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Abstract

This write up includes a discussion of basic categorical concepts from an introductory perspective,
ranging from objects and morphisms to functors and natural transformations. There is then an intro-
duction of some useful categorical constructions, namely the limit and some of its examples (product,
pullback) and the notions of opposites and categorical duals. I then take a brief detour to cover the
basics of a topology, ending with a subsequent introduction and discussion of Grothendieck topology
and presheaves in category theory and topology drawing the necessary links between the corresponding
topological and categorical notions. This report was compiled for the 2023 Winter term Directed Reading
Program at McGill University. Many thanks to my DRP mentor Lucy Grossman for guidance throughout
the term in exploring these topics, to Alexander Grothendieck for inventing the topic that was the focus
of my project, to Samuel Eilenberg and Saunders MacLane for basically inventing the whole field of Cat-
egory theory and writing a good book[5] on the subject, to Emily Riehl for more recently writing another
good book[6] on the subject, and to Richard E. Borcherds for giving me a nicely palatable introduction
to the basics of Category theory via his online lecture series “Categories for the Idle Mathematician”[2].
Most of what follows, unless specifically cited, I absorbed; amalgamated; and regurgitated in basically
my own style drawing from the various sources listed above.
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1 Basics of Category Theory:

1.1 Commutative Diagrams

We draw a lot of pictures to illustrate and prove things in Category Theory. We often will call these
commutative diagrams;

Definition 1. A commutative diagram, such as:

A

B C

f h

g

commutes iff h = g ◦ f , i.e. any path with the same start and end objects (here A,C respectively) in a
commutative diagram should be equivalent.

1.2 Categories

Definition 2. A category C is a collection of objects Obj(C) and morphisms Mor(C), where

(i) composition of morphisms is a sensible notion,

(ii) all objects X ∈ Obj(C) have a corresponding identity morphism idX ∈ Mor(C), and

(iii) for any X,Y, Z ∈ Obj(C), f : X → Y, g : Y → Z ∈ Mor(C) implies ∃h = g ◦ f : X → Z ∈ Mor(C) i.e. a
category is closed under such composition of morphisms.

A sample (small) category can be interpreted from the below commutative diagram:

A B C

D E

F

n

idA

j

g f

h
idC

l
k

m
idEi

o
p

q

(given some assumptions about unwritten identity morphisms and identification of certain arrows with
composition morphisms). If you wish, a nice exercise is looking through this sample category and figuring
out what these conditions are.1

So, at their heart, categories are essentially just a collection of stuff along with relationships between those
things that satisfy these special properties. In a commutative diagram (as above), morphisms are typically
referred to as arrows.

In summary, we have the main elements that are required to form a category C:

(i) Objects

(ii) Morphisms (arrows between objects)

(iii) A sensible notion of composition of morphisms, which must also be in C

(iv) Identity morphisms exist for all objects in C
1each object X should have an identity idX; for commutativity of the whole diagram, fg = hg = n, ∃r = ln = qj : A → E,

ri = q, gi = o, ni = p, pj = n, p = ho = fo, lk = m, q = lp, ji = idF, ij = idA is a probably non-exhaustive list of examples;
if commutativity is not imposed then the following composed morphisms all must exist somewhere in the category, but are not
necessarily equal.
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Remark 1. The general point is to be able to ignore the internal structure of the objects in a category,
instead only dealing with the more abstract objects and morphisms between them.

Remark 2. We also have some passing morphism terminology:

• automorphism (map to the self), f : A→ A

• homomorphism (structure-preserving map between structures of the same type), f : A → B : A,B ∈
Obj(C)

• isomorphism (bijective/invertible homomorphism),

• monomorphism (injective homomorphism),

• epimorphism (surjective homomorphism)

1.3 Functors

Definition 3. If we have two categories C,D and some map:

C F→ D (1)

where F preserves identity and composition of morphisms in the manner of F (idC) = idD and F (g ◦ f) =
F (g) ◦ F (f), then F is a (covariant) functor.

