𝑠⌢0)),
𝑑𝒳(𝑥𝑠⌢0, 𝑧0) ≤ 𝑟 < 1

3𝑑𝒳(𝑥𝑠⌢0, 𝑥𝑠⌢1) and so
𝑑𝒳(𝑧0, 𝑥𝑠⌢1) ≥ 𝑑𝒳(𝑥𝑠⌢0, 𝑥𝑠⌢1) − 𝑑𝒳(𝑧0, 𝑦𝑠⌢0)

> 3𝑟 − 𝑟
= 2𝑟

which implies that 𝑧0 ∉ proj𝒳(Cl(𝐵𝑠⌢1)), and likewise switching 0 for 1.
We now define our injection. We do so in two steps; first, we define

𝜓 : 2𝜔 → 𝜔𝜔 × 𝒳
𝜎 ↦ lim

𝑛→∞
𝑦𝜎↾𝑛

and then from this we define
𝜑 : 2𝜔 ↪ 𝐴

𝜎 ↦ proj𝒳(𝜓(𝜎))

We first verify that 𝜓 is well-defined with a simple 𝜀-𝑛0 argument. For 𝜀 > 0 choose
𝑛0 ∈ 𝜔 with 2−𝑛0 < 𝜀. Then for all 𝑛 > 𝑛0, 𝑦𝜎↾𝑛 ∈ 𝐵𝜎↾𝑛0

 which has radius less than
2−𝑛0 , and so for 𝑛, 𝑚 > 𝑛0, 𝑑(𝑦𝜎↾𝑛, 𝑦𝜎↾𝑚) < 2−𝑛0 < 𝜀. By completeness of the met-
ric, the limit then exists. Moreover, as every 𝑦𝜎↾𝑛 ∈ 𝐶∗ ⊆ 𝐶 and 𝐶 is closed, the
limit must be in 𝐶, and so its projection must be in proj𝒳[𝐶] = 𝐴. This verifies
that the image of 𝜑 is contained in 𝐴.

We then verify it is an injection. This is also relatively simple;
for 𝜎 ≠ 𝜏 ∈ 2𝜔, let 𝑛0 be some index such that 𝜎 ↾𝑛0

≠ 𝜏 ↾𝑛0
. Letting

Cl denote closure, we then have 𝜓(𝜎) ∈ Cl(𝐵𝜎↾𝑛0
), 𝜓(𝜏) ∈ Cl(𝐵𝜏↾𝑛0

). As
proj𝒳[Cl(𝐵𝜎↾𝑛0

)] ∩ proj𝒳[Cl(𝐵𝜏↾𝑛0
)] = ∅, we have that

𝜑(𝜎) = proj𝒳(𝜓(𝜎)) ≠ proj𝒳(𝜓(𝜏)) = 𝜑(𝜏).

Finally, we verify this is continuous with a good, old-fashioned, 𝜀-𝛿 argument. Let
𝜀 > 0 be arbitrary. We let 𝑑2𝜔 : 2𝜔 × 2𝜔 → [0, ∞) be the canonical metric on 2𝜔, de-
fined by 𝑑2𝜔(𝜎, 𝜏) ≔ 2− min{𝑛:𝜎↾𝑛≠𝜏↾𝑛}. We choose 𝑛0 ∈ 𝜔 such that 2−𝑛0 < 𝜀. Then
for 𝜎, 𝜏 ∈ 2𝜔 such that 𝑑2𝜔(𝜎, 𝜏) < 2−𝑛0 , we have that 𝑠 ≔ 𝜎 ↾𝑛0

= 𝜏 ↾𝑛0
 and so

𝜓(𝜎), 𝜓(𝜏) ∈ 𝜓[𝑁(2𝜔, 𝑠)] = 𝐵𝑠. As 𝑠 has length 𝑛0, by our definition 𝐵𝑠 has radius
less than 2−𝑛0 and so 𝑑(𝜓(𝜎), 𝜓(𝜏)) < 2−𝑛0 . Thus, by our definition of 𝑑 we have

𝜀 > 2−𝑛0 > 𝑑(𝜓(𝜎), 𝜓(𝜏))
≥ 𝑑𝒳(proj𝒳(𝜓(𝜎)), proj𝒳(𝜓(𝜏)))
= 𝑑𝒳(𝜑(𝜎), 𝜑(𝜏)),

giving us continuity.
□

2. Infinite Graphs
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We now introduce infinite graphs, a favorite topic of discussion for Descriptive
Set Theorists. A graph on a set 𝑋 of vertices can be defined as an irreflexive
symmetric relation 𝐺 ⊆ 𝑋 × 𝑋, where we think of 𝐺 as being the ordered pairs
containing the edges of the graph. This is a little different than the usual definition
and notation you see in Graph Theory, but it has some nice properties that will
become apparent throughout this write-up.

2.1. Bestowing graphs with topological properties. Recall the product
space construction from Section 1.1.3. This construction means that a graph 𝐺 on
a perfect Polish space 𝒳 is a subset of the perfect Polish space 𝒳 × 𝒳 and can
be bestowed with topological properties. In fact, properties of graphs on perfect
Polish spaces can often be seen as analogues or even generalizations of properties
of sets in perfect Polish spaces.

For an example of this, we will consider a theorem that is in some ways a gen-
eralization of Theorem 1.1, the Analytic Separation Theorem. For a graph 𝐺 on
𝒳, call a set 𝑆 ⊆ 𝒳 𝐺-independent if for all 𝑥, 𝑦 ∈ 𝑆, (𝑥, 𝑦) ∉ 𝐺. Note that this is
precisely equivalent to the property that 𝑆 × 𝑆 ∩ 𝐺 = ∅, and so can be thought of
as an analog of nonintersection between sets. Then:

Theorem 2.1. Let 𝐺 be some analytic graph on 𝒳 and 𝐴 ⊆ 𝒳 be an analytic 𝐺
-independent set. Then, there exists a Borel set 𝐵 ⊆ 𝒳 such that 𝐴 ⊆ 𝐵 and 𝐵 is
also 𝐺-independent.

Proof. For disjoint analytic sets 𝐴1, 𝐴2, let Sep(𝐴1, 𝐴2) denote the Borel set con-
taining 𝐴1 and disjoint from 𝐴2 that exists by Theorem 1.1. Let proj0 : 𝒳 × 𝒳 → 𝒳
denote the projection to the 0th-coordinate, so proj0[𝐴 × 𝐵] = 𝐴.

We start by considering 𝒳. It is clearly Borel and contains 𝐴, but obviously will
not, in general, be 𝐺-independent. In any candidate set 𝐵 ⊇ 𝐴, there are two ways
that 𝐵 × 𝐵 ∩ 𝐺 may fail to be empty:

1. There is an edge in 𝐺 between 𝐵 \ 𝐴 and 𝐴;
2. There is an edge in 𝐺 between 𝐵 \ 𝐴 and 𝐵 \ 𝐴.

(𝐴 is 𝐺-independent, so there are no edges in 𝐺 between 𝐴 and 𝐴.) Our goal is
now to eliminate these two types of edges from our cover.

We first handle edges of type 1. We note that each edge of this type appears
twice in 𝐺, once with the coordinate in 𝐴 first and once with the coordinate in 𝐴
last. We use

𝐶′1 ≔ 𝒳 × 𝐴 ∩ 𝐺 = (𝒳 \ 𝐴) × 𝐴 ∩ 𝐺 = 𝐴∁ × 𝐴 ∩ 𝐺

to capture the instance of each type one edge that has its 𝐴-coordinate last, and
then project it to the 𝐴∁-coordinate:

𝐶1 ≔ proj0[𝐶′1] = proj0[𝒳 × 𝐴 ∩ 𝐺] = {𝑥 ∈ 𝒳 : 𝑥 is 𝐺-adjacent to 𝐴. }

We now note that 𝐶′1 and thus 𝐶1 are clearly analytic by the closure properties,
and so may remove these undesirable elements of 𝒳 by separating them:

𝐵1 ≔ Sep(𝐴, 𝐶1)

We thus obtain a Borel subset 𝐵1 that still contains 𝐴 but contains no elements
that participate in type one edges.
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Now that we have dealt with the type one edges, the type two edges are easy.
We take

𝐶′2 ≔ 𝐵1 × 𝐵1 ∩ 𝐺,

noting that as we have removed all type one edges, the remaining edges we capture
with are all type two, and so neither coordinate is in 𝐴. As such, we may take

𝐶2 ≔ proj0[𝐶′2] = {𝑥 ∈ 𝐵1 : 𝑥 is 𝐺-adjacent to 𝐵1}

and be certain that it is disjoint from 𝐴. Again, 𝐶′2 and thus 𝐶2 is analytic, so we
take

𝐵 ≔ Sep(𝐴, 𝐶2) ∩ 𝐵1.

