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1 Preliminaries

1.1 Differential Geometry

All definitions, theorems, and propositions are taken from [Aub98] and [Heb97].

Definition 1.1 (Manifolds). Let n ∈ N. A manifold M of dimension n is a Haussdorff topological
space where at every point p ∈M , there exists an open neighbourhood U of p and a homeomorphism
φ : U → φ(U) such that φ(U) ⊂ Rn is open.

Definition 1.2 (Charts). Let M be a manifold of dimension n. A local chart (U,φ) on M consists
of an open set U ⊂ M and a homeomorphism φ : U → φ(U) such that φ(U) ⊂ Rn is open. The
homeomorphism φ defines a local coordinate system (x1, x2, ..., xn) of U .

Definition 1.3 (Transition Maps). Let M be a manifold, and let (Uα, φα) and (Uβ, φβ) be two
local charts such that Uα∩Uβ ̸= ∅. The transition map ταβ : φα(Uα∩Uβ) → φβ(Uα∩Uβ) is defined
by:

ταβ = φβ ◦ φ−1
α (1.1)

Note that ταβ is a homeomorphism since both φα and φβ are homeomorphisms.

Definition 1.4 (Atlases). Let M be a manifold. An atlas A is a collection of local charts
{(Ui, φi)}i∈I such that: ⋃

i∈I
Ui =M (1.2)

Let 0 ≤ k ≤ ∞ be some integer. We say that A is Ck if each transition map between any two local
charts in A is Ck.

Definition 1.5 (Differentiable Manifolds). Let M be a manifold, and let A1 and A2 be two Ck

atlases on M . The two atlases are equivalent if their union is also a Ck atlas. We say that M
is a Ck differentiable manifold when it is paired with an equivalence class of Ck atlases. Unless
otherwise stated, we will assume that M is C∞.

Definition 1.6 (Differentiable Functions). Let M and N be Ck differentiable manifolds of dimen-
sionsm and n respectively, let p ∈M , and let (U,φ) be a local chart of p onM . Let f : U → N be a
map, let (V, ψ) be a local chart of f(p) on N , and let r ≤ k. The function f is Cr(M) differentiable
at p if the function ψ ◦ f ◦ φ−1 : Rm → Rn is Cr(Rm) differentiable at φ(p) ∈ Rm.
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Definition 1.7 (Partial Derivatives). Let M be a manifold of dimension n, and let p ∈ M . Let
(x1, x2, ..., xn) be a local coordinate system at p, and let (y1, y2, ..., yn) be the natural coordinate
system of Rn at φ(p). The partial derivatives of a C∞(M) function f :M → R at p are defined to
be:

∂f

∂xi

∣∣∣∣
p

=
∂
(
f ◦ φ−1

)
∂yi

∣∣∣∣∣
φ(p)

(1.3)

for each i = 1, 2, ..., n.

Definition 1.8 (Tangent Vectors). Let M be a manifold, and let p ∈ M . Let Fp be the set of all
real-valued functions that are differentiable in a neighbourhood of p. A tangent vector at p is a
linear map Xp : Fp → R satisfying:

• Xp(αf + βg) = αXp(f) + βXp(g) for all α, β ∈ R and f , g ∈ Fp

• Xp(f) = 0 if the gradient of f ∈ Fp is zero at p.

• Xp(fg) = f(p)Xp(g) + g(p)Xp(f)

Definition 1.9 (Tangent Spaces). Let M be a manifold, and let p ∈M . The tangent space Tp(M)
at p is the set of all tangent vectors to the manifold at p. The tangent bundle T (M) is the disjoint
union of all tangent spaces at a point p ∈M :

T (M) =
⊔
p∈M

Tp(M) (1.4)

Definition 1.10 (Cotangent Spaces). Let M be a manifold, and let p ∈M . The cotangent space
T ∗
p (M) at p is the set of all linear functionals αp : Tp(M) → R. In other words, it is the dual space

of the tangent space Tp(M):

T ∗
p (M) = (Tp(M))∗ (1.5)

The cotangent bundle T ∗(M) is the disjoint union of all cotangent spaces at a point p ∈M :

T ∗(M) =
⊔
p∈M

T ∗
p (M) (1.6)

Proposition 1.1 (Canonical Basis for Tp(M)). Let M be a manifold of dimension n, and let
p ∈ M . If (x1, x2, ..., xn) is a local coordinate system at p, then the set of partial derivatives
{∂/∂xi

∣∣
p
}i ⊂ Tp(M) forms a basis of Tp(M). Furthermore, for all tangent vectors Xp ∈ Tp(M), we

may write:

Xp =
n∑

i=1

(Xp)
i ∂

∂xi

∣∣∣∣
p

(1.7)

where (Xp)
i = Xp(x

i) ∈ R is the i-th component of Xp in local coordinates.

In Einstein summation notation, we may write:

Xp = (Xp)
i ∂

∂xi

∣∣∣∣
p

(1.8)
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Proposition 1.2 (Canonical Basis for T ∗
p (M)). Let M be a manifold of dimension n, and let

p ∈ M . If (x1, x2, ..., xn) is a local coordinate system at p, then the set of coordinate differentials
{(dxi)p}i ⊂ T ∗

p (M) forms a basis of T ∗
p (M). The differentials are uniquely defined by:

(
dxi
)
p

(
∂

∂xj

∣∣∣∣
p

)
= δij (1.9)

where δ is the Kronecker delta.

Furthermore, for all linear functionals αp ∈ T ∗
p (M), we may write in Einstein summation notation:

αp = fi(p)
(
dxi
)
p

(1.10)

where each fi :M → R is a smooth function.

Definition 1.11 (Projection Maps). Let M be a manifold. The projection map Π : T (M) → M
associated with the fiber bundle over M is defined by:

Π(Xp) = p (1.11)

where Xp ∈ Tp(M) for some p ∈M .

Definition 1.12 (Vector Fields). Let M be a manifold. A vector field X on M is an assignment
of a tangent vector to each point in M . Formally, X is a mapping from M into T (M) such that
Π ◦X :M →M is the identity map. We say that a vector field is a section of T (M).

Let (U,φ) be a local chart of M , and let (x1, x2, ..., xn) be a local coordinate system of U . In the
canonical basis, we may write:

X = Xi ∂

∂xi
(1.12)

We denote by Γ(M) the space of smooth vector fields on M .

Definition 1.13 (Differential Forms). Let M be a manifold of dimension n. A 1-form α on M is
a mapping from T (M) to R whose restriction to each tangent space Tp(M) is a linear functional
αp on the tangent space. We say that a 1-form is a section of T ∗(M). Furthermore, a k-form ω on

M is a section of
∧k T ∗(M) for k ≤ n.

Let (U,φ) be a local chart of M , and let (x1, x2, ..., xn) be a local coordinate system of U . In the
canonical basis, we may write:

ω =
n∑

i1<i2<...<ik

fi1i2...ik dx
i1 ∧ dxi2 ∧ ... ∧ dxik (1.13)

where each fi1i2...ik :M → R is a smooth function and each dxij is a differential 1-form correspond-
ing to a coordinate differential. The symbol ∧ denotes the antisymmetric exterior product.

We denote by
∧k(M) the space of smooth k-forms on M .

Definition 1.14 (Lie Bracket). Let M be a manifold, let X, Y ∈ Γ(M) be two vector fields, and
let f : M → R be a C∞(M) function. The Lie bracket of X and Y is also a smooth vector field
defined by:

[X,Y ](f) = X(Y (f))− Y (X(f)) (1.14)
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Definition 1.15 (Riemannian Metrics). Let M be a manifold. A Riemannian metric g on M
assigns to each point p ∈M a positive definite, bilinear, symmetric form gp : Tp(M)×Tp(M) → R.
In other words, for all Xp, Yp ∈ Tp(M):

gp(Xp, Yp) = gp(Yp, Xp) gp(Xp, Xp) > 0 for Xp ̸= 0 (1.15)

Let U be an open neighbourhood of p ∈ M . For all smooth vectors fields X, Y in U ⊂ M , the
following function is a smooth, real-valued function of p:

g(X,Y )(p) = gp(Xp, Yp) (1.16)

Definition 1.16 (Riemannian Manifolds). LetM be a manifold, and let g be a Riemannian metric.
The pair (M, g) is a Riemannian manifold. Unless otherwise stated, we will assume that (M, g) is
C∞.

Definition 1.17 (Connections). Let M be a manifold. A connection on M is a map D : T (M)×
Γ(M) → T (M) such that:

• For all p ∈M , if X ∈ Tp(M) and Y ∈ Γ(M), then D(X,Y ) ∈ Tp(M).

• For all p ∈M , the restriction of D to Tp(M)× Γ(M) is bilinear.

• For all p ∈M , for all X ∈ Tp(M), and for all Y ∈ Γ(M), if f :M → R is differentiable, then:

D(X, fY ) = X(f)Y (p) + f(p)D(X,Y ) (1.17)

• For all X,Y ∈ Γ(M), if X ∈ Ck(M) and Y ∈ Ck+1(M), then D(X,Y ) ∈ Ck(M), where
D(X,Y ) is a vector field on M defined for all p ∈M by:

D(X,Y )(p) = D(X(p), Y ) (1.18)

We often write DXY rather than D(X,Y ) and call DXY the covariant derivative of Y with respect
to X for some fixed Y ∈ Γ(M). We may also extend the definition of the covariant derivative to
real-valued functions, 1-forms, and general tensors.

First, let X ∈ Tp(M), and let f ∈ Fp. The covariant derivative of f with respect to X is given by:

DXf = X(f) (1.19)

Now, let X ∈ Tp(M), and let α ∈ Λ(M). The covariant derivative of α with respect to X is given
by the unique 1-form which satisfies the following identity for all Y ∈ Tp(M):

(DXα)(Y ) = DX(α(Y ))− α(DXY ) (1.20)

Finally, let X ∈ Tp(M), and let T ∈
⊗r Γ(M)

⊗s Λ(M) be a tensor of rank (r, s). The covariant
derivative of T with respect to X extends naturally from the above definitions when combined with
the following identity:

DX(V ⊗W ) = (DXV )⊗W + V ⊗ (DXW ) (1.21)

where V and W are tensors of arbitrary rank.
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Definition 1.18 (Christoffel Symbols). Let M be a manifold of dimension n, and let p ∈M . Let
(x1, x2, ..., xn) be a local coordinate system at p. In this coordinate system, we denote:

∇iX = D(
∂

∂xi

)X (1.22)

for each i = 1, 2, ..., n.

Let (U,φ) be the corresponding local chart of p on M . In this local chart, the Christoffel symbols
of this connection D are the C∞(M) functions Γk

ij : U → R defined by:

∇i

(
∂

∂xj

)
(q) = Γk

ij(q)
∂

∂xk

∣∣∣∣
q

(1.23)

for all points q ∈ U . This specifies the covariant derivative of the canonical basis vector field ∂/∂xj

along the basis vector field ∂/∂xi.