Functors are, in essence, structure preserving maps between categories; they send objects to objects and
morphisms to morphisms. A handy visualization of the structure-conserving property is given below, with
a (covariant) functor acting on our favourite commutative triangle:

A

B

C

idA

f

g◦f idB

g

idC

F−→

F (A)

F (B)

F (C)

idF(A)

F (f)

F (g)◦F (f) idF(B)

F (g)

idF(C)

Remark 3. The above-pictured functor is said to be covariant, as it preserves arrow direction. If a functor
reverses the direction of arrows (and order of morphism composition), then we say it is contravariant, i.e.

A

B

C

idA

f

g◦f idB

g

idC

F−→

F (A)

F (B)

F (C)

idF(A)

F (f)

idF(B)F (f)◦F (g)

idF(C)

F (g)

Note that the contravariant functor can also be defined as its corresponding covariant functor, where one of
the categories is made opposite (I’ll discuss opposite categories shortly), i.e. if F : C → D is a contravariant
functor, then G : Cop → D and H : C → Dop can both define covariant versions of F .

Remark 4. We can have categories whose objects are categories, and whose morphisms are functors. We
could define isomorphism of categories, where if F : C → D and G : D → C then G ◦ F = idC and
F ◦G = idD, but supposedly this is not so useful (it turns out to be too restrictive of a notion).

Rather, we say that functors F,G are equivalences of categories C,D when, if F : C → D and G : D → C,
then G ◦F ≃ idC and F ◦G ≃ idD (these G ◦F, F ◦G being isomorphic to the respective identity morphisms
rather than strictly equal to them).

4



Remark 5. A common example of a functor is a forgetful functor, which takes some collection of objects with
additional structure between them and forgets that structure. An example of this is the forgetful functor
on the category of groups, which sends each group to its underlying set by “forgetting” the group structure.
For this example, there is also a “free group functor” which takes a set S and turns it into the free group on
that set.2 Some other forgetful functors are those which forget the vector space or topological structures in
the categories of vector spaces and topological spaces, respectively.

1.4 Natural Transformations

Definition 4. A natural transformation is a map between two functors, which conserve the structure of
morphism composition. Particularly, if we have functor categories, where:

1. objects are some collection of functors,

2. morphisms are the natural transformations between these functors;

then we can for instance take X,Y ∈ C with C,D categories and F : C → D and G : C → D functors (and
thus objects of a functor category), and if ∃f : X → Y ;

(F : C → D)

(G : C → D)

N (where the internal structures of C,D are preserved as in:)

F (X) F (Y )

G(X) G(Y )

F (f)

N N

G(f)

where if this diagram commutes, then N is a natural transformation.

Remark 6. In fact, natural transformations can be used as the morphisms of a functor category whose objects
are functors, as depicted on the left above.

1.5 Higher Category Theory

Different “levels” of categories exist and can be delineated. For instance,

(i) A (small) 0-category can be viewed as a set

(ii) A 1-category is a category whose morphisms form a 0-category

(iii) A 2-category is a category whose morphisms form a 1-category3

(iv) and we can generalize further from this construction inductively to construct n-categories with n levels
of different morphisms to care about.

1.6 Limits

Definition 5. An object is a universal object if it has the universal property, which means that it is unique up
to a unique isomorphism. In the following diagram demonstrating the definition of a limit, this is represented
by the existance of some unique (up to unique isomorphism) map u : N → L, for any other N,ψX , ψY ∈ D
which also satisfies the commutative diagram.

Definition 6. A limit is one such universal object. If F : C → D is a functor, and X,Y ∈ C, for instance,
with f : X → Y a morphism in C, then the limit L is the object in D which has maps to each element
in D. That is to say that there always exists a map ϕX : L → F (X) and ϕY : L → F (Y ) such that
F (f) ◦ϕX = ϕY for L with the universal property, for any such X,Y, f . Note, however, this limit only exists
if the category contains limits, which is not necessarily true; it is not always the case that such an object

2a free group being the group formed by treating the elements of a set as its generators, and such that the only relations
that exist between its generators are those of elements with their inverses (particularly that ∀g ∈ G, g · g−1 = g−1 · g = idG;
the group operation applied between an element and its inverse is equal to the group identity element).