This is clearly a Borel set containing 𝐴 with no elements that are edges of either
type, and so we have that 𝐵 is 𝐺-independent. □

We are now ready to introduce the star of this write-up, the 𝔾0 graph.

2.2. Introducing… The 𝔾𝟎 Graph. We can formally define the 𝔾0 graph on
2𝜔 as follows: first, let 𝐷 ≔ {𝜎0, 𝜎1, …} be a countable dense set in 2𝜔, recalling that
perfect Polish spaces, including 2𝜔, are separable. For each 𝑛 ∈ 𝜔, let 𝑠𝑛 ≔ 𝜎𝑛 ↾𝑛.
8 Note that any given 𝜎 ∈ 𝜔𝜔 is “hit” by (𝑠𝑛)𝑛∈𝜔 infinitely often, in the sense that

8𝑠0 = 𝜎0 ↾0 is the empty string, ∅.

for any 𝑛 ∈ 𝜔 there is 𝑚 > 𝑛 such that 𝑠𝑚 ↾𝑛= 𝜎 ↾𝑛, as this must be true for 𝐷 to
be dense. Now, (𝜎, 𝜎′) ∈ 𝔾0 (in other words, 𝜎 and 𝜎′ are adjacent in 𝔾0) if and
only if there exists 𝑛 ∈ 𝜔, 𝜏 ∈ 2𝜔, {𝑏0, 𝑏1} = {0, 1} such that

𝜎 = 𝑠𝑛 ⌢ 𝑏0 ⌢ 𝜏
𝜎′ = 𝑠𝑛 ⌢ 𝑏1 ⌢ 𝜏.
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𝑠𝑛

𝑏0 𝑏1

𝜏 𝜏

Figure 3. An illustration of the conditions for adjacency in 𝔾0;
𝑠𝑛 ⌢ 0 ⌢ 𝜏  and 𝑠𝑛 ⌢ 1 ⌢ 𝜏  are adjacent.
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In words, we say that 𝜎 and 𝜎′ are adjacent in 𝔾0 if you can find 𝑛 such that the
first 𝑛 bits9 in 𝜎 spell out the string 𝑠𝑛, and 𝜎′ is identical to 𝜎 except the bit at

9A bit is a binary digit, i.e. either a 0 or a 1.

index 𝑛 + 1 in 𝜎′ has been “flipped” – switched from 1 to 0 or 0 to 1, as compared
to 𝜎.

2.2.1. One interesting property of 𝔾0. This construction may not seem “nat-
ural”, to say the least. The conditions for adjacency are pretty strange, not even
mentioning the fact that without enumerating a specific dense set, we have not
even defined 𝔾0 uniquely.10 However, there is one property of 𝔾0 that suggests a
hidden naturalness to this construction:

10Some other definitions do not even specify that 𝔾0 is constructed using an enumeration of a
dense set, and instead just fixes some (𝑠𝑛)𝑛∈𝜔 with each 𝑠𝑛 being of length 𝑛 and every 𝜎 ∈ 𝜔𝜔

being “hit” by an 𝑠𝑛 infinitely often in the sense discussed above. I have taken the liberty of
specifying that we use a dense set for convenience and concision.

Theorem 2.2. Two vertices 𝜎, 𝜏 ∈ 2𝜔 are connected (i.e. there is a path between
them) in the 𝔾0 graph if and only if they are eventually equivalent, i.e. there exists
𝑛0 ∈ 𝜔 such that for all 𝑛 > 𝑛0, the 𝑛th bit of 𝜎 is equal to the 𝑛th bit of 𝜏 .

Proof. We’ll proceed by induction, proving that for all 𝜏 ∈ 2𝜔, 𝑘 ∈ 𝜔, the set

𝐶𝑘(𝜏) = {𝑠 ⌢ 𝜏 : 𝑠 ∈ 2𝑘}

is connected. In the base case, 𝑘 = 0 and so 𝐶0(𝜏) = {𝜏}, so we vacuously have
connectedness. In the inductive step, assume that 𝐶𝑘(𝑏 ⌢ 𝜏) is connected for all
𝜏 ∈ 2𝜔, 𝑏 ∈ {0, 1}. We want to show that 𝐶𝑘+1(𝜏) is connected. Note that

𝐶𝑘+1(𝜏) = {𝑠 ⌢ 𝜏 : 𝑠 ∈ 2𝑘+1}

= {𝑡 ⌢ 𝑏 ⌢ 𝜏 : 𝑡 ∈ 2𝑘, 𝑏 ∈ {0, 1}}

= {𝑡 ⌢ 0 ⌢ 𝜏 : 𝑡 ∈ 2𝑘} ∪ {𝑡 ⌢ 1 ⌢ 𝜏 : 𝑡 ∈ 2𝑘}
= 𝐶𝑘(0 ⌢ 𝜏) ∪ 𝐶𝑘(1 ⌢ 𝜏)

and so to show 𝐶𝑘+1(𝜏) is connected we simply need to find an edge between
𝐶𝑘(0 ⌢ 𝜏) and 𝐶𝑘(1 ⌢ 𝜏). We can satisfy this with

(𝑠𝑘 ⌢ 0 ⌢ 𝜏, 𝑠𝑘 ⌢ 1 ⌢ 𝜏) ∈ 𝔾0.

□
2.3. Coloring Infinite Graphs. Once mathematicians have a graph, the first

thing they want to do is color it. A graph coloring in 𝑘 colors is usually defined
as a function 𝑐 : 𝑋 → {1, …, 𝑘} such that no two adjacent vertices 𝑥, 𝑦 ∈ 𝑋 have
𝑐(𝑥) = 𝑐(𝑦). Note that we may equivalently say that a 𝑘-coloring of a graph 𝐺 on
𝑋 is a partition of 𝑋 into 𝑘 sets, each 𝐺-independent.

As Descriptive Set Theorists are wont to do, we take this definition, narrow it
with topological conditions, and then extend it to infinity. A Borel 𝜔-coloring of a
graph 𝐺 on a vertex set 𝑋 is a partition of 𝑋 into countably infinitely many sets
⨆𝑖∈𝜔 𝐶𝑖 = 𝑋 with each 𝐶𝑖 Borel and 𝐺-independent.

Now, let (𝐵′𝑖)𝑖∈𝜔
 be a countable Borel 𝐺-independent cover of 𝑋—that is, a

countable collection of 𝐺-independent Borel sets whose union is 𝑋. Then by setting
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𝐵𝑖 ≔ 𝐵′𝑖 \ ⋃𝑗<𝑖 𝐵′𝑖 for all 𝑖 ∈ 𝜔 we can see that we have constructed a Borel 𝜔-
coloring (𝐵𝑖)𝑖∈𝜔 according to the definition given in the previous paragraph. For
this reason, we take the construction of a Borel 𝐺-independent cover as sufficient
evidence that 𝐺 admits a Borel 𝜔-coloring, and sometimes identify the former with
the latter.

3. 𝔾0 is not Borel 𝜔-colorable
Now, after learning the definition of Borel 𝜔-colorability, you may have been left

wondering whether there are any examples of graphs which are not Borel 𝜔-col-
orable. Perhaps such graphs may defy any simple description like analytic non-Borel
sets, or may even be impossible to fully describe, like non-principal ultrafilters. Not
so. In fact,

Theorem 3.1. 𝔾0 is not Borel 𝜔-colorable.

3.1. A detour into topology. To prove this fact, we will need a bit of a detour
back into topology.

3.1.1. Density. In a topological space 𝒳, the closure of a set 𝑆 ⊆ 𝒳 is the in-
tersection of all closed sets containing 𝑆, or equivalently the minimal (with regard
to ⊆) closed set that contains 𝑆. Dually, the interior of a set 𝑆 ⊆ 𝒳 is the union of
all of the open sets contained in 𝑆, or equivalently the maximal open set contained
in 𝑆.

Recall that a set 𝑆 ⊆ 𝒳 is dense in 𝒳 if its closure is equal to 𝒳. Recall that
for an open set 𝑈 ⊆ 𝒳, we can topologize 𝑈  with the subspace topology, in which
a set is open in 𝑈  if it is the intersection of 𝑈  with a set open in 𝒳. Under this
definition, we can call a set 𝑆 ⊆ 𝒳 dense in 𝑈  for 𝑈  an open set in 𝒳 if its closure
with regard to the subspace topology on 𝑈  is equal to 𝑈 .