Proposition 1.3 (Basis Representation of the Covariant Derivative). Let M be a manifold of
dimension n, and let p ∈ M . Let (U,φ) be the corresponding local chart of p on M , and let
(x1, x2, ..., xn) be a local coordinate system on U .

Let X ∈ Tp(M), let Y ∈ Γ(U), and let α ∈ Λ(U). In the canonical basis, we may write:

X = Xi ∂

∂xi

∣∣∣∣
p

Y = Y i ∂

∂xi
α = αi

(
dxi
)
p

(1.24)

Then the k-th component of the covariant derivative of Y with respect to X is given by:

(DXY )k = Xi(∇iY |p)
k (1.25)

= Xi

(
∂Y k

∂xi

∣∣∣∣
p

+ Γk
ij(p)Y

j(p)

)
(1.26)

The k-th component of the covariant derivative of α with respect to X is given by:

(DXα)k = Xi(∇iα|p)k (1.27)

= Xi

(
∂αk

∂xi

∣∣∣∣
p

− Γj
ik(p)αj(p)

)
(1.28)

And each component of the covariant derivative of an arbitrary tensor T of rank (r, s) with respect
to X is given by:

(DXT )
j1,j2,...,jr
k1,k2,...,ks

= Xi(∇iT |p)j1,j2,...,jrk1,k2,...,ks
(1.29)

= Xi

(
∂T j1,...,jr

k1,...,ks

∂xi

∣∣∣∣∣
p

+
r∑

m=1

Γjm
i,ν (p)T (p)

j1,...,jm−1,ν,jm+1,...,jr
k1,...,ks

−
r∑

m=1

Γν
i,km(p)T (p)

j1,...,jr
k1,...,km−1,ν,km+1,...,ks

)
(1.30)

where the index ν is also implicitly summed over.
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Proposition 1.4 (Levi-Civita Connection). Let (M, g) be a Riemannian manifold of dimension n,
and let (U,φ) be a local chart of M . If (x1, x2, ..., xn) is a local coordinate system of (U,φ), then
there exists a unique connection ∇ onM such that Γk

ij = Γk
ji and for which the covariant derivative

of the metric tensor is identically zero:

∇kgij = ∇igjk = ∇jgik = 0 (1.31)

In the coordinates of (U,φ), the components of the Christoffel symbols of this connection are given
by:

Γk
ij =

1

2

(
∂gjℓ
∂xi

+
∂giℓ
∂xj

− ∂gij
∂xℓ

)
gkℓ (1.32)

where [gij ] denotes the matrix representation of the metric g in local coordinates and [gij ] denotes
its inverse.

Definition 1.19 (Riemann Curvature Tensor). Let (M, g) be a Riemannian manifold, and let
(U,φ) be a local chart of M . The Riemann curvature tensor is a map R : Γ(M)× Γ(M) → Γ(M)
defined by:

R(X,Y ) = [∇X ,∇Y ]−∇[X,Y ] (1.33)

In the coordinates of (U,φ), we have that, for Z ∈ Γ(M):

Rℓ
kijZ

k = ∇i∇jZ
ℓ −∇j∇iZ

ℓ (1.34)

It can also be shown that the components of the curvature tensor are given by:

Rℓ
kij = ∂iΓ

ℓ
jk − ∂jΓ

ℓ
ik + Γℓ

imΓm
jk − Γℓ

jmΓm
ik (1.35)

Definition 1.20 (Ricci Tensor and Scalar Curvature). Let (M, g) be a Riemannian manifold, and
let (U,φ) be a local chart of M . From the curvature tensor, the Ricci tensor is the only non-zero
tensor (up to a sign difference) obtained by contraction. In the coordinates of (U,φ), its components
are given by:

Rij = Rk
ikj (1.36)

The Ricci tensor is symmetric, and its contraction R = gijRij is called the scalar curvature.

Definition 1.21 (Jacobians). Let M be a manifold of dimension n, and let (Uα, φα) and (Uβ, φβ)
be two charts of an atlas A such that Uα ∩ Uβ ̸= ∅. Denote by (x1, x2, ..., xn) the coordinates
corresponding to (Uα, φα) and by (y1, y2, ..., yn) the coordinates corresponding to (Uβ, φβ). Then,
in Uα ∩ Uβ, the components of the Jacobian matrix J ∈ GL(Rn) and its inverse Jacobian matrix
J−1 ∈ GL(Rn) are respectively given by:

J j
i =

∂yj

∂xi
(
J−1

)i
j
=
∂xi

∂yj
(1.37)

These are respectively the Jacobians of the transition maps φβ ◦ φ−1
α and φα ◦ φ−1

β .

Definition 1.22 (Orientable Manifolds). Let M be a manifold. M is orientable if there exists an
atlas such that all of its transition maps have a positive Jacobian determinant. A transition map
is called orientation-preserving if the determinant of its Jacobian matrix is positive.
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Theorem 1.5. Let M be a manifold of dimension n. M is orientable if and only if there exists an
everywhere non-vanishing n-form on M .

Definition 1.23 (Orientations). Let M be a connected, orientable manifold of dimension n, and
denote by {ωi}i∈I the set of everywhere non-vanishing, differentiable n-forms. Consider the equiva-
lence relation: ωi ∼ ωj if there exists a positive function fij :M → R such that ωi = fijωj for each
pair ωi, ωj ∈ {ωi}i∈I . Since an equivalence relation can also be defined using negative functions,
there are two possible equivalence classes with opposing signs. Choosing one of them defines an
orientation of M , and M is then called oriented. Note that there are only two possible orientations
for an orientable, connected manifold.

Definition 1.24 (Partitions of Unity). Let M be a manifold. A partition of unity on M is a set
{ρi}i∈I of continuous functions ρi :M → [0, 1] such that at every point p ∈M :

• There exists a neighbourhood U of p where all but a finite number of functions in {ρi}i∈I are
zero.

• The sum of all the functions in {ρi}i∈I evaluated at p is one.

Theorem 1.6. Let M be a compact (and hence paracompact) manifold, and let (Ui, φi)i∈I be an
atlas of M . There exists a partition of unity {ρi}i∈I indexed over the same set I such that the
support of ρi is a subset of Ui for each i ∈ I:

supp(ρi) ⊂ Ui (1.38)

Such a partition is said to be subordinate to {Ui}i∈I .

Definition 1.25 (Integration). Let M be an oriented manifold of dimension n, let (Ui, φi)i∈I be
an atlas compatible with the chosen orientation, and let {ρi}i∈I be a partition of unity subordinate
to {Ui}i∈I . Let (x1, x2, ..., xn) be a local coordinate system of (Ui, φi), and let ω be a differentiable
n-form with compact support on M such that, on each Ui, we have ω = fi dx

1 ∧ dx2 ∧ ... ∧ dxn.
Then the integral of ω on M is given by:∫

M
ω =

∑
i∈I

∫
φi(Ui)

(ρifi) ◦ φ−1
i dx1 ∧ dx2 ∧ ... ∧ dxn (1.39)

Note that the integral does not depend on the partition of unity and the sum is finite.

Equivalently, let (M, g) be a Riemannian manifold (not necessarily oriented) of dimension n. The
integral of a function f :M → R is given by:∫

M
f dVg (1.40)

where dVg denotes the natural volume form of (M, g).

In local coordinates, we may write:∫
M
f dVg =

∫
M
f
√
det(g) dx (1.41)

where dx = dx1 ∧ dx2 ∧ ... ∧ dxn denotes the standard Euclidean volume form on Rn.

Note that the integral is independent of the choice of coordinates.
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Definition 1.26 (Normal Coordinates). Let (M, g) be a Riemannian manifold. A local coordinate
system {xi} associated with the metric g̃ is a normal coordinate system at a point p ∈M if, for all
i, j, and k:

g̃ij(p) = δij ∂kg̃ij(p) = 0 (1.42)

Proposition 1.7. Let (M, g) be a Riemannian manifold. At every point p ∈ M , there exists a
normal coordinate system.

1.2 Analysis on Manifolds

All definitions and theorems, and propositions are taken from [Aub98] and [LP87].

Definition 1.27 (Locally Integrable Functions). Let (M, g) be a Riemannian manifold of dimension
n. A function f : M → R is locally integrable on M if for each point p ∈ M , there exists an open
neighbourhood U of p such that: ∫

U
|f | dVg <∞ (1.43)

Definition 1.28 (Weak Derivatives). Let (M, g) be a Riemannian manifold, let f : M → R be
a locally integrable function, and let D be an arbitrary linear partial differential operator. The
function f is weakly differentiable if there exists a locally integrable function g :M → R such that,
for all φ ∈ C∞

c (M): ∫
M
gφ dVg =

∫
M
fD∗φ dVg (1.44)

where D∗ is the formal adjoint of D obtained by formally integrating by parts. The function g is
called the weak derivative of f and is denoted by Df .

Definition 1.29 (Lebesgue Spaces). Let (M, g) be a Riemannian manifold, and let q ≥ 1. The
Lebesgue space Lq(M) is the set of locally integrable functions u on M whose norm ∥u∥q is finite.
The q-norm ∥ · ∥q is given by:

∥u∥q =
(∫

M
|u|q dVg

) 1
q

(1.45)

Definition 1.30 (Sobolev Spaces). Let (M, g) be a Riemannian manifold. The Sobolev space
W k,q(M) is the set of functions u ∈ Lq(M) whose weak derivatives up to order k have a finite
Lq(M) norm. The Sobolev norm ∥ · ∥k,q is given by:

∥u∥k,q =

(
k∑

i=0

∫
M

|∇iu|q dVg

) 1
q

(1.46)

where the covariant derivatives ∇iu are taken in a weak sense. Note that W 0,q = Lq.

Definition 1.31 (Ck Spaces). Let (M, g) be a Riemannian manifold. The Ck space Ck(M) is the
set of k-times continuously differentiable functions u onM whose norm ∥u∥Ck is finite. The Ck(M)
norm ∥ · ∥Ck is given by:

∥u∥Ck =
k∑

i=0

sup
M

|∇iu| (1.47)
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Definition 1.32 (Hölder Spaces). Let (M, g) be a Riemannian manifold. The Hölder space
Ck,α(M), where 0 < α ≤ 1, is the set of functions u ∈ Ck(M) whose norm ∥u∥Ck,α is finite.
The Hölder norm ∥ · ∥Ck,α is given by:

∥u∥Ck,α = ∥u∥Ck + sup
x ̸=y∈M

|∇ku(x)−∇ku(y)|
|x− y|α

(1.48)

where the supremum is taken over all points y contained within a normal coordinate neighbourhood
of x for any x ∈M .

Theorem 1.8 (First Sobolev Embedding Theorem). Let (M, g) be a compact, Riemannian mani-
fold of dimension n. Let W k,p(M) and W ℓ,q(M) be two Sobolev spaces on M with k > ℓ. Suppose
that:

1

p
− k

n
≤ 1

q
− ℓ

n
(1.49)

Then the embedding W k,p(M) ⊂W ℓ,q(M) is continuous.