3and in which we care about this 1-categorical nature, to look inside at the composition of the different levels of morphisms.
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and set of morphisms exist.

Generally, if there exists a limit in the target category, we have a family of morphisms ϕi that map from
some defining universal object of the limit L to all other objects in the target category of the functor F ,
forming a series of commuting “cones” as pictured.4

N

L

F (X) F (Y )

ψX

u
ψY

ϕX ϕY

F (f)

Definition 7. A diagram of shape J in a category C is a covariant functor F : J → C; the category J can
be viewed as an index category of C, where F indexes both objects and morphisms in C by objects in J .

Definition 8. Given a diagram F : J → C, a cone to F is an object N ∈ C along with a collection
of indexed morphisms ϕXi

: N → F (Xi), where for any other morphism f : Xi → Xj ∈ J we have
F (f) ◦ ϕXi

= ϕXj
: N → F (Xj).

Remark 7. We can see that under these definitions a limit in a category C is a universal cone of some diagram
F : J → C from an index category J , i.e. a cone with the universal property.

Example 1. An example of a limit is an equalizer ; a universal object X with morphism f : X → A, such
that if:

X
f→ A

g

⇒
h
B (2)

then h ◦ f = g ◦ f .

Particularly, if we expand this diagram, we get the commutative square:

X A

A B

f

f g

h

where although it is not pictured, we can keep in mind that X is here a universal object5. Using closure
under composition of morphisms, this can be further expanded to:

X

A B A B

f

g◦f f

h◦f

g h

When the category C ∋ X,A,B we are working with is viewed as the target of a diagram from some index
category J , we can therefore see the equalizer (X, f) to be an example of a limit construction based on its
diagrammatic nature as a collection of (in this example, two) universal cones.

1.6.1 Products

Definition 9. Consider a category C with X1, X2 objects in C. Then for any object Y and morphisms
f1 : Y → X1, f2 : Y → X2, the product is an object X1

∏
X2 such that for some (projection) morphisms

i1 : X1

∏
X2 → X1, i2 : X1

∏
X2 → X2, there exists a unique morphism f : Y → X1

∏
X2 such that

f1 = i1 ◦ f and f2 = i2 ◦ f .

i.e. the diagram

4this diagram alone should commute; the overall diagram which includes all elements of the category C should have each of
its triangles (cones) commuting.

5and notice for later that (X, f, f) is also an example of a pullback of (A,A) on B
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Y

X1 X1

∏
X2 X2

f1

f

f2

i1 i2

defines the product as the unique (up to unique isomorphism) such object having the universal property,
meaning that any other object Y factors through the product uniquely.

Example 2. Let X1, X2 ∈ R, f1(Y ) = X1, f2(Y ) = X2, and i1(a, b) = a, i2(a, b) = b; then for an
object X1

∏
X2 = (X1, X2), the unique map f : Y → X1

∏
X2 exists where i1 ◦ f = f1 : Y → X1,

i2 ◦ f = f2 : Y → X2 and thus the object X1

∏
X2 = {(x1, x2) : x1 ∈ X1, x2 ∈ X2} defines a product of

X1, X2. This is in fact one way to define the Cartesian product of sets.

Remark 8. The notion of product between two objects can be generalized to a product between any number
of objects.

Remark 9. The product is an example of a limit. We can see this by considering a functor mapping from
the [discrete category (where the only morphisms are identity morphisms) indexing elements of the product]
to [the nearly-discrete category where the objects Xi involved in defining the product live, with the only
non-discrete object being the product X1

∏
· · ·

∏
X2 and its relevant projection morphisms i1, . . . , i2]. If we

construct a product (with universal property) on this category, we have the expanded commutative diagram:

X1

∏
· · ·

∏
X2

X1 X1 · · · X2 X2

i1
i1 i2

i2

idX1
idX2

where this full diagram commutes and thus the product also satisfies the diagrammatic form of a limit.

Remark 10. For topological spaces X,Y , the product X×Y is defined by the space of products of open sets
U × V : U ∈ X,V ∈ Y . In category theory, we abstract this idea such that we don’t need to look inside the
sets X,Y , for instance.