We call a set 𝑆 ⊆ 𝒳 nowhere dense if 𝑆 is not dense in any open set 𝑈 ⊆ 𝒳.
Equivalently, a set is nowhere dense if its closure has empty interior.

3.1.2. Meagre Sets and the Baire Property. We call a set 𝑆 ⊆ 𝒳 meagre if it
is a countable union of nowhere dense sets. Like nowhere-density, meagreness is
a measure of smallness and sparcity of a set. Naturally, meagre sets make what
is called a 𝜎-ideal — countable unions of meagre sets are meagre and arbitrary
subsets of meagre sets are meagre.

We call a set 𝑆 ⊆ 𝒳 comeagre if it is the compliment of a meagre set, or equiv-
alently a countable intersection of sets whose interior is dense. As the dual to
meagreness, comeagreness measures “largeness” of a set, and countable intersec-
tions and arbitrary supersets of comeagre sets are comeagre.¹¹

¹¹Despite this being the natural dual to a 𝜎-ideal, I cannot find anyone who calls this a 𝛿-
filter.

Now, let 𝐴 △ 𝐵 be the symmetric difference of 𝐴 and 𝐵, i.e.
𝐴 △ 𝐵 = (𝐴 \ 𝐵) ∪ (𝐵 \ 𝐴). We say a set 𝐴 has the Baire property and say it is a
BP-set if it is an open set away from a meagre set—i.e. there exists an open set
𝑈  such that 𝐴 △ 𝑈  is meagre. BP-sets on a given space form a 𝜎-algebra, and so
compliments and countable unions and intersections of BP-sets are BP-sets. More-



12 JOEL B. NEWMAN

over, as open sets are clearly also BP-sets (the empty set is meagre), all Borel sets
are also BP-sets.

3.1.3. Baire Spaces. A Baire space¹² is a topological space in which every mea-
gre set has empty interior, or equivalently, in which every comeagre set is dense.

¹²I underline “A” to emphasize that I am referring to the property of a space being a Baire
space, and not the space 𝜔𝜔 which we call the Baire space. These are two distinct concepts; a
space can be a Baire space without being isomorphic to the Baire space. Thankfully though,
the Baire space is in fact a Baire space.

By a theorem known as the Baire Category Theorem, any completely metrizable
space, including our 2𝜔, is a Baire space. Note that this means that a nonempty
Baire space cannot be meagre—as a topological space it must be an open set under
its own topology, and so equal to its interior, and as a Baire space if the whole
space was meagre then that interior would be empty.

3.2. Proving the property. With that, we are ready for a very important
lemma:

Lemma 3.2. Any 𝔾0-independent BP-subset of 2𝜔 is meagre.

Proof of Lemma. In the following proof, we will notate 𝑁𝑠 for 𝑁(2𝜔, 𝑠). We will
proceed by proving the contrapositive: let 𝑆 ⊆ 2𝜔 be nonmeagre and BP. As it is
nonmeagre we definitely have that the set is not “small,” but we want to find some
subspace on which it is “large” enough that it cannot be 𝔾0-independent.

As 𝑆 is BP, we have that there is some open set 𝑈  such that 𝑆 △ 𝑈  is mea-
gre. As 𝑈  is open, it is a union of countably many basic open sets, and so we
can then take some 𝑁𝑡 ⊆ 𝑈 , with 𝑡 ∈ 2<𝜔. We can then find some 𝑠𝑛 with 𝑡 ⊑ 𝑠𝑛,
and so we have 𝑁𝑠𝑛

⊆ 𝑁𝑡 ⊆ 𝑈 . Now, 𝑁𝑠𝑛
\ 𝑆 ⊆ 𝑆 △ 𝑈 , which is meagre, and so

clearly 𝑁𝑠𝑛
\ 𝑆 is meagre. If we then consider 𝑁𝑠𝑛

 as a subspace of 2𝜔, then clearly
𝑆 ∩ 𝑁𝑠𝑛

= 𝑁𝑠𝑛
\ (𝑁𝑠𝑛

\ 𝑆) is the compliment (with regard to 𝑁𝑠𝑛
) of 𝑁𝑠𝑛

\ 𝑆, a
meagre set, and so 𝑆 ∩ 𝑁𝑠𝑛

 is comeagre in 𝑁𝑠𝑛
. We have found the subspace on

which 𝑆 is large.
Now, to show that 𝑆 is not 𝔾0-independent, we define an automorphism on 𝑁𝑠𝑛

:
𝜑 : 𝑁𝑠𝑛

→ 𝑁𝑠𝑛

𝑠𝑛 ⌢ 0 ⌢ 𝜉 ↦ 𝑠𝑛 ⌢ 1 ⌢ 𝜉
𝑠𝑛 ⌢ 1 ⌢ 𝜉 ↦ 𝑠𝑛 ⌢ 0 ⌢ 𝜉.

As it is an automorphism, it must send 𝑆 ∩ 𝑁𝑠𝑛
, a comeagre set in 𝑁𝑠𝑛

, to
𝜑(𝑆 ∩ 𝑁𝑠𝑛

), another comeagre set in 𝑁𝑠𝑛
. As they are both comeagre, their in-

tersection must then also be comeagre. As 2𝜔, and by extension its isomorphic
subspace 𝑁𝑠𝑛

 is a Baire space, we have that this intersection is dense. And as
𝑁𝑠𝑛

 is not empty, we have that this intersection is not empty. Unrolling our defi-
nitions, if the intersection is not empty then we must have that for some 𝜉 ∈ 2𝜔,
𝑠𝑛 ⌢ 0 ⌢ 𝜉, 𝑠𝑛 ⌢ 1 ⌢ 𝜉 ∈ 𝑆. That is precisely the criteria for being 𝔾0-adjacent,
and so 𝑆 contains two 𝔾0-adjacent points, and thus is not 𝔾0-independent. □

With this, we have shown that 𝔾0-independent subsets are small, too small for
their union to amount to the whole space, and so the proof follows almost imme-
diately:
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Proof of Theorem 3.1. From here, the proof is straightforward. Finding a Borel
𝜔-coloring of a graph is precisely the same as finding a way of partitioning its
vertices into countably many independent Borel sets, each set being a color class.
Supposing this is possible for 𝔾0, then as Borel sets are BP, by Lemma 3.2 each
of these color classes would be meagre. Thus, 2𝜔 would be a countable union of
meagre sets, and thus would also be meagre. As 2𝜔 is a Baire space, this means
that the interior of 2𝜔, which is simply 2𝜔 again, would be the empty set, implying
that 2𝜔 = ∅, which is absurd. □

4. The 𝔾0 Dichotomy
We have thus shown that 𝔾0 is not Borel 𝜔-colorable. Neat! But that is not the

end. There is a reason we are studying 𝔾0 and not any other graph which is not
Borel 𝜔-colorable. We will spend the rest of the write-up proving the property of
𝔾0 I am referring to here, after giving just one more definition:¹³ for two graphs

¹³This is a lie, the following proof contains many definitions, but at the very least you are
permitted to forget those as soon as the proof concludes.

𝐺 on 𝒳 and 𝐻 on 𝒴, a graph homomorphism is a function 𝜑 : 𝒳 → 𝒴 such that for
𝑥1, 𝑥2 ∈ 𝒳, if (𝑥1, 𝑥2) ∈ 𝐺, then (𝜑(𝑥1), 𝜑(𝑥2)) ∈ 𝐻.

4.1. Statement. With that, we introduce the 𝔾0 dichotomy:

Theorem 4.1. (𝔾0 dichotomy). For any analytic graph 𝐺 on 𝜔𝜔, precisely one of
the following is true:

1. 𝐺 is Borel 𝜔-colorable.
2. There exists a continuous graph homomorphism (2𝜔, 𝔾0) → (𝜔𝜔, 𝐺).

This is the reason we are studying 𝔾0; it is not just any non-Borel-𝜔-colorable
graph, it is the ur-non-Borel-𝜔-colorable graph, the minimal non-Borel-𝜔-colorable
graph, and all other such graphs are created in its image. This was first shown by
Kechris, Solecki, and Todorcevic in [1].