Theorem 1.9 (Rellich-Kondrachov Embedding Theorem). Let (M, g) be a compact, Riemannian
manifold of dimension n. Let W k,p(M) and W ℓ,q(M) be two Sobolev spaces on M with k > ℓ.
Suppose that:

1

p
− k

n
<

1

q
− ℓ

n
(1.50)

Then the embedding W k,p(M) ⊂W ℓ,q(M) is compact.

Theorem 1.10 (Second Sobolev Embedding Theorem). Let (M, g) be a compact, Riemannian
manifold of dimension n. Let W k,p(M) be a Sobolev space on M , and let Cr,α(M) be a Hölder
space on M with 0 < α < 1. Suppose that:

1

p
− k

n
≤ −r + α

n
(1.51)

Then the embedding W k,p(M) ⊂ Cr,α(M) is continuous.

Theorem 1.11 (Global Elliptic Regularity Theorem). Let (M, g) be a compact, Riemannian man-
ifold, and let u : M → R be a locally integrable, weak solution to Poisson’s equation ∆u = f for
some function f :M → R.

• If f ∈W k,q(M), then u ∈W k+2,q(M) and, for some K > 0:

∥u∥k+2,q ≤ K (∥∆u∥k,q + ∥u∥q) (1.52)

• If f ∈ Ck,α(M), then u ∈ Ck+2,α(M) and, for some K > 0:

∥u∥Ck+2,α ≤ K (∥∆u∥Ck,α + ∥u∥C0,α) (1.53)

Theorem 1.12 (Strong Maximum Principle). Let (M, g) be a connected, Riemannian manifold,
and let h :M → R be a non-negative, smooth function onM . Let u :M → R be a C2(M) function
satisfying:

(∆ + h)u ≥ 0 (1.54)

If u attains its minimum m ≤ 0 on M , then u is constant on M .
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Definition 1.33 (Equicontinuity). Let M be a manifold. A subset F ⊂ C0(M) is equicontinuous
if for all x ∈M and for all ε > 0, there exists a neighbourhood U of x such that, for all y ∈ U and
for all f ∈ F:

|f(y)− f(x)| < ε (1.55)

Definition 1.34 (Pointwise Boundedness). LetM be a manifold. A subset F ⊂ C0(M) is pointwise
bounded if for all x ∈M :

sup
f∈F

|f(x)| <∞ (1.56)

Theorem 1.13 (Arzelà-Ascoli Theorem). Let M be a manifold. A subset F ⊂ C0(M) is relatively
compact in the topology induced by the supremum norm if and only if it is equicontinuous and
pointwise bounded.

2 Introduction

The Yamabe Problem. The Yamabe problem is a classic problem in geometric analysis. It
was first posed in 1960 by the mathematician Hidehiko Yamabe, who also attempted to provide a
solution. Unfortunately, Neil Trudinger discovered an error in his proof in 1968.

The problem remained open until it was finally solved in 1984 with the combined efforts of Yamabe,
Trudinger, Aubin, and Schoen. The statement of the problem is as follows:

Let (M, g) be a compact, Riemannian manifold of dimension n ≥ 3. Is it possible to find a metric
g̃ conformal to g with constant scalar curvature?

Definition 2.1 (Conformal Metrics). Let (M, g) be a Riemannian manifold of dimension n. A
metric g̃ is conformal to g if there exists a C∞(M) function f :M → R such that:

g̃ = e2fg (2.1)

Let R and R̃ denote the scalar curvatures of g and g̃ respectively. It can be shown that the scalar
curvatures satisfy:

R̃ = e−2f
(
R+ 2(n− 1)∆f − (n− 1)(n− 2)|∇f |2

)
(2.2)

where ∇f and ∆f = −∇µ∇µf respectively denote the covariant derivative of f and the Laplace-
Beltrami operator with respect to the metric g.

We can simplify this equation by making the substitution:

e2f = φp−2 (2.3)

where φ :M → R is a positive, smooth function and p = 2n/(n−2) is the critical Sobolev exponent.

Then Equation (2.2) reduces to:

R̃ = φ1−p

(
4
n− 1

n− 2
∆ +R

)
φ (2.4)

10



Definition 2.2 (Conformal Laplacian). Let (M, g) be a Riemannian manifold of dimension n. The
conformal Laplacian of g is given by:

4
n− 1

n− 2
∆ +R (2.5)

Let g̃ = φp−2g be a metric conformal to g, and let ∆̃ and R̃ denote the Laplace-Beltrami operator
and the scalar curvature of g̃ respectively. It can be shown that the conformal Laplacians satisfy:(

4
n− 1

n− 2
∆̃ + R̃

)(
u

φ

)
= φ1−p

(
4
n− 1

n− 2
∆ +R

)
u (2.6)

for all C∞(M) functions u :M → R.

Definition 2.3 (The Yamabe Equation). Let (M, g) be a Riemannian manifold of dimension n,
and let g̃ = φp−2g be a metric conformal to g. Suppose that R̃ = λ for some constant λ ∈ R. Then
the Yamabe equation is obtained by rearranging Equation (2.4):

λφp−1 =

(
4
n− 1

n− 2
∆ +R

)
φ (2.7)

Solving the Yamabe problem on M is equivalent to finding a positive, smooth function φ satisfying
this equation.

Definition 2.4 (The Yamabe Quotient). Let (M, g) be a Riemannian manifold of dimension n,
and let g̃ = φp−2g be a metric conformal to g. The Yamabe quotient Q(g̃) is the functional whose
Euler-Lagrange equation is the Yamabe equation:

Q(g̃) =

∫
M R̃ dVg̃(∫
M dVg̃

) 2
p

(2.8)

where g̃ is allowed to vary over all metrics which are conformal to g.

Equivalently, the Yamabe quotient can be written as:

Qg(φ) =
E(φ)

∥φ∥2p
(2.9)

where

E(φ) =

∫
M

(
4
n− 1

n− 2
|∇φ|2 +Rφ2

)
dVg (2.10)

Definition 2.5 (The Yamabe Constant). Let (M, g) be a Riemannian manifold of dimension n ≥ 3.
The Yamabe constant λ(M) of M is defined to be:

λ(M) = inf {Q(g̃) | g̃ conformal to g} (2.11)

= inf {Qg(φ) | positive, smooth function φ on M} (2.12)

Note that the Yamabe constant is an invariant of the conformal class of (M, g).
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Claim 2.1. Let (M, g) be a Riemannian manifold of dimension n ≥ 3, and let φ ∈ W 1,2(M)
be a smooth, positive function. Then φ is a critical point of Qg if and only if it satisfies the
Yamabe equation with λ = E(φ)/∥φ∥pp. Furthermore, if φ is a minimizer of Qg and ∥φ∥p = 1, then
λ = λ(M).

Proof. Let ψ ∈ C∞(M) be arbitrary. Then:

0 =
d

dt
Qg(φ+ tψ)

∣∣∣∣
t=0

=
d

dt

(
E(φ+ tψ)

∥φ+ tψ∥2p

)∣∣∣∣
t=0

=

(
1

∥φ+ tψ∥2p
d

dt
(E(φ+ tψ)) + E(φ+ tψ)

d

dt

(
1

∥φ+ tψ∥2p

))∣∣∣∣
t=0

Expanding the expressions and differentiating:

0 =


∫
M

(
8
n− 1

n− 2
⟨∇(φ+ tψ),∇ψ⟩+ 2R(φ+ tψ)ψ

)
dVg

∥φ+ tψ∥2p


∣∣∣∣∣∣∣∣
t=0

−

2E(φ+ tψ)

∫
M

|φ+ tψ|p−1ψ dVg

∥φ+ tψ∥2p∥φ+ tψ∥pp


∣∣∣∣∣∣∣∣
t=0

=

∫
M

8
n− 1

n− 2
⟨∇φ,∇ψ⟩ dVg

∥φ∥2p
+

∫
M

2Rφψ dVg

∥φ∥2p
−

2E(φ)

∫
M
φp−1ψ dVg

∥φ∥2p∥φ∥
p
p

Applying integration by parts to the first term:

0 =

∫
M

8
n− 1

n− 2
(∆φ)ψ dVg

∥φ∥2p
+

∫
M

2Rφψ dVg

∥φ∥2p
−

2E(φ)

∫
M
φp−1ψ dVg

∥φ∥2p∥φ∥
p
p

=
2

∥φ∥2p

∫
M

(
4
n− 1

n− 2
∆φ+Rφ− E(φ)

∥φ∥pp
φp−1

)
ψ dVg

Since this holds for any ψ ∈ C∞(M), it must be that:

E(φ)

∥φ∥pp
φp−1 =

(
4
n− 1

n− 2
∆ +R

)
φ (2.13)

Then, by direct comparison with the Yamabe equation:

λ =
E(φ)

∥φ∥pp
(2.14)

If ∥φ∥p = 1, it follows immediately that λ = Qg(φ). Additionally, if φ also minimizes Qg, then
λ = λ(M).

12



From the above results, to solve the Yamabe problem, it is sufficient to show that there exists a
positive, smooth function φ which minimizes Qg(φ).

In fact, the solution to the Yamabe problem can be summarized by the following three theorems.

Theorem A (Yamabe, Trudinger, Aubin). Let (M, g) be a compact, Riemannian manifold of
dimension n. Suppose that λ(M) < λ(Sn), where Sn is the n-sphere equipped with the round
metric. Then there exists a minimizer of Qg(φ), and hence a solution to the Yamabe problem on
M .

Theorem B (Aubin). Suppose that (M, g) is a compact, Riemannian manifold of dimension n ≥ 6
and is not locally, conformally flat. Then λ(M) < λ(Sn).

Theorem C (Schoen). Suppose that (M, g) is a compact, Riemannian manifold of dimension
n = 3, 4, or 5 or is locally, conformally flat. Then λ(M) < λ(Sn) unless M is conformal to Sn.

3 Theorem A (Yamabe, Trudinger, Aubin)

Theorem 3.1 (A Sobolev Inequality). Let (M, g) be a compact, Riemannian manifold of dimension
n. Let p = 2n/(n− 2), and denote the n-dimensional Sobolev constant by σn. Then, for all ε > 0,
there exists a constant Cε such that, for all φ ∈ C∞(M):

∥φ∥2p ≤ (1 + ε)σn

∫
M

|∇φ|2 dVg + Cε

∫
M
φ2 dVg (3.1)

Theorem 3.2 (Yamabe Constant on the n-sphere). Let (Sn, g0) denote the n-sphere equipped
with the standard, round metric. Then the Yamabe constant λ(Sn) is given by:

λ(Sn) = Q(g0) (3.2)

= n(n− 1) vol(Sn)
2
n (3.3)

where vol(Sn) denotes the volume of the unit n-sphere.