1.6.2 Pullbacks

Definition 10. Another example of a limit, the pullback (X ×Z Y, i1, i2) is the universal object such that
the following diagram commutes, and where the universal property requires that any N factors uniquely
through the pullback via some unique isomorphism u:

N

X ×Z Y Y

X Z

u

i2

i1 f2

f1

Remark 11. Alternatively notated: the pullback of X,Y on Z is the triple (P : X ×Z Y, i1, i2); a universal
object P and two projection morphisms i1 : P → X and i2 : P → Y such that for some given morphisms
f1 : X → Z and f2 : Y → Z we have f1 ◦ i1 = f2 ◦ i2.

1.7 Opposite Categories and Categorical Duals

We can now turn out attention to the idea of an opposite category. With the definition of a category C, there
naturally can be seen to exist an opposite category Cop. It contains exactly the same things as C, except
with the direction of all arrows reversed. If we recall the toy category constructed earlier:
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A B C

D E

F

idA

j

g f

h
idC

l
k

m
idEi

then we can see its opposite category is given diagrammatically by:

A B C

D E

F

i

idA g

f

h
k

idC

l

m idE

j

Definition 11. Given a category C, its opposite category Cop is the same collection of objects and morphisms,
but with all arrow directions reversed.

Along with an opposite category comes the notion of a categorical dual construction; particularly

Definition 12. A dual construction in a category C is equivalent to the non-dual construction in its opposite
category Cop.6

With that in mind, I present the following:

1.8 Colimits

Definition 13. A colimit is another universal object, dual to the limit. If F : C → D is a functor, and
X,Y ∈ C, for instance, with f : X → Y a morphism in C, then the colimit (assuming it exists) is the universal
object in D which is mapped to by to each such element in D in the manner of ϕX : X → L, ϕY : L→ L7.

We can have generally a family of morphisms ϕi that map objects in C to some defining object L of the
colimit, forming a series of inverted cones as pictured. Basically the colimit is the object L pictured below,
with the universal property such that any N as pictured factors through L.

F (X) F (Y )

L

N

F (f)

ψX

ϕX

ψY

ϕY

u

1.8.1 Coproducts

Definition 14. Consider a category C with X1, X2 objects in C. Then for any object Y and morphisms
f1 : X1 → Y , f2 : X2 → Y , a coproduct is a universal object X1

∐
X2 such that for some inclusion

morphisms i1 : X1 → X1

∐
X2, i2 : X2 → X1

∐
X2, there exists a unique morphism f : X1

∐
X2 → Y such

that f1 = f ◦ i1 and f2 = f ◦ i2.

i.e. the diagram

6e.g. for a limit in C, the dual construction is a colimit in Cop

7the resulting triangular/cone diagrams should commute just as they do with the limit
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X1 X1

∐
X2 X2

Y

i1

f1 f

i2

f1

defines the coproduct as the unique (up to unique isomorphism) universal object.

Example 3. let X1, X2 ⊆ R, f1(X1) = Y , f2(X2) = Y , and for the collection of subsets A ⊆ X1, B ⊆ X2 de-
fine the collection of morphisms i1, i2 by i1(A) = {∀a ∈ A : a if a ∈ A

∐
B}, i2(B) = {∀b ∈ B : b if b ∈ A

∐
B}

(i.e. inclusion maps); then for an object X1

∐
X2, the unique map f which sends objects to Y by f1 if they

originate from X1, and by f2 if they originate from X2 exists, and by construction of the inclusion maps
then i1 ◦ f = f1, i2 ◦ f = f2; thus the object X1

∐
X2 defines a coproduct of X1, X2 on the category of sets

in R.

Remark 12. In fact, this example coproduct is the disjoint union of sets X1 ⊔ X2, i.e. a set union which
distinctly differentiates elements originating from X1, X2.

Remark 13. The coproduct is dual to the product.