We can immediately prove that 1 and 2 cannot be true simulatenously from our
previous theorem:

Proof of ¬(1 ∧ 2) in Theorem 4.1 . We demonstrate that 𝐺 cannot admit a
continuous graph homomorphism 𝜑 : 2𝜔 → 𝜔𝜔 and simulatenously be Borel 𝜔-col-
orable. If we let (𝐵0)𝑖∈𝜔 be the coloring, then (𝜑−1[𝐵𝑖])𝑖∈𝜔

 would constitute a Borel
𝜔-coloring of 𝔾0. We can see this as Borel sets remain Borel under continuous in-
verse images, and each 𝜑−1[𝐵𝑖] must be 𝔾0 independent. Otherwise we would have
some 𝜎1, 𝜎2 ∈ 𝜑−1[𝐵𝑖] such that (𝜎1, 𝜎2) ∈ 𝔾0, implying that (𝜑(𝜎1), 𝜑(𝜎2)) ∈ 𝐺,
and thus as 𝜑(𝜎1), 𝜑(𝜎2) ∈ 𝐵𝑖, and thus that 𝐵𝑖 is not 𝐺-independent, a contra-
diction. As this implies that 𝔾0 is Borel 𝜔-colorable, this contradicts Theorem 3.1.
□

4.2. Goal. Showing that if 1 is not true, 2 is will be tougher, and we’ll need
a strategy—not only to complete the construction of 𝜑, but to prove that what
we construct will satisfies our requirements when we’re done. We follow the proof
outline in [2] and given by Conley, Lecomte, and Miller in [3].

As 𝐺 is analytic, it is a continuous image of the Baire space, and so we fix a
continuous surjection Ψ : 𝜔𝜔 → 𝐺 ⊆ 𝜔𝜔 × 𝜔𝜔. Our goal will be to construct a con-
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tinuous function 𝜑 : 2𝜔 → 𝜔𝜔 and witnesses 𝛾𝑛 : 2𝜔 → 𝜔𝜔 for 𝑛 ∈ 𝜔; for each 𝑛 ∈ 𝜔
and 𝜏 ∈ 2𝜔, 𝛾𝑛 will witness that 𝜑 is preserving the edge

(𝑠𝑛 ⌢ 0 ⌢ 𝜏, 𝑠𝑛 ⌢ 1 ⌢ 𝜏) ∈ 𝔾0

by satisfying that
(𝜑(𝑠𝑛 ⌢ 0 ⌢ 𝜏), 𝜑(𝑠𝑛 ⌢ 1 ⌢ 𝜏)) = Ψ(𝛾𝑛(𝜏)) ∈ 𝐺.

2𝜔

……
……
……
……
……
……
……
……
……
……
……
……
……
……
……
……

…

…

𝜌0 = 𝑠𝑛 ⌢ 0 ⌢ 𝜏

𝜌1 = 𝑠𝑛 ⌢ 1 ⌢ 𝜏

(𝜌0, 𝜌1) ∈ 𝔾0

2𝜔

…
…
…
…
…
…
…
…

…𝜏

𝜔𝜔

𝜑(𝜌0)

𝜑(𝜌1)

𝜑

𝜑
(𝜑(𝜌0), 𝜑(𝜌1)) ∈ 𝐺 𝛾𝑛(𝜏)

Ψ
𝛾𝑛

Figure 4. A visual of how 𝛾𝑘 witnesses the homomorphism of 𝔾0 into
𝐺. We identify two elements of 𝜔𝜔 with an edge between them in 𝔾0,
and send them into 𝜔𝜔 via 𝜑. We take the 𝑠𝑛 and 𝜏  that induce this
edge, and expect 𝛾𝑛(𝜏) to encode the corresponding edge in 𝐺 via the

embedding Ψ.

4.3. Approximations & Realizations. We will construct our 𝜑 and 𝛾𝑘’s by
building up to this goal with more and more detailed finite approximations. In
service of this, we define a few different structures.

First, define an (𝑛-)approximation to be a tuple of the form

𝑎 = (𝑛, 𝑓 (𝑎), (𝑔𝑘)0≤𝑘≤𝑛−1)

with 𝑓 (𝑎) : 2𝑛 → 𝜔𝑛 acting as a a finite approximation of 𝜑, and each
𝑔𝑘 : 2𝑛−(𝑘+1) → 𝜔𝑛 acting as a finite approximation of 𝛾𝑘 for 0 ≤ 𝑘 ≤ 𝑛 − 1. We
then say that an approximation 𝑎′ = (𝑛 + 1, 𝑓 (𝑎′), (𝑔(𝑎′)

𝑘 )
𝑘
) is a one-step extension

of an approximation 𝑎 = (𝑛, 𝑓 (𝑎), (𝑔(𝑎)
𝑘 )

𝑘
) if

1. 𝑓 (𝑎)(𝑠) = (𝑓 (𝑎′)(𝑠 ⌢ 𝑏)) ↾𝑛 for all 𝑠 ∈ 2𝑛, 𝑏 ∈ {0, 1};
2. 𝑔(𝑎)

𝑘 (𝑠) = (𝑔(𝑎′)
𝑘 (𝑠 ⌢ 𝑏)) ↾𝑛 for all 0 ≤ 𝑘 ≤ 𝑛, 𝑠 ∈ 2𝑛−(𝑘+1), 𝑏 ∈ {0, 1}.

These conditions essentially force compatibility, so an extension is a more elabo-
rated version of the approximation it extends.

Second, we define an (𝑛(𝛼)-)realization as a tuple
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𝛼 = (𝑛(𝛼), 𝜑(𝛼), (𝛾(𝛼)
𝑘 )

0≤𝑘≤𝑛(𝛼)−1
)

with 𝑛(𝛼) ∈ 𝜔, 𝜑(𝛼) : 2𝑛 → 𝜔𝜔, and 𝛾(𝛼)
𝑘 : 2𝑛−𝑘−1 → 𝜔𝜔 for 0 ≤ 𝑘 ≤ 𝑛 − 1 that sat-

isfies the constraint that for all 0 ≤ 𝑘 ≤ 𝑛 − 1, for all 𝑡 ∈ 2𝑛−𝑘−1,

(𝜑(𝛼)(𝑠𝑘 ⌢ 0 ⌢ 𝑡), 𝜑(𝛼)(𝑠𝑘 ⌢ 1 ⌢ 𝑡)) = Ψ(𝛾(𝛼)
𝑘 (𝑡)). (∗)

For an 𝑛-approximation 𝑎, we say that a realization 𝛼 realizes 𝑎 if the two are
compatible in the sense that

1. 𝑛(𝛼) = 𝑛;
2. (∀𝑠 ∈ 2𝑛) 𝑓 (𝑎)(𝑠) ⊑ 𝜑(𝛼)(𝑠);
3. (∀0 ≤ 𝑘 ≤ 𝑛 − 1) (∀𝑡 ∈ 2𝑛−𝑘−1) 𝑔(𝑎)

𝑘 (𝑡) ⊑ 𝛾(𝛼)
𝑘 (𝑡).

The way it extends an approximation’s outputs into 𝜔𝜔 and is bound by Equa-
tion (∗) is the reason why the above structure is called a realization—it realizes
it in the full Baire space rather than a finite simulacrum of it. We also note that
given a realization 𝛼, we may derive the approximation 𝑎 by setting 𝑛 ≔ 𝑛(𝛼),
𝑓 (𝑎)(𝑠) ≔ 𝜑(𝛼)(𝑠) ↾𝑛, and 𝑔(𝑎)

𝑘 (𝑡) ≔ 𝛾(𝛼)
𝑘 (𝑡) ↾𝑛. We call 𝑎 the approximation derived

from 𝛼.

4.3.1. Realizations within 𝑌 . Let 𝑌 ⊆ 𝜔𝜔 be arbitrary, at least for now. We call
say that a realization 𝛼 is a realization within 𝑌  if the image of 𝜑(𝛼) is contained
within 𝑌 . If 𝛼 realizes 𝑎 and is a realization within 𝑌 , we say that it realizes 𝑎
within 𝑌 , and for an approximation 𝑎 admitting a realization within 𝑌  we say that
𝑎 is realizable within 𝑌 .

4.4. The 𝒀 -Lemma. We now come to what I call the 𝑌 -lemma. This lemma
is extremely important to make the proof of Theorem 4.1 work, but is also very
hard to motivate, seeming extremely arbitrary on first blush. For this reason, we
introduce the lemma now, will motivate it when we use it, and will prove it at the
end of the write-up. Behold, the 𝑌 -lemma:

Lemma 4.2. (The 𝑌 -Lemma). For any graph 𝐺 on 𝜔𝜔, (precisely) one of the
following is true:

1. 𝐺 is Borel 𝜔-colorable.
2. There exists some Borel 𝑌 ⊆ 𝜔𝜔 such that for all 𝑛 ∈ 𝜔, for any 𝑛-approx-

imation 𝑎 that is realizable within 𝑌 , for all 𝑠 ∈ 2𝑛,

𝐴(𝑎)
𝑠 (𝑌 ) ≔ {𝜑(𝛼)(𝑠) : 𝛼 𝑟𝑒𝑎𝑙𝑖𝑧𝑒𝑠 𝑎 𝑤𝑖𝑡ℎ𝑖𝑛 𝑌 }

is not 𝐺-independent.