Additionally, the Sobolev constant σn mentioned in Theorem 3.1 is given by:

σn =
4

λ(Sn)

n− 1

n− 2
(3.4)

Definition 3.1 (The Subcritical Equation). Let (M, g) be a Riemannian manifold of dimension n.
Let 2 ≤ s ≤ p. The subcritical equation is analogous to the Yamabe equation for some constant
κ ∈ R:

κφs−1 =

(
4
n− 1

n− 2
∆ +R

)
φ (3.5)

Consider its respective functional, analogous to the Yamabe quotient:

Qs(φ) =
E(φ)

∥φ∥2s
(3.6)

where E(φ) is as defined in Equation (2.10).

Define an analogous Yamabe constant:

λs = inf {Qs(φ) | positive, smooth function φ on M} (3.7)
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Lemma 3.3. Let (M, g) be a compact, Riemannian manifold. Suppose that s ≤ s′ for any two
numbers s, s′ ∈ [2, p]. Then the Ls(M) norm is dominated by the Ls′(M) norm.

Proof. Let α = s′/s and β = s′/(s′ − s) be conjugate exponents. Then, for any u ∈ Ls(M), by
Hölder’s inequality:

∥u∥ss =
∫
M

|u|s dVg

≤
(∫

M
dVg

) 1
β
(∫

M
|u|sα dVg

) 1
α

= C

(∫
M

|u|s′ dVg
) s

s′

= C∥u∥ss′

for some constant C since M is compact.

It follows that:

∥u∥s ≤ C∥u∥s′ (3.8)

for some new constant C.

In particular, note that C = 1 if the metric is chosen such that:∫
M

dVg = 1

Theorem 3.4 (Regularity Theorem). Let (M, g) be a compact, Riemannian manifold, let φ ∈
W 1,2(M) be a non-negative weak solution of the subcritical equation with 2 ≤ s ≤ p, and let
|κ| < K for some constant K ∈ R. Suppose that φ ∈ Lr(M) for some r > (s − 2)n/2. Then
φ is either identically zero or strictly positive and C∞(M). Furthermore, ∥φ∥C2,α ≤ C for some
constant C which only depends on M , g, K, and ∥φ∥r. In particular, this holds if r = s < p or if
r > s = p.

Proof. We first prove that ∥φ∥C2,α is bounded by some constant C. Suppose that φ ∈ Lr(M)
satisfies the subcritical equation. Then κφs−1 − Rφ and hence 4(n − 1)/(n − 2)∆φ are both
functions in Lq(M) where q = r/(s− 1).

Since ∆φ ∈ Lq(M), it follows by the global elliptic regularity theorem (Theorem 1.11) that φ is also
inW 2,q(M). By the first Sobolev embedding theorem (Theorem 1.8), we also have that φ ∈ Lr′(M)
where r′ = nr/(ns− n− 2r).

Recall that r > (s − 2)n/2 by hypothesis. It follows directly that r′ > r. Then, by repeating the
above argument with r′, we can iteratively show that φ ∈W 2,q for all q > 1.

By the second Sobolev embedding theorem (Theorem 1.10), we also have that φ ∈ C0,α(M) for
some 0 < α < 1. It can be shown that φs−1 ∈ C0,α(M) as well.

Since both φ and φs−1 are in C0,α(M), the subcritical equation implies that ∆φ is in C0,α(M). By
the global elliptic regularity theorem (Theorem 1.11), we have that φ is also in C2,α(M).
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Each of the above applications of the Sobolev embedding and the global elliptic regularity theorems
gives a bound on their corresponding norms, which in turn bounds ∥φ∥C2,α by some constant C.

We now prove that φ is either identically zero or strictly positive and C∞(M). By rearranging the
subcritical equation, we obtain:(

∆+
n− 2

4(n− 1)

(
R− κφs−2

))
φ = 0 (3.9)

Since the scalar curvature R is bounded on compact manifolds, it follows that:

(∆ +m)φ ≥ 0 (3.10)

for some constant m ≥ 0 where

m ≥ n− 2

4(n− 1)
sup
M

(
R− κφs−2

)
(3.11)

Since φ is non-negative by hypothesis, if φ = 0 somewhere on M , then φ attains its minimum and
is identically zero by the strong maximum principle (Theorem 1.12). Therefore, φ is either strictly
positive or identically zero on M .

Suppose now that φ is strictly positive on M . Since φ ∈ C2,α and is nowhere zero, it can be shown
that φs−1 ∈ C2,α as well. Then, by applying global elliptic regularity iteratively to the subcritical
equation, we may conclude that φ ∈ C∞(M).

Proposition 3.5 (Yamabe). Let s ∈ N such that 2 ≤ s < p. Then there exists a smooth, positive
solution φs to the subcritical equation which minimizes Qs and for which κ = λs and ∥φs∥s = 1.

Proof. Let {ui} ⊂ C∞(M) be a minimizing sequence for Qs with ∥ui∥s = 1.

Observe that Qs(|ui|) = Qs(ui). We may therefore assume without loss of generality that ui ≥ 0.
Then:

∥ui∥21,2 =
∫
M

|∇ui|2 dVg +
∫
M

|ui|2 dVg

=
E(ui)(n− 2)

4(n− 1)
− n− 2

4(n− 1)

∫
M
Ru2i dVg +

∫
M
u2i dVg

=
Qs(ui)∥ui∥2s(n− 2)

4(n− 1)
+

∫
M

(
1− R(n− 2)

4(n− 1)

)
u2i dVg

=
Qs(ui)(n− 2)

4(n− 1)
+

∫
M

(
1− R(n− 2)

4(n− 1)

)
u2i dVg

Since the first term is bounded, we need only consider the second term. Let α = p/2 and β =
p/(p− 2) be conjugate exponents. By Hölder’s inequality:∫

M

(
1− R(n− 2)

4(n− 1)

)
u2i dVg ≤

(∫
M

∣∣∣∣1− R(n− 2)

4(n− 1)

∣∣∣∣β dVg

) 1
β (∫

M
|ui|2α dVg

) 1
α

≤

(∫
M

∣∣∣∣1− R(n− 2)

4(n− 1)

∣∣∣∣β dVg

) 1
β (∫

M
|ui|p dVg

) 2
p
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Since M is compact, the scalar curvature is bounded. Then the first integral is bounded by some
constant C: ∫

M

(
1− R(n− 2)

4(n− 1)

)
u2i dVg ≤ C

(∫
M

|ui|p dVg
) 2

p

= C∥ui∥2p

Then {ui} is bounded in W 1,2(M). By the Rellich-Kondrachov theorem (Theorem 1.9), the inclu-
sion map W 1,2(M) ⊂ Ls(M) is compact. It follows that there exists a subsequence of {ui} which
converges weakly in W 1,2(M) and strongly in Ls(M) to some function φs with ∥φs∥s = 1.

Since 2 ≤ s, the L2(M) norm is dominated by the Ls(M) norm (Lemma 3.3). It follows that
the same subsequence of {ui}, which converges strongly in Ls(M), must also converge strongly in
L2(M):

lim
i→∞

∫
M
Ru2i dVg =

∫
M
Rφ2

s dVg

Weak convergence in W 1,2(M) implies that:∫
M

|∇φs|2 dVg =

∫
M
⟨∇φs,∇φs⟩ dVg

= lim
i→∞

∫
M
⟨∇ui,∇φs⟩ dVg

By the Cauchy-Schwarz inequality:∫
M

|∇φs|2 dVg ≤ lim sup
i→∞

(∫
M

|∇ui|2 dVg
) 1

2
(∫

M
|∇φs|2 dVg

) 1
2

It follows that: ∫
M

|∇φs|2 dVg ≤ lim sup
i→∞

∫
M

|∇ui|2 dVg

Observe then that:

Qs(φs) =
E(φs)

∥φs∥2s

=

∫
M

(
4
n− 1

n− 2
|∇φs|2 +Rφ2

s

)
dVg

∥φs∥2s

≤ lim sup
i→∞

∫
M

(
4
n− 1

n− 2
|∇ui|2 +Rui

)
dVg

∥ui∥2s

= lim sup
i→∞

E(ui)

∥ui∥2s
= lim sup

i→∞
Qs(ui)
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Since {ui} is defined to be a minimizing sequence for Qs, the limit superior is equal to the limit:

Qs(φs) ≤ lim
i→∞

Qs(ui)

= λs

However, since λs is defined to be the infimum of Qs, it must be that Qs(φs) = λs. We have
therefore found a minimizing function, and hence a solution to the subcritical equation.

Since φs ∈ Ls(M) and is not identically zero, it follows from the regularity theorem (Theorem 3.4)
that φs is positive and C∞(M).

Lemma 3.6. Let (M, g) be a compact, Riemannian manifold of dimension n. Without loss of
generality, we may scale the metric g such that:∫

M
dVg = 1

Then |λs| is non-increasing as a function of s ∈ [2, p].

Proof. Let u :M → R be an arbitrary non-zero, smooth function on M .

Observe that, for any two s, s′ ∈ [2, p]:

∥u∥2s′Qs′(u) = E(φ) = ∥u∥2sQs(u) (3.12)

If s ≤ s′, it follows from Lemma 3.3 that ∥u∥s ≤ ∥u∥s′ . Then, by observing Equation (3.12):

|Qs′(u)| ≤ |Qs(u)| (3.13)

Since this is true for all u ∈ C∞(M), it follows that:

|λs′ | ≤ |λs| (3.14)

Remark that, if λs < 0 for some s ∈ [2, p], there exists a C∞(M) function u : M → R such that
Qs(u) < 0. By Equation (3.12), it follows that Qs′(u) < 0 for any s′ ∈ [2, p] as well. Since λs′ is
the infimum of Qs′ , it must be that λs′ < 0. Therefore, λs < 0 for all s.

Remark also that, if λp ≥ 0, then Qp(u) ≥ 0 for any C∞(M) function u :M → R because λp is the
infimum of Qp. By Equation (3.12), it follows that Qs(u) ≥ 0 for any s ∈ [2, p] as well. Furthermore,
by Equation (3.13), we have that Qp(u) ≤ Qs(u). Since this is true for all u ∈ C∞(M), it must be
that λp ≤ λs. Therefore, λs ≥ 0 for all s.

Lemma 3.7. Let (M, g) be a compact, Riemannian manifold of dimension n. Without loss of
generality, we may scale the metric g such that:∫

M
dVg = 1

Suppose that λ(M) ≥ 0. Then λs continuous from the left as a function of s ∈ [2, p].
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Proof. Observe that λ(M) = λp by definition. From the remark in Lemma 3.6, it must be that
λs ≥ 0 for any s ∈ [2, p].

Choose some s ∈ [2, p], and let ε > 0. By the definition of infimum, there exists a non-zero, smooth
function u :M → R on M such that:

Qs(u) < λs + ε (3.15)

Recall from Equation (3.13) of Lemma 3.6 that, for s′ ≤ s:

|Qs(u)| ≤ |Qs′(u)|

Since λs and λs′ are non-negative, and since ∥u∥s is a continuous function of s, the absolute values
are unnecessary, and there exists an s′ sufficiently close to s such that:

0 ≤ Qs′(u)−Qs(u) < ε

Combined with Equation (3.15), we find that:

Qs′(u) < λs + 2ε

However, by the definition of infimum, we also have that λs′ ≤ Qs′(u). It follows then that, for
s′ ≤ s:

λs′ < λs + 2ε (3.16)

Since λs is non-increasing by Lemma 3.6, we conclude that λs is continuous from the left.