Remark 14. Interestingly, for abelian groups, the finite coproduct is equal to the product. For the category
of abelian groups, the product of groups G,H is the cartesian product of group elements (g, h) with indepen-
dently acting group operations, and the coproduct is the free product G ∗H (which constructs the universal
group generated by the elements of G and H with both G,H as subgroups). For abelian groups G,H, these
are by default normal subgroups and thus G ∗H is generated by its normal subgroups. This implies we can
interpret G ∗H as simply being the direct sum of the groups G+H. This direct sum then has precisely the
same form as the cartesian product, since we are here working with only two (i.e. finitely many) components
to the product/sum (namely G,H abelian groups, being objects in the category of abelian groups).

1.8.2 Pushforwards (Pushouts)

Remark 15. or, as I think they could be called for consistency, copullbacks. They are, of course, dual to the
pullback.

Definition 15. An example of a colimit, the pushout (X +Z Y, i1, i2) is the universal object such that the
following diagram commutes.8

N

X +Z Y Y

X Z

u

i2

i1

f1

f2

Like a pullback, a pushout is a triple which consists of a universal object P and two morphisms i1 : X → P ,
i2 : Y → P which complete the commutative square with two morphisms f1 : Z → X, f2 : Z → Y (such
that i1 ◦ f1 = i2 ◦ f2).

8the pushout also completes a commutative square in the manner that a pullback does

9



2 Topological Interlude

2.1 Axioms of a Topology

Definition 16. [3] A topology is a construction consisting of a set X and a collection of subsets of X, i.e.
U = {S ⊂ X} such that:

(i) X, ∅ ∈ U

(ii) U is closed under the set operation of finite intersection, i.e.

S1, · · ·Sn ∈ U =⇒ S1 ∩ · · · ∩ Sn ∈ U (3)

(iii) U is closed under the set operation of arbitrary union, i.e.

Ũ ⊆ U =⇒
⋃
S∈Ũ

S ∈ U (4)

The set U is a topology on X, and we say (X,U) is a topological space. The sets S ∈ U are called open sets,
and their complements in X are closed sets.

Remark 16. A topology can be specified either with a collection of open sets or closed sets in X, and either
will be equivalent since the collection of closed sets will satisfy the complementary conditions to those defined
above (and allow one to recover the collection of open sets if desired).

2.2 Basis of a Topology

Another concept in topology, which I believe builds some intuition for what follows in the construction of a
Grothendieck Topology, is that of a basis.

Definition 17. [3] A basis of a topology is a collection of subsets of X, B ⊂ 2X (2X the set of all subsets
of X, i.e. its power set) such that:

(i) ∅ ∈ B

(ii) X can be constructed from the arbitrary union of all elements of the basis, i.e.⋃
S∈B

S = X (5)

(iii) The subset formed by intersection of any two elements of the basis (themselves subsets of X), B1∩B2,
is necessarily equal to the union of subsets contained in some sub-collection of subsets B̃ ⊂ B, i.e.

∀B1, B2 ∈ B : ∃B̃ : B1 ∩B2 =
⋃
S∈B̃

S (6)

This all amounts to a sort of generating set of a topology, which is itself closed under arbitrary unions and
finite intersections.
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3 Grothendieck Topology

Now, one could wonder; if a topology can be relatively abstract on its own, could we further abstract this
notion of a topology to a similar construction on an arbitrary category? It turns out that in fact we can,
and we have Grothendieck to thank for inventing such a construction.

3.1 The Definition

Definition 18. [4][1] A Grothendieck Topology, on a category C, is a “collection of (families of (maps))”
in C9, these families referred to as coverings or sometimes (emphasizing the analogue to open sets) open
coverings:

{fi : Ui → X}i∈I (7)

such that this collection (indexed by some arbitrary indexing set I) adheres to the axioms:

3.1.1 (T1)

If {fi : Ui → X}i∈I is a covering of X, and g : Y → X is a morphism in C for some Y in C, then the set of
projection maps {hi : Ui ×X Y → Y }i∈I10 is also a covering (now of Y). This is pictured as:

N

Ui ×X Y Y

Ui X

u

hi

p g

fi

where if {fi}i∈I is a covering, then {hi}i∈I is also.

This amounts to the notion that we can change the basis for our coverings; we can convert a covering of one
object X to a covering another related object Y whenever there exists such a morphism g : Y → X between
them.