For now, recall Theorem 1.2, the Analytic Perfect Set Theorem, in which an ana-
lytic set is either countable or admits continuous injection from 2𝜔. That theorem
shares some direct parallels to Theorem 4.1, the 𝔾0 dichotomy, with Borel 𝜔-col-
orability being analogous to countability and 𝔾0 analogous to 2𝜔. The first step of
the proof of Theorem 1.2 was to show that either the analytic set was countable or
it had some perfect kernel we could find by sandblasting off counterexamples. The
𝑌 -lemma will serve a similar purpose in our proof of the 𝔾0 dichotomy, showing
that if 𝐺 is not Borel 𝜔-colorable then we should be able to find some subset of 𝜔𝜔
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in which the edges are dense enough that a property useful for constructing our
homomorphism emerges.

4.5. Proof of the 𝔾𝟎-dichotomy. We are now finally ready for proof of the
𝔾0-dichotomy.

Proof of ¬1 ⇒ 2 in Theorem 4.1. We treat Lemma 4.2, “the 𝑌 -lemma”, as a
surprise tool that will help us later, and invoke it to obtain a 𝑌  satisfying its cri-
teria. Our current goal is to find (𝑎𝑛)𝑛∈𝜔 such that each 𝑎𝑛 is an 𝑛-approximation
realizable within 𝑌 , and each 𝑎𝑛+1 is a one-step extension of 𝑎𝑛. To do this, we
proceed by induction.

In our base case, we set 𝑎0 to the trivial 0-approximation, defined by

𝑓 (𝑎0) : 20 = {∅} → 𝜔0 = {∅}
∅ ↦ ∅

and (𝑔(𝑎0)
𝑘 )

0≤𝑘≤𝑛−1
= ∅. By choosing arbitrary 𝜉 ∈ 𝑌 , we may construct a realiza-

tion 𝛼0 within 𝑌  by

𝜑(𝛼0) : 20 → 𝜔𝜔

∅ ↦ 𝜉,
thus proving that 𝑎0 is realizable within 𝑌 .

Now, we consider the inductive step moving from 𝑛 to 𝑛 + 1. We will be given
an 𝑛-approximation 𝑎𝑛 realizable within 𝑌  and attempt to construct an approxi-
mation 𝑛 + 1-approximation realizable within 𝑌 . To do this, we will need to take
a closer look at approximations and realizations.

Consider the approximation 𝑎𝑛. By identifying 𝑠 ∈ 2𝑛 with the basic open set
𝑁(2𝜔, 𝑠) and likewise with 𝑥 ∈ 𝜔𝑛 and 𝑁(𝜔𝜔, 𝑥) we can imagine 𝑓 (𝑎𝑛) : 2𝑛 → 𝜔𝑛

as a “fuzzy” version of the 𝜑 : 2𝜔 → 𝜔𝜔 we are trying to construct that sends
neighborhoods to neighborhoods rather than points to points. We imagine two
neighborhoods 𝑟1, 𝑟2 ∈ 2𝑛 as having a “fuzzy edge” between them if for all 𝜏 ∈ 2𝜔,
𝑟1 ⌢ 𝜏  is adjacent to 𝑟2 ⌢ 𝜏  in 𝔾0. Just as each edge in 𝔾0 corresponds to an
𝑠𝑘 and a tail 𝜏 ∈ 2𝜔, each fuzzy edge ends up corresponding to an 𝑠𝑘 and a tail
𝑡 ∈ 2𝑛−𝑘−1, and 𝑔(𝑎𝑛)

𝑘  maps these edges to neighborhoods of witnesses in 𝜔𝑛.
When we go from 𝑎𝑛 to its realization 𝛼𝑛, it is like choosing one point in each

neighborhood 𝑓 (𝑎𝑛)(𝑠) to map 𝜑(𝛼𝑛)(𝑠) for each string 𝑠, as if the outputs of 𝑓 (𝑎𝑛)

have suddenly snapped into focus. The 𝛾(𝛼𝑛)
𝑘 ’s are likewise tasked with finding wit-

nesses in the neighborhoods outlined by the 𝑔(𝑎𝑛)
𝑘 ’s to map each fuzzy edge to. With

their outputs now concrete points in 𝜔𝜔 and specific witnesses, we can check that
our realization is valid. We constrain all realizations to satisfy Equation (∗): 𝛾(𝛼𝑛)

𝑘 (𝑡)
should witness the edge in 𝐺 corresponding to the fuzzy one between 𝑠𝑘 ⌢ 0 ⌢ 𝑡
and 𝑠𝑘 ⌢ 1 ⌢ 𝑡 for 𝑡 ∈ 2𝑛−𝑘−1 by identifying an element of 𝜔𝜔 that corresponds to
it via the surjection Ψ : 𝜔𝜔 → 𝐺.
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𝑁(𝜔𝜔, 𝑓 (𝑎𝑛)(00))

𝑁(𝜔𝜔, 𝑓 (𝑎𝑛)(01)) 𝑁(𝜔𝜔, 𝑓 (𝑎𝑛)(11))

𝑁(𝜔𝜔, 𝑓 (𝑎𝑛)(10))

𝜑(𝛼𝑛)(00)

𝜑(𝛼𝑛)(01)

𝜑(𝛼𝑛)(10)

𝜑(𝛼𝑛)(11)

𝛾0(0)

𝛾1(∅)

𝛾0(1)

𝑔0(0)

𝑔0(1)

𝑔1(∅)

Figure 5.
A visualization of the approximation and realizations 𝑎𝑛 and 𝛼𝑛 in the
Baire space, when 𝑛 = 2 and 𝑠0 = ∅, 𝑠1 = 0. The dashed blue circles and
dotted light green shapes represent the fuzzy neighborhoods and edges of
𝑎𝑛, while the black dots and dark green lines represent points and edges
of the realization. The label on the dark green edges gives the element
of 𝜔𝜔 that the edge is witnessed with, while the light green fuzzy edges
are labeled with the neighborhood of potential witnesses identified by

the approximation.

In going from 𝑎𝑛 to 𝑎𝑛+1, each neighborhood splits: for each 𝑁(𝜔𝜔, 𝑓 (𝑎𝑛)(𝑠)) iden-
tified by 𝑎𝑛, we identify 𝑁(𝜔𝜔, 𝑓 (𝑎𝑛+1)(𝑠 ⌢ 𝑏)) for 𝑏 = 0, 1 in 𝑎𝑛+1. If 𝑟1 and 𝑟2
had a fuzzy edge in 𝑎𝑛, then 𝑟1 ⌢ 𝑏 and 𝑟2 ⌢ 𝑏 have a fuzzy edge for 𝑏 = 0, 1 in
𝑎𝑛+1, effectively doubling the number of fuzzy edges. Finally, there is one brand
new fuzzy edge, between 𝑠𝑛 ⌢ 0 and 𝑠𝑛 ⌢ 1. To construct a realization 𝛼𝑛+1 of
𝑎𝑛+1, then, we need to choose double the number of points and find witnesses for
one more than double the number of edges.
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𝑁(𝜔𝜔, 𝑓 (𝑎𝑛)(000))

𝑁(𝜔𝜔, 𝑓 (𝑎𝑛)(010)) 𝑁(𝜔𝜔, 𝑓 (𝑎𝑛)(110))

𝑁(𝜔𝜔, 𝑓 (𝑎𝑛)(100))

𝑁(𝜔𝜔, 𝑓 (𝑎𝑛)(001))

𝑁(𝜔𝜔, 𝑓 (𝑎𝑛)(011)) 𝑁(𝜔𝜔, 𝑓 (𝑎𝑛)(111))

𝑁(𝜔𝜔, 𝑓 (𝑎𝑛)(101))

𝑔2(∅)

Figure 6. A visualization of 𝑎𝑛+1 in the Baire space when 𝑛 = 2, 𝑠0 = ∅,
𝑠1 = 0, 𝑠2 = 10. Note how each fuzzy edge in 𝑎𝑛 (see Figure 5) corre-
sponds to two here, as well as the brand new one, colored in orange,
which corresponds to the edge between 𝑠𝑛 ⌢ 0 ⌢ ∅ and 𝑠𝑛 ⌢ 1 ⌢ ∅.