Proposition 3.8 (Trudinger, Aubin). Let (M, g) be a compact, Riemannian manifold of dimension
n. Without loss of generality, let g be a metric such that:∫

M
dVg = 1

Suppose that λ(M) < λ(Sn), and let {φs} be the sequence of smooth, positive solutions to the
subcritical equation as defined in Proposition 3.5. Then there exists constants s0 < p, r > p, and
C > 0 such that ∥φs∥r ≤ C for all s ≥ s0.

Proof. Suppose λ(M) < λ(Sn). Let {φs} be a sequence of smooth, positive solutions to the
subcritical equation as defined in Proposition 3.5.

Let δ > 0, and consider the subcritical equation multiplied by φ1+2δ
s :

λsφ
s+2δ = 4

n− 1

n− 2
(∆φs)φ

1+2δ
s +Rφ2+2δ

s (3.17)

Integrating, and applying integration by parts to the first term on the right-hand side:

λs

∫
M
φs+2δ dVg = 4

n− 1

n− 2

∫
M
⟨∇φs, (1 + 2δ)φ2δ

s ∇φs⟩ dVg +
∫
M
Rφ2+2δ

s dVg
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Substituting u = φ1+δ
s :

λs

∫
M
φs−2
s u2 dVg = 4

n− 1

n− 2

1 + 2δ

(1 + δ)2

∫
M
⟨∇u,∇u⟩ dVg +

∫
M
Ru2 dVg

= 4
n− 1

n− 2

1 + 2δ

(1 + δ)2

∫
M

|∇u|2 dVg +
∫
M
Ru2 dVg

Rearranging:

4
n− 1

n− 2

∫
M

|∇u|2 dVg = λs
(1 + δ)2

1 + 2δ

∫
M
φs−2
s u2 dVg −

(1 + δ)2

1 + 2δ

∫
M
Ru2 dVg

≤ λs
(1 + δ)2

1 + 2δ

∫
M
φs−2
s u2 dVg +

(1 + δ)2

1 + 2δ

∫
M

|R|u2 dVg

Since M is compact, the scalar curvature is bounded by some constant C1:

4
n− 1

n− 2

∫
M

|∇u|2 dVg ≤ λs
(1 + δ)2

1 + 2δ

∫
M
φs−2
s u2 dVg + C1

(1 + δ)2

1 + 2δ

∫
M
u2 dVg

= λs
(1 + δ)2

1 + 2δ

∫
M
φs−2
s u2 dVg + C1

(1 + δ)2

1 + 2δ
∥u∥22

= λs
(1 + δ)2

1 + 2δ

∫
M
φs−2
s u2 dVg + C∥u∥22 (3.18)

for some constant C.

Since u ∈ C∞(M), by the Sobolev inequality in Theorem 3.1, there exists a constant Cε such that:

∥u∥2p ≤ (1 + ε)
4

λ(Sn)

n− 1

n− 2

∫
M

|∇u|2 dVg + Cε

∫
M
u2 dVg

≤ (1 + ε)
4

λ(Sn)

n− 1

n− 2

∫
M

|∇u|2 dVg + Cε∥u∥22 (3.19)

Substituting the integral in Equation (3.19) with the inequality derived in Equation (3.18):

∥u∥2p ≤ (1 + ε)
λs

λ(Sn)

(1 + δ)2

1 + 2δ

∫
M
φs−2
s u2 dVg + C∥u∥22 + Cε∥u∥22

= (1 + ε)
λs

λ(Sn)

(1 + δ)2

1 + 2δ

∫
M
φs−2
s u2 dVg + C ′

ε∥u∥22

where C ′
ε = C + Cε is some constant.

Let α = n/2 and β = p/2 be conjugate exponents. By Hölder’s inequality:

∥u∥2p ≤ (1 + ε)
λs

λ(Sn)

(1 + δ)2

1 + 2δ

(∫
M

|φs|α(s−2) dVg

) 1
α
(∫

M
|u|2β dVg

) 1
β

+ C ′
ε∥u∥22

= (1 + ε)
λs

λ(Sn)

(1 + δ)2

1 + 2δ

(∫
M

|φs|
(s−2)n

2 dVg

) 2
n
(∫

M
|u|p dVg

) 2
p

+ C ′
ε∥u∥22

= (1 + ε)
λs

λ(Sn)

(1 + δ)2

1 + 2δ
∥φs∥s−2

(s−2)n/2∥u∥
2
p + C ′

ε∥u∥22
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Since (s− 2)n/2 < s, it follows from Lemma 3.3 that ∥φs∥(s−2)n/2 ≤ ∥φs∥s = 1. Then:

∥u∥2p ≤ (1 + ε)
λs

λ(Sn)

(1 + δ)2

1 + 2δ
∥u∥2p + C ′

ε∥u∥22 (3.20)

For simplicity, suppose that λ(M) ≥ 0; the same result holds if λ(M) < 0 with minor modifications.
By hypothesis, λ(M) < λ(Sn). Then, for some fixed s0 < p:

λs0
λ(Sn)

< 1

By Lemma 3.6 and the remark within, we have that λs ≤ λs0 for all s ≥ s0. It follows that:

λs
λ(Sn)

< 1

Additionally, we can always choose sufficiently small ε > 0 and δ > 0 such that:

(1 + ε)
λs

λ(Sn)

(1 + δ)2

1 + 2δ
≤ C ′ (3.21)

for some constant C ′ < 1.

Then, applying this inequality to Equation (3.20):

∥u∥2p ≤ C ′∥u∥2p + C ′
ε∥u∥22

By combining both p-norms, it follows immediately that:

∥u∥2p ≤ C∥u∥22 (3.22)

for some new constant C.

Since u = φ1+δ
s , it can be shown that:

∥φs∥2(1+δ)
p(1+δ) ≤ C∥φs∥2(1+δ)

2(1+δ)

Let α = s/(s− 2(1 + δ)) and β = s/(2(1 + δ)) be conjugate exponents. By Hölder’s inequality and
using the fact that ∥φs∥s = 1:

∥φs∥2(1+δ)
p(1+δ) ≤ C

∫
M

|φs|2(1+δ) dVg

≤ C

(∫
M
dVg

) 1
α
(∫

M
|φs|2β(1+δ) dVg

) 1
β

= C

(∫
M

|φs|s dVg
) 2(1+δ)

s

= C∥φs∥2(1+δ)
s

= C
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It follows that, for all s ≥ s0:

∥φs∥p(1+δ) ≤ C (3.23)

for some new constant C.

Since δ > 0 is arbitrary, ∥φs∥r is bounded independently of s for all r > p.

We now prove the first main theorem.

Theorem A (Yamabe, Trudinger, Aubin). Let (M, g) be a compact, Riemannian manifold of
dimension n. Suppose that λ(M) < λ(Sn), where Sn is the n-sphere equipped with the standard,
round metric. Then there exists a minimizer of Qg and hence a solution to the Yamabe problem
on M .

Proof. Suppose that λ(M) < λ(Sn). Let {φs} be the sequence of smooth, positive solutions to the
subcritical equation as defined in Proposition 3.5.

By Proposition 3.8, the functions {φs} are uniformly bounded in Lr(M) for some r > p. The
regularity theorem (Theorem 3.4) then implies that they are also uniformly bounded in C2,α(M).
Then there exists a K ∈ R for all s such that:

∥φs∥C2,α = ∥φs∥C2 + sup
x ̸=y∈M

|∇2φs(x)−∇2φs(y)|
|x− y|α

(3.24)

= sup
M

|φs|+ sup
M

|∇φs|+ sup
M

|∇2φs|+ sup
x ̸=y∈M

|∇2φs(x)−∇2φs(y)|
|x− y|α

≤ K (3.25)

It follows that the sequences {φs}, {∇φs}, and {∇2φs} are each individually in C0(M). Note
that they are bounded because M is compact. Additionally, it follows immediately from the C2,α

Hölder norm that the sequence {∇2φs} is equicontinuous. It can also be shown using the mean
value theorem that the other two sequences are likewise equicontinuous.

The Arzelà-Ascoli theorem (Theorem 1.13) then implies that the sequences {φs}, {∇φs}, and
{∇2φs} are relatively compact. Hence, as s → p, there exists subsequences {φsk}, {∇φsk}, and
{∇2φsk} which converges respectively to functions φ, ∇φ, and ∇2φ in C0(M). Then the sequence
{φs} converges in the C2 norm to a function φ ∈ C2(M).

We denote by λ the limit of λs as s→ p. Note that the limit function φ must then satisfy:(
4
n− 1

n− 2
∆ +R

)
φ = λφp−1 Qg(φ) = λ (3.26)

If λ(M) ≥ 0, it follows by Lemma 3.6 and Lemma 3.7 that λ = λ(M).

If λ(M) < 0, it follows by Lemma 3.6 that λs is negative and is increasing as s → p. Since
λ(M) = λp, this implies that λ ≤ λ(M). However, since λ(M) is by definition the infimum of Qg,
it must be that λ = λ(M).

Either way, we have found a limit function φ such that Qg(φ) = λ(M). By applying the regularity
theorem (Theorem 3.4), we find that φ is in C∞(M) and is strictly positive because ∥φ∥p ≥
lims→p ∥φs∥s = 1.
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4 Theorem B (Aubin)

Definition 4.1 (Locally Conformally Flat Manifolds). Let (M, g) be a Riemannian manifold of
dimension n. Then M is locally conformally flat if for each point p ∈M , there exists a neighbour-
hood U ⊂ M of p and a conformal metric g̃ such that (U, g̃) is flat (i.e. the Riemann curvature
tensor R̃i

jkl vanishes on U).

Definition 4.2 (The Weyl Tensor). Let (M, g) be a manifold of dimension n. The components of
the Riemann tensor that are not accounted for by the Ricci tensor, are encapsulated in the Weyl
tensor. In a local chart, its components are given by:

Wijkl = Rijkl −
1

n− 2
(Rikgjl −Rilgjk +Rjlgik −Rjkgil) +

R

(n− 1)(n− 2)
(gikgjl − gilgjk) (4.1)

Note that the Weyl tensor is trace free by construction. It can also be shown that the Weyl tensor
is conformally invariant:

W̃ i
jkl =W i

jkl (4.2)

Theorem 4.1 (Weyl–Schouten Theorem). Let (M, g) be a Riemannian manifold of dimension
n > 3. Then M is locally conformally flat if and only if the Weyl tensor vanishes identically.