3.1.2 (T2)

If:

(i) {fi : Ui → X}i∈I is a covering (of X)

(ii) {gj : Vj → X}j∈J is a collection of morphisms in C for some collection of Vj in C

(iii) for any i ∈ I, the collection of projection maps {hij : Vj ×X Ui → Ui}j∈J is also a covering (of Ui)

then the collection {gj : Vj → X}j∈J is in fact a covering (of X). This is pictured as:

Vj ×X Ui Ui

Vj X

hij

p fi

gj

where if the collections of morphisms {fi}i∈I and {hij}i∈I,j∈J are each coverings of their respective objects

in C, then the collection {gj}j∈J is also a covering in our Grothendieck topology.

This is somewhat of a nesting idea, that compositions of coverings are coverings, relating to the idea that
unions of open sets are open in a topology.

9Ui, X are objects in C
10recall Ui ×X Y is a pullback
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3.1.3 (T3)

If {fi : Ui → X} is a collection of morphisms such that ∀Ui, ∃fi which admits a section s : X → Ui such
that fi ◦ s = fis = idX , then {fi : Ui → X} is a covering of X.

Essentially this says that the collection of fi, which admit sections and subsequently imply composition to
the identity map idX, covers its respective object X in a category.

Note this particular definition works for any category C as long as C admits finite limits.

3.2 Showing this can indeed be viewed as a Topology

When we are working in a category with sufficient local smallness, i.e. its collections of objects and mor-
phismscan be locally viewed as a set11, then we can find coverings of X in a Grothendieck topology for each
object X of the category to correspond to the open sets of a classical topology, and find:

(i) The empty set is included in the Grothendieck topology, via any null covering which simply contains
no maps. Conveniently, T3 also ensures that any object in a category C is included in the induced
topology, since any object will be covered at least by its identity morphism. We can thus naturally
try to view (id(Obj(C)), {coverings}) as a topology, with all identity morphisms corresponding to the
objects of C contributing to the underlying topological space.

(ii) Closure under finite intersection is satisfied by T1, since we can consider the pullback of coverings,
{hi : Ui ×X Y → Y } on a covered object X to be like the intersection of the coverings {fi : Ui → X}
on X and any morphisms g : Y → X, and the definition tells us this is also a covering of Y (and hence
contained as an open covering in the Grothendieck topology).

So, using this pullback to define the intersection of coverings, we have the second axiom of a topology
satisfied.

(iii) Closure under arbitrary union is brought about by T2, since the manner of composition/unioning
the families of morphisms in the two sort of nested coverings (with {hi : Vj ×X Ui → Ui} like an
open set “containing” or presiding over the family of coverings {fi : Ui → X}) leading to yet another
“composition covering” gj : Vj → X (this type of union/composition facilitated by the projection
morphism from the pullbacks Vj ×X Ui to the sets Vj) is akin to the union of open sets in a topology.

So, using this manner of composed morphisms assisted by a projection via a pullback to define the
union of coverings, we have the third axiom of a topology satisfied.

We have thus found a rather useful way to construct a notion of topology on a category; such a pair of a
Category C equipped with a certain Grothendieck Topology is called a Grothendieck site.

As I’ve presented it here, this only strictly works with locally small categories (where we can ignore most
set-theory paradoxes involving cardinality arising from notions of “sets of all sets”, i.e. the collections of
objects and morphisms can each be viewed as sets), but can also be generalized to large categories when the
right care is taken.

Definition 19. A Grothendieck site is a category C with a specified Grothendieck topology on C.

Remark 17. This notion of choosing a Grothendieck site on a category is sometimes akin to the choice of
a classical topology (via the chosen open sets) on a topological space. However, in many cases there is not
an exact analogue; a choice of Grothendieck topology should be thought of more as an abstraction of the
notions one would like to associate with most classical topology, without necessarily an exact correspondence
available from the axioms alone.

11when the collection of morphisms is set-like, it usually automatically implies that the collection of objects is also set-like,
since there a correspondence between objects and their identity morphisms
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3.3 A More Direct Correspondence with Classical Topology

Example 4. Consider the category formed by taking the elements of the power set of some set X12 as
objects, with a collection of set inclusions as the morphisms of the category. Then we have by construction,
for any U ⊂ V ⊂ X ∈ τ , inclusion morphisms U ↪→ V ↪→ X.