How do we find double the number of points and edges? By starting with two
distinct realizations! The 𝑌 -lemma (Lemma 4.2) tells us that the 𝑌  we choose at
the beginning of this proof is such that 𝐴(𝑎𝑛)

𝑠𝑛
(𝑌 ) is not 𝐺-independent, which in

particular means that there are at least two distinct realizations within 𝑌  of 𝑎𝑛.
Letting 𝛼𝑛, 𝛼′𝑛 be some pair of distinct realizations in 𝑅(𝑎𝑛)(𝑌 ), we can construct

𝜑(𝛼𝑛+1) : 2𝑛+1 → 𝜔𝜔

𝑠 ⌢ 0 ↦ 𝜑(𝛼𝑛)(𝑠)

𝑠 ⌢ 1 ↦ 𝜑(𝛼′𝑛)(𝑠)

and

𝛾(𝛼𝑛+1)
𝑘 : 2𝑛−𝑘 → 𝜔𝜔

𝑡 ⌢ 0 ↦ 𝛾(𝛼𝑛)
𝑘 (𝑡)

𝑡 ⌢ 1 ↦ 𝛾(𝛼′𝑛)
𝑘 (𝑡).

Each neighborhood has split in two, and we have delegated the copy ending with
0 to be handled by 𝛼𝑛 and the copy ending with 1 to be handled by 𝛼′𝑛. We can
check that this satisfies Equation (∗) for 0 ≤ 𝑘 ≤ 𝑛 − 1.
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All that remains is to define 𝛾(𝛼𝑛+1)
𝑛 : 2𝑛+1−𝑛−1 = 20 = {∅} → 𝜔𝜔. For this defi-

nition to satisfy Equation (∗), we need that

(𝜑(𝛼𝑛+1)(𝑠𝑛 ⌢ 0), 𝜑(𝛼𝑛+1)(𝑠𝑛 ⌢ 1)) =

(𝜑(𝛼𝑛)(𝑠𝑛), 𝜑(𝛼′𝑛)(𝑠𝑛)) = Ψ(𝛾(𝛼𝑛+1)
𝑛 (𝑠𝑛)).

This is where the final property given by Lemma 4.2 comes in. As 𝐴(𝑎𝑛)
𝑠𝑛

(𝑌 ) is not
𝐺-independent, we may choose 𝛼𝑛 and 𝛼′𝑛 such that 𝜑(𝛼𝑛)(𝑠𝑛) and 𝜑(𝛼′𝑛)(𝑠𝑛) are
𝐺-adjacent. We then take some

𝜉 ∈ Ψ−1[(𝜑(𝛼𝑛)(𝑠𝑛), 𝜑(𝛼′𝑛)(𝑠𝑛)]

and set

𝛾(𝛼𝑛+1)
𝑛 : 20 → 𝜔𝜔

∅ ↦ 𝜉.
We thus have constructed an 𝑛 + 1-realization 𝛼𝑛+1 within 𝑌 , and may derive the
corresponding 𝑛 + 1-approximation 𝑎𝑛+1, which is obviously realizable (by 𝛼𝑛+1)
within 𝑌 . It is easy to check that 𝑎𝑛+1 is then also a one-step extension of 𝑎𝑛,
completing the induction.

We now have defined (𝑎𝑛)𝑛∈𝜔 and (𝛼𝑛)𝑛∈𝜔 as desired, with the former consisting
of one-step extensions, each realizable, and the latter being their corresponding
realizations. We then define

𝜑 : 2𝜔 → 𝜔𝜔

𝜎 ↦ lim
𝑛∈𝜔

𝑓 (𝑎𝑛)(𝜎 ↾𝑛)

= lim
𝑛∈𝜔

𝜑(𝛼𝑛)(𝜎 ↾𝑛)

and likewise define
𝛾𝑘 : 2𝜔 → 𝜔𝜔

𝜏 ↦ lim
𝑛∈𝜔

𝑔(𝑎𝑛)
𝑘(𝜏↾𝑛−𝑘−1)

= lim
𝑛∈𝜔

𝛾(𝛼𝑛)
𝑘(𝜏↾𝑛−𝑘−1)

noting that in each definition the first limit is a limit of compatible finite strings
that increase in length to infinity, while the second is a topological limit, using the
topology on 𝜔𝜔. It is easy to verify that these coincide.

All that remains is to verify that 𝜑 is continuous and that the witnesses work
correctly. Let 𝜎 ∈ 2𝜔 be arbitrary and consider 𝜉 = 𝜑(𝜎). Let 𝑀 ⊆ 𝜔𝜔 be an arbi-
trary neighborhood of 𝜉. By definition of a neighborhood, we can find an open 𝑈
such that 𝜉 ∈ 𝑈 ⊆ 𝑀 , and then by definition of openness in a metric space we have
that there is some open ball 𝑁(𝜔𝜔, 𝜉 ↾𝑛) such that 𝑁(𝜔𝜔, 𝜉 ↾𝑛) ⊆ 𝑈 ⊆ 𝑀 . Then for
the neighborhood 𝑁(2𝜔, 𝜎 ↾𝑛), we have that
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𝜑[𝑁(2𝜔, 𝜎 ↾𝑛)] = {𝜑((𝜎 ↾𝑛) ⌢ 𝜏) : 𝜏 ∈ 2𝜔}

⊆ {𝑓 (𝑎𝑛)(𝜎 ↾𝑛) ⌢ 𝜁 : 𝜁 ∈ 𝜔𝜔}

= 𝑁(𝜔𝜔, 𝑓 (𝑎𝑛)(𝜎 ↾𝑛))
= 𝑁(𝜔𝜔, 𝜑(𝜎) ↾𝑛)
= 𝑁(𝜔𝜔, 𝜉 ↾𝑛)
⊆ 𝑀

We thus have continuity.
Finally, we check the witnesses. For 𝑛 ∈ 𝜔, 𝜏 ∈ 2𝜔, we have that

(𝜑(𝑠𝑛 ⌢ 0 ⌢ 𝜏), 𝜑(𝑠𝑛 ⌢ 1 ⌢ 𝜏)) = (lim
𝑖∈𝜔

𝜑(𝛼𝑖)(𝑠𝑛 ⌢ 0 ⌢ 𝜏 ↾𝑖), lim𝑖∈𝜔
𝜑(𝛼𝑖)(𝑠𝑛 ⌢ 1 ⌢ 𝜏 ↾𝑖))

= lim
𝑖∈𝜔

(𝜑(𝛼𝑖)(𝑠𝑛 ⌢ 0 ⌢ 𝜏 ↾𝑖), 𝜑(𝛼𝑖)(𝑠𝑛 ⌢ 1 ⌢ 𝜏 ↾𝑖))

= lim
𝑖∈𝜔

Ψ(𝛾(𝛼𝑖)𝑛 (𝜏 ↾𝑖−𝑛−1))

= Ψ(lim
𝑖∈𝜔

𝛾(𝛼𝑖)𝑛 (𝜏 ↾𝑖−𝑛−1))

= Ψ(𝛾𝑛(𝜏)).

This completes the proof. □
4.6. Proving the 𝒀 -lemma. Our last remaining goal is to prove the 𝑌 -

lemma. In order to do this, we need to prove one more (sub)lemma:

Lemma 4.3. For all 𝑛 ∈ 𝜔, 𝑠 ∈ 2𝑛, 𝑛-approximations 𝑎, and 𝑌 ⊆ 𝜔𝜔,

𝐴(𝑎)
𝑠 (𝑌 ) ≔ {𝜑(𝛼)(𝑠) : 𝛼 𝑟𝑒𝑎𝑙𝑖𝑧𝑒𝑠 𝑎 𝑤𝑖𝑡ℎ𝑖𝑛 𝑌 }

is analytic.

An easy way to prove this is to find some reasonable representation of realizations
in a perfect Polish space such that

𝑅(𝑎)(𝑌 ) ≔ {𝛼 : 𝛼 realizes 𝑎 within 𝑌 }

is Borel, and such that the operation 𝛼 ↦ 𝜑(𝛼)(𝑠) is a projection. We then end have
that 𝐴(𝑎)

𝑠 (𝑌 ) is a continuous image of a Borel set, and thus analytic. Descriptive Set
Theorists will usually take this step for granted, as it is fairly trivial to them that
the definition of a realization given in Section 4.3 admits such a representation.

For the sake of demonstrating an explicit example of such a representation and
how to construct one and for those who are new to Descriptive Set Theory and do
not find this totally intuitive, we reproduce these details in the following section.
Those willing to take Lemma 4.3 for granted may skip to Section 4.6.2.