Proposition 4.2 (Conformal Normal Coordinates [Cao93] [Gün91]). Let (M, g) be a Riemannian
manifold of dimension n ≥ 2, and let p be a point in M . Then there exists a conformal metric g̃
on M such that, for all points in a neighbourhood U of p:

det(g̃) = 1 (4.3)

The local coordinate system {xi} at p ∈M associated with this metric g̃ is called a conformal normal
coordinate system. In these coordinates, if n ≥ 5, the scalar curvature of g̃ satisfies R̃ = O(|x|2)
and ∆R̃(p) = 1

6 |W̃ (p)|2. It also follows that the volume form dVg̃ on U is equal to the Euclidean
volume form dx.

Theorem 4.3 (Sharp Sobolev Inequality on Rn). Let n ∈ N. On Rn, the sharp Sobolev inequality
is given by:

∥φ∥2p ≤ 4
n− 1

n− 2
λ(Sn)−1∥∇φ∥22 (4.4)

for all φ ∈W 1,p(Rn).

Additionally, let uα : Rn → R with α > 0 be the Sobolev extremal functions on Rn given by:

uα(x) =

(
|x|2 + α2

α

) 2−n
2

(4.5)

On Rn, the functions uα satisfy:

∥uα∥2p = 4
n− 1

n− 2
λ(Sn)−1∥∇uα∥22 (4.6)

22



Lemma 4.4 (Aubin). Let (M, g) be a compact, Riemannian manifold of dimension n ≥ 3, then
λ(M) ≤ λ(Sn).

Proof. We begin with (Rn, δ), where δ is the usual Euclidean metric. Let {xi} be the Euclidean
coordinate system on Rn. Let Bε ⊂ Rn denote the ball of radius ε > 0 centered around the origin
of Rn.

Let η : Rn → R be a smooth, radial, cutoff function supported in B2ε with the following properties:

0 ≤ η ≤ 1 in B2ε η ≡ 1 in Bε

Consider the smooth, compactly supported function φ = ηuα where uα with α > 0 are the Sobolev
extremal functions given by:

uα(x) =

(
|x|2 + α2

α

) 2−n
2

(4.7)

Since each uα is only a function of |x|, let r = |x|. Then, computing its derivative:

∂uα
∂r

=
(2− n)r

α

(
r2 + α2

α

)−n
2

(4.8)

We make the following observations:

uα ≤ α
n−2
2 r2−n |∂ruα| ≤ (n− 2)α

n−2
2 r1−n (4.9)

Observe that:

4
n− 1

n− 2
∥∇φ∥22 = 4

n− 1

n− 2

∫
Rn

|∇φ|2 dx

= 4
n− 1

n− 2

∫
Rn

|η∇uα + uα∇η|2 dx

= 4
n− 1

n− 2

∫
Rn

(
η2|∇uα|2 + 2ηuα⟨∇η,∇uα⟩+ u2α|∇η|2

)
dx

≤ 4
n− 1

n− 2

∫
Rn

(
|∇uα|2 + 2ηuα|∇η||∇uα|+ u2α|∇η|2

)
dx

Consider the third integral term. Since η is bounded and supported in B2ε and constant in Bε:∫
Rn

u2α|∇η|2 dx =

∫
B2ε

u2α|∇η|2 dx

=

∫
B2ε−Bε

u2α|∇η|2 dx+

∫
Bε

u2α|∇η|2 dx

≤
∫
B2ε−Bε

C1u
2
α dx

≤
∫
B2ε−Bε

C1α
n−2r4−2n dx

= Cαn−2

for some constants C1 and C.
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Consider now the second integral term:∫
Rn

2ηuα|∇η||∇uα| dx ≤
∫
B2ε

2uα|∇η||∇uα| dx

=

∫
B2ε−Bε

2uα|∇η||∇uα| dx+

∫
Bε

2uα|∇η||∇uα| dx

≤
∫
B2ε−Bε

C2uα|∇uα| dx

=

∫
B2ε−Bε

C2uα|∂ruα| dx

≤
∫
B2ε−Bε

C2(n− 2)αn−2r3−2n dx

= Cαn−2

for some constants C2 and C.

Observe that, for a fixed ε > 0, these two integral terms are O(αn−2) and vanish as α→ 0.

Consider finally the first term. Applying Equation (4.6) from Theorem 4.3:

4
n− 1

n− 2

∫
Rn

|∇uα|2 dx = 4
n− 1

n− 2
∥∇uα∥22

= λ(Sn)∥uα∥2p

= λ(Sn)

(∫
Rn

|uα|p dx
) 2

p

= λ(Sn)

(∫
Bε

|uα|p dx+

∫
Rn−Bε

|uα|p dx
) 2

p

≤ λ(Sn)

(∫
B2ε

|ηuα|p dx+

∫
Rn−Bε

αp(n−2
2 )rp(2−n) dx

) 2
p

= λ(Sn)

(∫
B2ε

|φ|p dx+

∫
Rn−Bε

α(
2n
n−2)(

n−2
2 )r

2n(2−n)
n−2 dx

) 2
p

= λ(Sn)

(∫
B2ε

|φ|p dx+

∫
Rn−Bε

αnr−2n dx

) 2
p

= λ(Sn)

(∫
B2ε

|φ|p dx
) 2

p

+O(αn)

= λ(Sn)∥φ∥2p +O(αn)

Combining the above results:

4
n− 1

n− 2
∥∇φ∥22 ≤ λ(Sn)∥φ∥2p + Cαn−2 (4.10)

for some new constant C.
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We now consider a compact, Riemannian manifold (M, g) of dimension n ≥ 3. Let p ∈ M be a
point, and let {xi} be a set of conformal normal coordinates associated with the conformal metric
g̃ in some neighbourhood B2ε of p.

In these coordinates, there exists a sufficiently small ε > 0 such that dVg̃ = dx in B2ε ⊂M . Observe
then that:

E(φ) =

∫
B2ε

(
4
n− 1

n− 2
|∇φ|2 + R̃φ2

)
dVg̃

=

∫
B2ε

(
4
n− 1

n− 2
|∇φ|2 + R̃φ2

)
dx

= 4
n− 1

n− 2
∥∇φ∥22 +

∫
B2ε

R̃φ2 dx

Combined with Equation (4.10), we find that:

E(φ) ≤ λ(Sn)∥φ∥2p + Cαn−2 +

∫
B2ε

R̃u2α dx

Since M is compact, the scalar curvature is bounded by some constant C1. Denote by dω the
standard volume form on the unit (n − 1)-sphere, and denote by dωr = rn−1dω the standard
volume form on the (n− 1)-sphere of radius r in Rn. Then:

E(φ) ≤ λ(Sn)∥φ∥2p + Cαn−2 + C1

∫
B2ε

u2α dx

= λ(Sn)∥φ∥2p + Cαn−2 + C1

∫ 2ε

0

∫
∂Br

u2αr
n−1 dωdr

= λ(Sn)∥φ∥2p + Cαn−2 + C

∫ 2ε

0
u2αr

n−1 dr

for some new constant C.

By Lemma 4.5 (see below), the above integral is bounded by a constant multiple of α. Then,
choosing first an ε and then a sufficiently small α, we find that:

Qg(φ) =
E(φ)

∥φ∥2p

≤ λ(Sn) +
C

∥φ∥2p
αn−2 +

C

∥φ∥2p

∫ 2ε

0
u2αr

n−1 dr

≤ λ(Sn) +Kα

for some constant K.

It follows directly that λ(M) ≤ λ(Sn).

We now prove the second main theorem.

Theorem B (Aubin). Suppose that (M, g) is a compact, Riemannian manifold of dimension n ≥ 6
and is not locally, conformally flat. Then λ(M) < λ(Sn).
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Proof. Let (M, g) be a compact, Riemannian manifold of dimension n ≥ 6. If M is not locally
conformally flat, then there exists a point p ∈M such that:

|W (p)| > 0 (4.11)

where W is the Weyl tensor.

Let {xi} be a set of conformal normal coordinates associated with the conformal metric g̃ in
B2ε(p) ⊂ M , and consider the test function φ = ηuα as defined in Lemma 4.4. By compact
support:

E(φ) =

∫
M

(
4
n− 1

n− 2
|∇φ|2 + R̃φ2

)
dVg̃

=

∫
B2ε

(
4
n− 1

n− 2
|∇φ|2 + R̃φ2

)
dVg̃

In conformal normal coordinates, there exists a sufficiently small ε > 0 such that dVg̃ = dx in
B2ε(p):

E(φ) =

∫
B2ε

(
4
n− 1

n− 2
|∇φ|2 + R̃φ2

)
dx

= 4
n− 1

n− 2
∥∇φ∥22 +

∫
B2ε

R̃φ2dx

Using some results and observations from Lemma 4.4:

E(φ) ≤ λ(Sn)∥φ∥2p + C1α
n−2 +

∫
B2ε

R̃φ2dx

= λ(Sn)∥φ∥2p + C1α
n−2 +

∫
Bε

R̃φ2 dx+

∫
B2ε−Bε

R̃φ2 dx

≤ λ(Sn)∥φ∥2p + C1α
n−2 +

∫
Bε

R̃φ2 dx+

∫
B2ε−Bε

R̃αn−2r4−2n dx

≤ λ(Sn)∥φ∥2p + C1α
n−2 +

∫
Bε

R̃φ2 dx+ C2α
n−2

= λ(Sn)∥φ∥2p + Cαn−2 +

∫
Bε

R̃φ2 dx

for some constants C1, C2, and C.

Recall also that, in conformal normal coordinates:

R̃ = O(|x|2) ∆R̃(p) =
1

6
|W̃ (p)|2 (4.12)

Taylor expanding up to leading order, in Einstein summation notation:

E(φ) ≤ λ(Sn)∥φ∥2p + Cαn−2 +

∫
Bε

(
1

2
∇2

ijR̃(p)x
ixj +O(|x|3)

)
u2α dx

= λ(Sn)∥φ∥2p + Cαn−2 +

∫ ε

0

∫
∂Br

(
1

2
∇2

ijR̃(p)x
ixj +O(|x|3)

)
u2αr

n−1 dωdr
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Observe that the terms with i ̸= j vanish because the integrand is odd and the domain of integration
is symmetric:

E(φ) ≤ λ(Sn)∥φ∥2p + Cαn−2 +

∫ ε

0

∫
∂Br

(
1

2
∇2

iiR̃(p)x
ixi +O(|x|3)

)
u2αr

n−1 dωdr

Recall that the Laplacian ∆ is defined as the negative of the trace of the second covariant derivative:

E(φ) ≤ λ(Sn)∥φ∥2p + Cαn−2 +

∫ ε

0

∫
∂Br

(
−1

2
∆R̃(p)xixi +O(|x|3)

)
u2αr

n−1 dωdr

= λ(Sn)∥φ∥2p + Cαn−2 +

∫ ε

0

∫
∂Br

(
− 1

12
|W̃ (p)|2xixi +O(|x|3)

)
u2αr

n−1 dωdr

= λ(Sn)∥φ∥2p + Cαn−2 + C

∫ ε

0

(
−|W̃ (p)|2r2 +O(r3)

)
u2αr

n−1 dr

for some new, positive constant C.