Then with a choice of some (potentially)13 classical topology on X given by τ14, let us first define the
corresponding Grothendieck topology U to τ by choosing some open coverings:

U = {{fi : Ui ↪→ S} : S ∈ τ} (8)

for some Ui ∈ 2X where each fi is an inclusion map of Ui ⊆ S.

Such a choice of τ , Ui for each S ∈ τ and the corresponding coverings {fi} will allow us to generate a
Grothendieck topology U on X. Note that for the direct correspondence of coverings in U to open sets in τ ,
(T3) tells us that any “open set” S ∈ τ has a corresponding covering given by the (cardinality 1) family of
inclusion maps {idS : S ↪→ S}.

With the axioms restricting U , then, this τ can then be seen to be equivalent to a classical topology on X
as follows:

(i) We always have identity morphisms in a category, and thus as a specification of (T3) we must have
∅ ≃ {fi : ∅ ↪→ ∅} ∈ U and X ≃ {fi : X ↪→ X} ∈ U . This ensures the first axiom of a classical topology
is satisfied for τ on X, i.e. ∅, X ∈ τ .

(ii) If {fi : Ui ↪→ S} ∈ U is a covering of S ∈ τ , consider the intersection S∩X T for some other set T ⊆ X.
Then by definition of set intersection, ∃g : T ∩X S ↪→ S. Since we have the inclusions Ui ⊆ S and
T ∩X S ⊆ S, this also implies another inclusion map for the intersection over S, T ∩S Ui ⊆ S. Then
the following diagram of inclusion maps commutes:

Ui ∩S T T ∩ S

Ui S

hi

i g

fi

and where we can note the set intersection is actually strictly unique here by choice of classical topology,
so by default (Ui ∩S T, hi, i) ≡ (Ui ×S (T ∩ S), hi, i) has the universal property and is a pullback.

With this identification of the form of a pullback, we can now invoke (T1): for any such covering {fi}
and morphism g, the set of projection maps from the pullback hi : Ui ×S (T ∩ S)→ (T ∩ S) is also a
covering of (T ∩S) in U . Therefore, as usual representing the open sets in τ with their coverings in U ,
we find that in the Grothendieck topology:

(∃ {fi : Ui ↪→ S} ∈ U) ∧ (∃g : T ∩ S ↪→ S) =⇒ {hi : Ui ∩S T → T ∩ S} ∈ U (9)

i.e. in direct correspondance to the axiom for a classical topology τ on X;

(S ∈ τ) ∧ (T ∩ S ⊆ S) =⇒ T ∩ S ∈ τ (10)

(iii) Finally, let us tackle the arbitrary union axiom. Consider an arbitrary union of sets in τ , S =
⋃
i∈I Ui,

then for each Ui there exist inclusion morphisms fi : Ui ↪→ S. Particularly, since S as a set covers itself
in the classical topology and is a union of sets Ui which also form an open cover of it, then we have
some covering of S in the Grothendieck topology. Then if there exist corresponding coverings for each
Ui, {hi : (Vj ×S Ui) ≡ Vij → Ui}, note we can construct a covering of S alternatively via composition
of these inclusion maps as follows:

12i.e. all subsets of X
13the point of this section is to show that choosing a τ choice of open sets according to the Grothendieck topology axioms

will result in an equivalent choice of τ using the classical topology axioms on X
14recall, this corresponds to the set of all open sets in our choice of classical topology
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Vj ×S Ui Ui

Vj S

hi

i fi

gi

for any other sets Vij ≡ (Vj×SUi) in the classical topology which form a covering family of all Ui. This
is consistent with the classical notion of an open cover of an arbitrary union in a classical topology τ .

In the other direction, suppose we start with a classical topology;

(T3) Every open set is a cover for itself via the identity inclusion, and these identity inclusion morphisms
are the only ones with existing sections in the category formed by these open sets, so we can see (T3)
appears somewhat naturally.