4.6.1. Topologizing realizations. We start by finding a reasonable represenation
of 𝑛-realizations in some product space, recalling the product space construction in
Section 1.1.3. Fixing 𝑛, we note that each 𝜑(𝛼) : 2𝑛 → 𝜔𝜔 may be fully specified with
2𝑛 distinct elements of 𝜔𝜔, and likewise for each 0 ≤ 𝑘 ≤ 𝑛 − 1, 𝛾(𝛼)

𝑘 : 2𝑛−𝑘−1 → 𝜔𝜔

may be fully specified with 2𝑛−𝑘−1 elements of 𝜔𝜔. As such, by fixing some assign-
ment of coordinates, each 𝛼 may be represented as an element of the product space
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formed by producting 𝜔𝜔 with itself 2𝑛 + ∑𝑛−1
𝑘=0 2𝑛−𝑘−1 = 2𝑛+1 − 1 times, which we

will notate by (𝜔𝜔)2𝑛+1−1.
We then fix some such arbitrary assignment of coordinates and notate these

with ⟦⋅⟧ in such a manner that for any 𝛼 ∈ (𝜔𝜔)2𝑛+1−1, we have:
• For 𝑠 ∈ 2𝑛, proj⟦𝜑,𝑠⟧(𝛼) = 𝜑(𝛼)(𝑠);
• For 0 ≤ 𝑘 ≤ 𝑛 − 1, 𝑡 ∈ 2𝑛−𝑘−1, proj⟦𝛾,𝑘,𝑡⟧(𝛼) = 𝛾(𝛼)

𝑘 (𝑡).

With our representation specified, we are ready to prove that 𝑅(𝑎)(𝑌 ) is Borel:

Lemma 4.4. For any 𝑛-approximation 𝑎 and 𝑌 ⊆ 𝜔𝜔, 𝑅(𝑎)(𝑌 ) is Borel.

Proof of Lemma 4.4. We recall that for a tuple

𝛼 = (𝑛, 𝜑(𝛼), (𝛾(𝛼)
𝑘 )

𝑘
)

the conditions for it to realize 𝑎 are that
1. 𝑛(𝛼) = 𝑛;
2. (∀𝑠 ∈ 2𝑛) 𝑓 (𝑎)(𝑠) ⊑ 𝜑(𝛼)(𝑠);
3. (∀0 ≤ 𝑘 ≤ 𝑛 − 1) (∀𝑡 ∈ 2𝑛−𝑘−1) 𝑔(𝑎)

𝑘 (𝑡) ⊑ 𝛾(𝛼)
𝑘 (𝑡);

4. (∀0 ≤ 𝑘 ≤ 𝑛 − 1) (∀𝑡 ∈ 2𝑛−𝑘−1) (𝜑(𝛼)(𝑠𝑘 ⌢ 0 ⌢ 𝑡), 𝜑(𝛼)(𝑠𝑘 ⌢ 1 ⌢ 𝑡)) = Ψ(𝛾(𝛼)
𝑘 (𝑡)).

The first is irrelevant as 𝑛 is fixed, but we are going to have to find topological
ways of ensuring that 2, 3 and 4 are satisfied.

For 2 and 3, we note that for 𝑥 ∈ 𝜔𝑛, 𝜉 ∈ 𝜔𝜔, 𝑥 ⊑ 𝜉 is equivalent to 𝜉 ∈ 𝑁(𝜔𝜔, 𝑥),
where 𝑁(𝜔𝜔, 𝑥) is the basic open set of 𝜔𝜔 consisting of all strings extending 𝑥, as
discussed in Section 1.1.2. As such, we can reprhase the former as

(∀𝑠 ∈ 2𝑛) 𝑓 (𝑎)(𝑠) ⊑ 𝜑(𝛼)(𝑠)

⟺ (∀𝑠 ∈ 2𝑛)  proj⟦𝜑,𝑠⟧(𝛼) = 𝜑(𝛼)(𝑠) ∈ 𝑁(𝜔𝜔, 𝑓 (𝑎)(𝑠))

⟺ 𝛼 ∈ ⋂ proj−1
⟦𝜑,𝑠⟧[𝑁(𝜔𝜔, 𝑓 (𝑎)(𝑠))]  (2′)

and the latter as

(∀0 ≤ 𝑘 ≤ 𝑛 − 1) (∀𝑡 ∈ 2𝑛−𝑘−1) 𝑔(𝑎)
𝑘 (𝑡) ⊑ 𝛾(𝛼)

𝑘 (𝑡)

⟺ (∀0 ≤ 𝑘 ≤ 𝑛 − 1) (∀𝑡 ∈ 2𝑛−𝑘−1)  proj⟦𝛾,𝑘,𝑡⟧(𝛼) ∈ 𝑁(𝜔𝜔, 𝑔(𝑎)
𝑘 (𝑡))

⟺ 𝛼 ∈ ⋂
0≤𝑘≤𝑛−1

⋂
𝑡∈2𝑛−𝑘−1

proj−1
⟦𝛾,𝑘,𝑡⟧[𝑁(𝜔𝜔, 𝑔(𝑎)

𝑘 (𝑡))]  (3′)

We note that in each case our restrictions are intersections of inverse projections
of basic open sets, and so both respresent Borel sets.

For 4 we need to further invoke relations. As discussed earlier, any relation on
perfect Polish spaces lives in a product space. The only relation we need for this is
the equalty relation, Eq𝒳 = {(𝑥, 𝑥) : 𝑥 ∈ 𝒳}. We can see that this relation is Borel,
as we may construct it by finding a metric 𝑑𝒳 : 𝒳 × 𝒳 → [0, ∞) and then taking
Eq𝒳 = 𝑑−1

𝒳 [{0}], noting that 𝑑 is continuous.
We will sometimes denote (𝑥, 𝑦) ∈ Eq𝒳 by Eq𝒳(𝑥, 𝑦). We then recall that Borel

sets are closed under continuous substitution; that is, if 𝑓, 𝑔 are continuous, and
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𝑅 ∈ 𝒳 × 𝒳 is a Borel relation, then {(𝑥, 𝑦) : 𝑅(𝑓(𝑥), 𝑔(𝑦))} is also Borel. This fi-
nally allows us to state 4 topologically:

(∀0 ≤ 𝑘 ≤ 𝑛 − 1) (∀𝑡 ∈ 2𝑛−𝑘−1) (𝜑(𝛼)(𝑠𝑘 ⌢ 0 ⌢ 𝑡), 𝜑(𝛼)(𝑠𝑘 ⌢ 1 ⌢ 𝑡)) = Ψ(𝛾(𝛼)
𝑘 (𝑡))

⟺ (∀0 ≤ 𝑘 ≤ 𝑛 − 1) (∀𝑡 ∈ 2𝑛−𝑘−1) (proj⟦𝜑,𝑠𝑘⌢0⌢𝑡⟧(𝛼), proj⟦𝜑,𝑠𝑘⌢1⌢𝑡⟧(𝛼)) = Ψ(proj⟦𝛾,𝑘,𝑡⟧(𝛼))

⟺ 𝛼 ∈ {𝛼 : ⋂
0≤𝑘≤𝑛−1

⋂
𝑡∈2𝑛−𝑘−1

Eq((proj⟦𝜑,𝑠𝑘⌢0⌢𝑡⟧(𝛼), proj⟦𝜑,𝑠𝑘⌢1⌢𝑡⟧(𝛼)), Ψ(proj⟦𝛾,𝑘,𝑡⟧(𝛼)))}  (4′)

as the projections and Ψ are all continuous functions, this property of continuous
substitution gives us that this last restriction is also Borel.

Our last restriction is that of being a realization within 𝒀 . This is trivial, as
this restriction simply requires that every coordinate corresponding to an output
of 𝜑 lies within 𝑌 , which may be enforced by intersecting with ∏𝑖∈2𝑛+1−1 𝑍𝑖 where
𝑍𝑖 is equal to 𝑌  when 𝑖 ∈ {⟦𝜑, 𝑠⟧ : 𝑠 ∈ 2𝑛} and 𝜔𝜔 otherwise.