Since the Weyl tensor is conformally invariant, W̃ (p) =W (p). Then, by Lemma 4.5 (see below):

E(φ) ≤

{
λ(Sn)∥φ∥2p − C|W (p)|2α4 +O(αn−2), if n > 6

λ(Sn)∥φ∥2p − C|W (p)|2α4 log(1/α) +O(αn−2), if n = 6
(4.13)

for some new, positive constant C.

It follows that Qg(φ) < λ(Sn) for a sufficiently small α. Since λ(M) is the infimum of Qg(φ), it
must be that λ(M) < λ(Sn).

Lemma 4.5. We define:

I(α) =

∫ ε

0
rku2αr

n−1 dr (4.14)

where uα(r) is as defined in Equation (4.7).

Suppose k > −n. Then, as α→ 0, I(α) is bounded above and below. Additionally:

• If n > k + 4, I(α) is bounded by positive multiples of αk+2.

• If n = k + 4, I(α) is bounded by positive multiples of αk+2 log (1/α).

• If n < k + 4, I(α) is bounded by positive multiples of αn−2.

Proof. We substitute σ = r/α:

I(α) =

∫ ε

0
rku2αr

n−1 dr

=

∫ ε

0
rk+n−1

(
r2 + α2

α

)2−n

dr

= α

∫ ε
α

0
αk+n−1σk+n−1

(
α2σ2 + α2

α

)2−n

dσ

= αk+2

∫ ε
α

0
σk+n−1

(
σ2 + 1

)2−n
dσ

= αk+2

(∫ 1

0
σk+n−1

(
σ2 + 1

)2−n
dσ +

∫ ε
α

1
σk+n−1

(
σ2 + 1

)2−n
dσ

)
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Since the bounds of the first integral are 0 ≤ σ ≤ 1, the first integral is bounded by some constant
C1:

I(α) = αk+2

(
C1 +

∫ ε
α

1
σk+n−1

(
σ2 + 1

)2−n
dσ

)

≤ αk+2

(
C1 +

∫ ε
α

1
σk+n−1

(
2σ2
)2−n

dσ

)

= αk+2

(
C1 + C2

∫ ε
α

1
σk+3−n dσ

)

= Cαk+2

(
1 +

∫ ε
α

1
σk+3−n dσ

)

The result for each case follows by direct computation.

5 Positive Mass Theorem

5.1 Geometric Preliminaries

All definitions, theorems, and propositions are taken from [Aub98], [Heb97], and [LP87].

Definition 5.1 (Pushforward). Let M and N be manifolds of dimension n, and let φ : M → N
be a diffeomorphism. Let p ∈ M , and let X ∈ Tp(M). The pushforward of X to N is the unique
tangent vector φ∗X ∈ Tφ(p)(N) satisfying:

(φ∗(X))(f) = X(f ◦ φ) (5.1)

for all smooth functions f : N → R

Definition 5.2 (Pullback). Let M and N be manifolds of dimension n, let φ : M → N be a
diffeomorphism, and let S be a tensor of rank (0, s) on N . The pullback of S is the unique tensor
of rank (0, s) on M satisfying

(φ∗S)p(X1, X2, ..., Xs) = Sφ(p)(φ∗X1, φ∗X2, ..., φ∗Xs) (5.2)

for all p ∈M and Xi ∈ Tp(M) for each i = 1, 2, ..., s.

Definition 5.3 (Isometric Manifolds). Let (M, g) and (M ′, g′) be two Riemannian manifolds of
dimension n. Let φ : M → M ′ be a diffeomorphism such that g′ = φ∗g. Then (M, g) and (M ′, g′)
are isometric manifolds and φ is called an isometry.

Definition 5.4 (Green’s Functions). Let M be a compact, Riemannian manifold, and let x0 ∈M .
The Green’s function Γ : M ×M → R of a linear, differential operator L is the unique, smooth
function satisfying, in the sense of distributions:

L Γ(x, x0) = δx0(x) (5.3)

where δx0 is the Dirac measure at x0.

We often write Γx0(x) rather than Γ(x, x0) and call Γx0 the Green’s function at x0 for some fixed
x0 ∈M .
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Theorem 5.1 (Existence of the Green’s Function). Let (M, g) be a compact, Riemannian manifold
of dimension n ≥ 3, and let h : M → R be a strictly positive, smooth function on M . Then, at
each point x0 ∈M , the Green’s function Γx0 for the operator ∆ + h exists.

Lemma 5.2. Let (M, g) be a compact, Riemannian metric of dimension n ≥ 3, and let g̃ = φp−2g
be a metric conformal to g. The volume form dVg̃ of g̃ is then given by:

dVg̃ = φp
s dVg (5.4)

Proof. Let {xi} be a local coordinate system on M . The volume form dVg̃ of g̃ is then given by:

dVg̃ = (det(g̃))
1
2 dx1 ∧ dx2 ∧ ... ∧ dxn

=
(
det
(
φp−2
s g

)) 1
2 dx1 ∧ dx2 ∧ ... ∧ dxn

=
(
φn(p−2)
s det(g)

) 1
2
dx1 ∧ dx2 ∧ ... ∧ dxn

= φp
s (det(g))

1
2 dx1 ∧ dx2 ∧ ... ∧ dxn

= φp
s dVg

where we used the fact that p = 2n/(n− 2).

Proposition 5.3. Let (M, g) be a compact, Riemannian metric of dimension n ≥ 3, let R denote
the scalar curvature of g, and suppose that λ(M) > 0. Then, at each point x0 ∈ M , the Green’s
function Γx0 for the operator 4(n− 1)/(n− 2)∆ +R exists and is strictly positive.

Proof. Recall the subcritical equation:

κφs−1 =

(
4
n− 1

n− 2
∆ +R

)
φ (5.5)

Let φs :M → R be the smooth, positive solution to the subcritical equation for some fixed s ∈ [2, p)
as defined in Proposition 3.5, and define a new, conformal metric:

g̃ = φp−2
s g (5.6)

By Equation (2.4), the scalar curvature R̃ of g̃ is given by:

R̃ = φ1−p
s

(
4
n− 1

n− 2
∆ +R

)
φs

= φ1−p
s λsφ

s−1
s

= λsφ
s−p
s

Since λ(M) > 0 by hypothesis, it follows from the remark in Lemma 3.6 that λs > 0 as well.
Therefore R̃ is strictly positive. Since R̃ is also a smooth function, by Theorem 5.1, the Green’s
function Γ′

x0
for the operator 4(n− 1)/(n− 2)∆̃ + R̃ exists at each point x0 ∈ M . It then follows

by definition that, for all C∞
c (M) functions f :M → R:∫

M
Γ′
x0
(x)

(
4
n− 1

n− 2
∆̃ + R̃

)(
f(x)

φs(x)

)
dVg̃(x) =

f(x0)

φs(x0)
(5.7)
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If Γ′
x0

≤ 0 at its minimum, then Γ′
x0

would be constant by the strong maximum principle (Theorem
1.12). This is impossible. Therefore, Γ′

x0
is strictly positive.

Now, consider the function:

Γx0(x) = φs(x0)φs(x)Γ
′
x0
(x) (5.8)

Clearly, Γx0 is strictly positive because both φs and Γ′
x0

are positive. Then, rewriting Equation
(5.7):

f(x0)

φs(x0)
=

∫
M

(
Γx0(x)

φs(x0)φs(x)

)(
4
n− 1

n− 2
∆̃ + R̃

)(
f(x)

φs(x)

)
dVg̃(x)

By the conformal transformations of the volume form (Lemma 5.2) and the conformal Laplacian
(Equation (2.6)):

f(x0)

φs(x0)
=

∫
M

(
Γx0(x)

φs(x0)φs(x)

)(
4
n− 1

n− 2
∆̃ + R̃

)(
f(x)

φs(x)

)
(φp

s dVg) (x)

=

∫
M

(
Γx0(x)

φs(x0)φs(x)

)(
φ1−p
s (x)

(
4
n− 1

n− 2
∆ +R

)
f(x)

)
φp
s(x) dVg(x)

=
1

φs(x0)

∫
M

Γx0(x)

(
4
n− 1

n− 2
∆ +R

)
f(x) dVg(x)

It follows immediately that, for all functions f ∈ C∞
c (M):∫

M
Γx0(x)

(
4
n− 1

n− 2
∆ +R

)
f(x) dVg(x) = f(x0) (5.9)

This is equivalent to: (
4
n− 1

n− 2
∆ +R

)
Γx0 = δx0 (5.10)

Therefore, at each point x0 ∈M , the Green’s function for the operator 4(n−1)/(n−2)∆+R exists
and is given by Γx0 .

Definition 5.5 (Generalized Stereographic Projection). Let (M, g) be a compact, Riemannian
manifold of dimension n, let λ(M) > 0, and fix some point x0 ∈ M . Let Γx0 be the Green’s
function for the operator 4(n− 1)/(n− 2)∆ +R, and define the metric ĝ on M̂ =M\{x0} by:

ĝ = Gp−2g (5.11)

where

G = 4(n− 1) vol(Sn−1)Γx0 (5.12)

The Riemannian manifold (M̂, ĝ) together with the natural map σ : M\{x0} → M̂ is called the
stereographic projection of M from x0.
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Proposition 5.4. Let (M, g) be a compact, Riemannian manifold of dimension n, and let (M̂, ĝ)
be the image manifold of a stereographic projection of M from some point x0 ∈ M . Denote by R̂
the scalar curvature of (M̂, ĝ). Then R̂ = 0 on M̂ .

Proof. Recall that M̂ = M\{x0}. Since Γx0 is positive, it follows that G = 4(n − 1) vol(Sn−1)Γx0

is likewise positive. Then ĝ = Gp−2g is a metric conformal to g on M̂ .

By Equation (2.4), the scalar curvature R̂ of ĝ is given by:

R̂ = G1−p

(
4
n− 1

n− 2
∆ +R

)
G

= G1−p

(
4
n− 1

n− 2
∆ +R

)(
4(n− 1) vol(Sn−1)Γx0

)
= 4(n− 1) vol(Sn−1)G1−p

(
4
n− 1

n− 2
∆ +R

)
Γx0

However, recall that Γx0 is the Green’s function for the operator 4(n− 1)/(n− 2)∆+R. It follows
by definition that:

R̂ = 4(n− 1) vol(Sn−1)G1−p δx0 (5.13)

Since x0 ̸∈ M̂ , we conclude that R̂ = 0 on M̂ .

Definition 5.6 (Asymptotically Flat Manifolds). Let (N, g) be a Riemannian manifold of dimen-
sion n ≥ 3. (N, g) is asymptotically flat of order τ > 0 if there exists a decomposition N = N0∪N∞
such that N0 is compact and N∞ is diffeomorphic to Rn\Br for some r > 0, satisfying:

gij = δij +O(|z|−τ ) ∂kgij = O
(
|z|−τ−1

)
∂ℓ∂kgij = O

(
|z|−τ−2

)
(5.14)

as |z| → ∞ where {zi} are the coordinates induced by the diffeomorphism from N∞ to Rn. The
coordinates {zi} are called asymptotic coordinates.