(T2) Also, if we have a union of open sets S, it is by definition covered by the open cover formed by its
component open sets {Ui} since any union of open sets is open by the arbitrary union axiom of classical
topology, thus we have a covering {fi : Ui → S} in our Grothendieck topology. Then, consider an open
cover {Vj} for each Ui; by inclusion properties, intersection (i.e. the pullback) over S leads to a covering
hi : Vj ×S Ui for each component open set Ui. It is clear then that in this case the family of all {Vj}
(viewed as an open cover) must themselves also cover the open set union S, by composition of open
covers, and we have arrived at the statement of (T2).

(T3) Finally, if we have an intersection of sets T ∩ S, there exists an inclusion map to S by nature of
set intersection. If we have an open cover {Ui} of S, then, by set intersection properties we can
intersect each Ui with T and obtain an open cover (since finite intersection of open sets is open in τ)
{Ui ×S T} still contained entirely within S, and also by nature of set intersection also within T ∩ S.
This corresponds directly to having a open covering fi : Ui → S and an inclusion morphism for the
intersection T ∩ S ↪→ S implying we have the open covering Ui ×S T → T ∩ S, precisely the statement
of (T1).

Hence we have derived the consistency of the Grothendieck topology axioms from the classical topology and
its axioms.
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4 Presheaves

4.1 Presheaves in Category Theory

Definition 20. A (set-valued) presheaf on C is a (contravariant) functor F : Cop → Set which satisfies
certain functorial properties:

(i) F (idA)→ idF(A) in Set, for any A ∈ C, i.e. F preserves identities.

(ii) F (g ◦ f) = F (f) ◦ F (g) (for contravariance) for all inclusion maps f : V ← W and g : U ← V with
U, V,W ∈ C; i.e.

F (U
g
←↩ V

f
←↩ W ) = F (U)

F (g)
↪→ F (V )

F (f)
↪→ F (W ) (11)

4.2 Presheaves in Topology

Definition 21. A presheaf on a topological space X is a (contravariant) functor F : X → Set15 that satisfies:

(i) For each open set U ∈ X, F (U)→ Γ(U,X), i.e. F assigns the set of sections Γ(U,X) = {s : X → U}
to the inclusion maps f : U ↪→ X16. Since the objects in Set that we are looking at here are specifically
sets of functions, the morphisms we will interest ourselves with are restriction maps of these functions
from one domain to another.

(ii) For any open set V ⊂ U and the corresponding domain restriction map resU→V which restrict functions
on U to functions on V , the functor F assigns a new restriction map resF (U)→F (V ) such that composition
and identity are conserved under F , i.e.

(a) For any W ⊂ V ⊂ U , with resV→W ◦ resU→V = resU→W , then the composition rule is obeyed:
F (resV→W ◦ resU→V ) = F (resV→W ) ◦ F (resU→V ) = resF (U)→F (W )

(b) Identity maps are preserved under F :
F (resU→U ) = resF (U)→F (U)

4.3 The Comparison

Remark 18. We can see the inspiration of the categorical from the topological definition of presheaf by
considering the category C(X) formed from the topology X, whose objects are open sets U ∈ X and whose
morphisms are restriction maps for inclusion between these open sets.

Then the desired functor F defined as a categorical presheaf on C(X) is one which takes any object (open
set) U in C(X)op, and sends it to the set of sections that relate it to the topological space X s : X → U .

The functor then takes morphisms (i.e. inclusion maps W ↪→ U) and sends them to the corresponding
restriction maps between functions resU→W : F (U) → F (W ). The Functor can be seen to preserve both
identities and composition of restriction maps from the categorical definitions. This arrow direction reversal
is characteristic of the contravariant nature of the functor F , and can be understood intuitively with the
way that if W ⊂ U , functions to U will need to be restricted if we want their range to instead go to W , but
conversely any function with range in W will already have range in U .

This example takes the target category of the presheaf to be Set, with its particular functor range being
the collection of (sets of (sections of (inclusion maps from open sets in X to X))), together with morphisms
between these sets of sections which are the restriction maps of (sections from X to, for instance, some set
U) to sections from X to some subset W ⊂ U .

15the category of sets
16one can see here explicitly the contravariance of the functor F
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