Intersecting this restriction with our sets for 2′, 3′, 4′, we will have constructed
𝑅(𝑎)(𝑌 ) from Borel sets and Borel-preserving operations, proving that 𝑅(𝑎)(𝑌 ) is
Borel. □

With that, we may show Lemma 4.3 trivially:
Proof of Lemma 4.3. For 𝑎 an 𝑛-approximation, we translate our logical defini-

tion of 𝐴(𝑎)
𝑠 (𝑌 ) to a topological definition:

𝐴(𝑎)
𝑠 (𝑌 ) = {𝜑(𝛼)(𝑠) : 𝛼 realizes 𝑎 within 𝑌 }

= {proj⟦𝜑,𝑠⟧(𝛼) : 𝛼 ∈ 𝑅(𝑎)(𝑌 )}

= proj⟦𝜑,𝑠⟧[𝑅(𝑎)(𝑌 )]

Then, immediately from the above rewriting, Lemma 4.4, definition of analytic
sets, and continuity of projections, we have that 𝐴(𝑎)

𝑠 (𝑌 ) is analytic. □
4.6.2. Proof of the 𝑌 -lemma. We are now finally ready to prove the 𝑌 -lemma:
Proof of Lemma 4.2. We let 𝑃(𝑌 ) be the set of all approximations realizable

within 𝑌 . As discussed in Section 4.4, we will follow a similar strategy to that
used in the proof of Theorem 1.2, in which we sandblast off counterexamples, until
either nothing or something is left.

We let 𝑌0 = 𝜔𝜔 in our base case. In our step case, we given 𝑌𝜄, and if for all
𝑎 ∈ 𝑃(𝑌𝜄), 𝑠 ∈ 2𝑛, 𝐴(𝑎)

𝑠 (𝑌𝜄) is not 𝐺-independent, we set 𝑌 ≔ 𝑌𝜄 and halt; we have
accomplished our goal. Otherwise, we choose a counterexample 𝑎𝜄 ∈ 𝑃(𝑌𝜄), 𝑠 ∈ 2<𝜔

such that 𝐴(𝑎𝜄)𝑠 (𝑌𝜄) is 𝐺-independent. By Lemma 4.3 we have that this set is ana-
lytic, and so we use Theorem 2.1 to find a Borel 𝐵𝜄 ⊆ 𝜔𝜔 such that 𝐴(𝑎𝜄)𝑠 (𝑌𝜄) ⊆ 𝐵𝜄
and 𝐵𝜄 is 𝐺-independent. We then set 𝑌𝜄+1 ≔ 𝑌𝜄 \ 𝐵𝜄 and continue.

Aside from halting due to finding a 𝑌  that satisfies our requirements, there is
a second condition under which this process halts; if 𝑃(𝑌𝜄) = ∅. As the trivial 0-
approximation (0, ∅ ↦ ∅, ∅) always has a 𝑌 -realization so long as 𝑌 ≠ ∅, then this
occurs if and only if 𝑌𝜄 = ∅.

Now, note that if on step 𝜄 we have not halted, then we have found 𝑎𝜄 ∈ 𝑃(𝑌𝜄)
and a 𝐵𝜄 such that 𝐴(𝑎𝜄)

𝑠(𝑌𝜄) ⊆ 𝐵𝜄. We thus have that the image of every realiza-
tion in 𝑌𝜄 of 𝑎𝜄 intersects 𝐵𝜄, and so is not a 𝑌𝜄 \ 𝐵𝜄 = 𝑌𝜄+1-realization. As such,
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𝑎𝜄 ∉ 𝑃(𝑌𝜄+1). The upshot of this is that any particular approximation may only
appear once in the sequence (𝑎𝜄)𝜄 that our procedure is constructing, and so it
is enumerating some subset of 𝑃 , the set of all 𝑛-approximations. As 𝑃  is only
countably large (each 𝑛-approximation is fully determined by 2𝑛+1 − 1 elements of
𝜔) we are able to put a bound on the number of steps this takes.

Unfortunately, we are not able to show that this process halts after finitely many
steps. Worse, the traditional induction trick of taking 𝑌𝜔 ≔ ⋂𝜄∈𝜔 𝑌𝜄 does not work
here either: while (𝑎𝜄)𝜄∈𝜔 will certainly enumerate some subset of 𝑃 , it is entirely
possible that 𝑃 \ {𝑎𝜄 : 𝜄 ∈ 𝜔} is not empty and thus that 𝑃𝜔 contains yet more
counterexamples. Fortunately, with transfinite induction we may remedy this.

An introduction to transfinite induction is out of scope for this write-up, but we
may think of is 𝜔 as like the step number representing the limit of all steps whose
number is finite, a step that you can never get to in any finite amount of time. 𝜔 is
a limit ordinal, and for any such limit ordinal 𝜆, we assume that we have completed
every step 𝜄 < 𝜆 and set 𝑌𝜆 ≔ ⋂𝜄<𝜆 𝑌𝜄, allowing us to continue inducting.14

14If this is the first time you have seen transfinite induction you may find this strange or
hand-wavy, but this form of induction is in fact very rigorous.

Now that we have extended this induction transfinitely, we can be certain that
it halts—maybe not at a finite step, or even step 𝜔, but it certainly must stop
before 𝜔1, the first uncountable ordinal. Otherwise, we would have an enumeration
(𝑎𝜄)𝜄∈𝜔1

 of a subset of 𝑃  indexed by an uncountable ordinal, which would imply
that 𝑃  is uncountably large, and we know that it is not. As such, we can be sure
that at some ordinal 𝜂 < 𝜔1, we either have that 𝑌𝜂 fulfils our requirements or
that ∅ = 𝑌𝜂 = 𝜔𝜔 \ ⋃𝜄∈𝜂 𝐵𝜂. Then as ⋃𝜄∈𝜂 𝐵𝜄 = 𝜔𝜔 and each set in the union is
Borel and 𝐺-independent, this constitutes a Borel 𝜔-coloring of 𝐺, which we have
assumed 𝐺 does not admit. As such, this is a contradiction, and we may assume
that our process ends by finding a satisfactory 𝑌 .

Finally, as 𝑌  is formed by taking 𝜔𝜔 and subtracting a countable union of Borel
sets, 𝑌  is Borel. □

4.7. Bonus Round. The canonical version of The 𝔾0 Dichotomy is a little
more general than the one given in Theorem 4.1:

Theorem 4.5. (𝔾0 Dichotomy, General Statement). For any perfect Polish space
𝒳, for any analytic graph 𝐺 on 𝒳, precisely one of the following is true:

1. 𝐺 is Borel 𝜔-colorable.
2. There is a continuous graph homomorphism (2𝜔, 𝔾0) → (𝒳, 𝐺).

This follows directly from our Theorem 4.1, using a property of 𝜔𝜔 we will state
but not prove here:

Proof. Given any 𝒳, we may fix a continuous surjection 𝜓 : 𝜔𝜔 ↪ 𝒳 such that
for some closed 𝐶 ⊆ 𝜔𝜔, 𝜓 ↾𝐶 : 𝐶 → 𝒳 is a bĳection.

We then clearly have that
𝜌 : 𝐶 × 𝐶 → 𝒳 × 𝒳

(𝑥1, 𝑥2) ↦ (𝜓(𝑥1), 𝜓(𝑥2))
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is a bĳection. We then set 𝐺′ ≔ 𝜌−1[𝐺] and obtain 𝐺′, an analytic graph on 𝜔𝜔,
and apply Theorem 4.1.

In the case that 𝐺′ is Borel 𝜔-colorable, we let (𝐵′𝑖)𝑖∈𝜔
 be such a coloring,

and obtain a Borel 𝜔-coloring of 𝐺 by 𝐵𝑖 ≔ 𝜓[𝐵′𝑖 ∩ 𝐶] for 𝑖 ∈ 𝜔. Each of these
sets is Borel because isomorphic images of Borel sets are Borel, and each is in-
dependent as if 𝜓(𝜉1) and 𝜓(𝜉2) are adjacent in 𝐺 with 𝜓(𝜉1), 𝜓(𝜉2) ∈ 𝐵𝑖, then
(𝜉1, 𝜉2) = 𝜌−1(𝜓(𝜉1), 𝜓(𝜉2)) ∈ 𝜌−1[𝐺] = 𝐺′.

Otherwise, we obtain a continuous graph homomorphism 𝜑 : 2𝜔 → 𝜔𝜔 of 𝔾0 into
𝐺′. 𝜓 ∘ 𝜑 : 2𝜔 → 𝒳 is then also continuous. Moreover, if (𝜎1, 𝜎2) ∈ 𝔾0, then as 𝜑
is a graph isomorphism we have (𝜑(𝜎1), 𝜑(𝜎2)) ∈ 𝐺′. Finally, by definition of 𝐺′
we have that (𝜓 ∘ 𝜑(𝜎1), 𝜓 ∘ 𝜑(𝜎2)) = 𝜌(𝜑(𝜎1), 𝜑(𝜎2)) ∈ 𝜌(𝐺′) = 𝐺 and so 𝜓 ∘ 𝜑 is
a continuous graph homomorphism of 𝔾0 into 𝐺. □
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