Although it appears as though this definition depends on the choice of asymptotic coordinates, it
can be shown that the asymptotically flat structure is determined solely by the metric alone.

Proposition 5.5. Let (M, g) be a compact, Riemannian manifold of dimension n, and let (M̂, ĝ)
be the image manifold of a stereographic projection of M from some point x0 ∈ M . Then (M̂, ĝ)
is asymptotically flat. In particular, (M̂, ĝ) is asymptotically flat of order 1 if n = 3, of order 2 if
n ≥ 4, and of order n− 2 if M is conformally flat near x0.

Definition 5.7 (Inverted Conformal Normal Coordinates). Let (M, g) be a Riemannian manifold
of dimension n ≥ 2, let p be a point inM , and let {xi} be a conformal normal coordinate system on
a neighbourhood U of p. An inverted conformal normal coordinate system {zi} defined on U\{p}
is given by:

zi = |x|−2xi (5.15)

Additionally, the basis vector fields in inverted conformal normal coordinates on U\{p} are given
by:

∂

∂zi
= |z|−2

(
δij − 2|z|−2zizj

) ∂

∂xi
(5.16)
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Definition 5.8 (General Relativity). Let (X, g) be a pseudo-Riemannian manifold of dimension n.
In general relativity, spacetime is a specific four-dimensional pseudo-Riemannian manifold called a
Lorentzian manifold, whose metric g satisfies the Einstein field equations:

Rµν −
1

2
gµνR =

8πG

c4
Tµν (5.17)

where G is the universal gravitational constant, c is the speed of light, and T is the energy-
momentum tensor of the system.

The Einstein field equations are analogous to the equation in Newtonian gravity:

∇2Φ = 4πGρ (5.18)

where Φ is the gravitational potential and ρ is the mass density of the system.

Definition 5.9 (Einstein-Hilbert Action). Let (X, g) be a pseudo-Riemannian manifold of dimen-
sion n. The Einstein-Hilbert action S is given by the functional:

S(g) =
c4

16πG

∫
X
R dVg (5.19)

where R is the scalar curvature of g.

The first variation of the Einstein-Hilbert action yields the vacuum Einstein field equations (T = 0).
For simplicity, we will neglect all constants:

S(g) =

∫
X
R dVg (5.20)

Lemma 5.6. Let (X, g) be a pseudo-Riemannian manifold of dimension n, and let h be a smooth,
symmetric 2-tensor. Consider a family of metric tensors gt parametrized by a single variable t such
that:

h =
d

dt
gt

∣∣∣∣
t=0

(5.21)

Suppose first that h is compactly supported. It follows by varying the Einstein-Hilbert action and
by the divergence theorem that, at t = 0:

d

dt
S(gt)

∣∣∣∣
t=0

=

∫
X
hij
(
Rij −

1

2
gijR

)
dVg (5.22)

Suppose now that (X, g) is asymptotically flat, and let {zi} be a system of asymptotic coordinates
on X∞. It follows by varying the Einstein-Hilbert action and by integrating over a large sphere SR
as R→ ∞ in the asymptotic end that, at t = 0:

d

dt
S(gt)

∣∣∣∣
t=0

=

∫
X
hij
(
Rij −

1

2
gijR

)
dVg − lim

R→∞

∫
SR

ξ dVg (5.23)

where

ξ =

(
∂hij
∂zi

− ∂hii
∂zj

)(
1 +O(|z|−1)

)
(5.24)

By observation, the boundary term is the first variation of a geometric invariant, which we call
mass.
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Definition 5.10 (Mass-Density Vector Field). Let (N, g) be an asymptotically flat Riemannian
manifold of dimension n, and let {zi} be a system of asymptotic coordinates on N∞. The mass-
density vector field µ defined on N∞ is given by:

µ =

(
∂gij
∂zi

− ∂gii
∂zj

)
∂

∂zj
(5.25)

Definition 5.11 (Mass). Let (N, g) be an asymptotically flat Riemannian manifold of dimension
n, and let {zi} be a system of asymptotic coordinates on N∞. If the limit exists, the mass m(g) of
(M, g) is given by:

m(g) = lim
r→∞

vol(Sn−1)−1

∫
∂Br

µ ⌟ dz (5.26)

where µ is the mass-density vector field. The symbol ⌟ denotes the interior product.

Proposition 5.7. Let (N, g) be an asymptotically flat Riemannian manifold, and let gt be a one-
parameter family of metrics with h = dgt/dt at t = 0. Then, it follows from Lemma 5.6 that, at
t = 0:

d

dt
(S(gt) +m(gt))

∣∣∣∣
t=0

=

∫
N
hij
(
Rij −

1

2
gijR

)
dVg (5.27)

5.2 Analytic Preliminaries

All definitions are taken from [LP87].

Definition 5.12 (Weighted Lebesgue Spaces). Let (N, g) be an asymptotically flat Riemannian
manifold of dimension n, let {zi} be a system of asymptotic coordinates on N∞, and let ρ(z) = |z|
on N∞ be extended to a smooth, positive function on all of N . Let q ≥ 1, and β ∈ R. The weighted
Lebesgue space Lq

β(N) is the set of locally integrable functions u on N whose norm ∥u∥0,q,β is finite.
The β-weighted q-norm ∥ · ∥0,q,β is given by:

∥u∥0,q,β =

(∫
N
|ρ−βu|qρn dVg

) 1
q

(5.28)

Definition 5.13 (Weighted Sobolev Spaces). Let (N, g) be an asymptotically flat Riemannian
manifold of dimension n, let {zi} be a system of asymptotic coordinates on N∞, and let ρ(z) = |z|
onN∞ be extended to a smooth, positive function on all ofN . The weighted Sobolev spaceW k,q

β (N)

is the set of functions u ∈ Lq(N) whose weak derivatives |∇iu| up to order k have a finite Lq
β−i(N)

norm. The β-weighted Sobolev norm ∥ · ∥k,q,β is given by:

∥u∥k,q =
k∑

i=0

∥∇iu∥0,q,β−i (5.29)

=

k∑
i=0

(∫
N
|ρ−(β−i)∇iu|qρn dVg

) 1
q

(5.30)

where the covariant derivatives ∇iu are taken in a weak sense.
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Definition 5.14 (Weighted Ck Spaces). Let (N, g) be an asymptotically flat Riemannian manifold
of dimension n, let {zi} be a system of asymptotic coordinates on N∞, and let ρ(z) = |z| on N∞
be extended to a smooth, positive function on all of N . The weighted Ck space Ck

β(N) is the set of
k-times continuously differentiable functions u on N whose norm ∥u∥Ck

β
is finite. The β-weighted

Ck
β(N) norm ∥ · ∥Ck

β
is given by:

∥u∥Ck
β
=

k∑
i=0

sup
N

(
ρ−(β−i)|∇iu|

)
(5.31)

Definition 5.15 (Weighted Hölder Spaces). Let (N, g) be an asymptotically flat Riemannian
manifold of dimension n, let {zi} be a system of asymptotic coordinates on N∞, and let ρ(z) = |z|
on N∞ be extended to a smooth, positive function on all of N . The weighted Hölder space Ck,α

β (N),

where 0 < α ≤ 1, is the set of functions u ∈ Ck
β(N) whose norm ∥u∥

Ck,α
β

is finite. The β-weighted

Hölder norm ∥ · ∥
Ck,α

β
is given by:

∥u∥
Ck,α

β
= ∥u∥Ck

β
+ sup

x ̸=y∈N

(
|∇ku(x)−∇ku(y)|

|x− y|α
(min {ρ(x), ρ(y)})−(β−k−α)

)
(5.32)

where the supremum is taken over all points y contained within a normal coordinate neighbourhood
of x for any x ∈ N .

5.3 Proof Sketch of the Positive Mass Theorem

Definition 5.16 (A Special Set of Metrics Mτ ). Let (N, g) be an asymptotically flat Riemannian
manifold of dimension n and of order τ > (n − 2)/2, and let {zi} be a system of asymptotic
coordinates on N∞. Mτ is the set of all C∞ Riemannian metrics on N such that, in asymptotic
coordinates {zi} on N∞:

gij − δij ∈ C1,α
−τ (N∞) R ∈ L1(N) (5.33)

where δ is the Kronecker delta, and R is the scalar curvature of g.

Additionally, in asymptotic coordinates on N∞, the scalar curvature R of a metric g ∈ Mτ satisfies:

R = gjk

(
∂Γi

jk

∂zi
−
∂Γi

ij

∂zk
+ Γi

iℓΓ
ℓ
jk − Γi

kℓΓ
ℓ
ij

)
(5.34)

=
∂

∂zj

(
∂gij
∂zi

− ∂gii
∂zj

)
+O(|z|−(2τ+2)) (5.35)

Lemma 5.8. Let (N, g) be an asymptotically flat Riemannian manifold of dimension n and of
order τ > (n− 2)/2. The mass functional m(g) is infinitely differentiable on Mτ .

Theorem 5.9. Let (N, g) be an asymptotically flat Riemannian manifold of dimension n and of
order τ > (n − 2)/2. Suppose that g ∈ Mτ . Then the mass m(g) depends only on the metric g
and not the choice of coordinates.

Theorem PMT (Positive Mass Theorem). Let (N, g) be a Riemannian manifold of dimension
n ≥ 3 which is asymptotically flat to order τ > (n − 2)/2 with non-negative scalar curvature R.
Then m(g) ≥ 0 with m(g) = 0 if and only if (N, g) is isometric to (Rn, δ).
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The proof of the positive mass theorem follows directly from the three following lemmas (which, as
it turns out, I didn’t have time to sketch).

Lemma 5.10. Let (N, g) be an asymptotically flat Riemannian manifold of dimension n, and let
{zi} be a system of asymptotic coordinates on N∞. Suppose that the metric g is of the following
form:

gij(z) = (1 +K|z|2−n)δij +Φij(z) (5.36)

where K is some constant, δ is the Euclidean metric, and Φij ∈ C5
1−n(N∞).

If the scalar curvature R of g is non-negative, then the mass m(g) is non-negative and:

m(g) = (n− 1)(n− 2)K (5.37)

Lemma 5.11. Let (N, g) be a Riemannian manifold of dimension n ≥ 3 which is asymptotically
flat to order τ > (n− 2)/2 with non-negative scalar curvature R. Then m(g) ≥ 0.

Lemma 5.12. Let (N, g) be a Riemannian manifold of dimension n ≥ 3 which is asymptotically
flat to order τ > (n− 2)/2 with non-negative scalar curvature R. If m(g) = 0, then N is isometric
to Rn equipped with the Euclidean metric δ.

6 Theorem C (Schoen)

Notation. Let (M, g) be a Riemannian manifold, and let f :M → R be some function. We write
f(r) = O′′(rk) if f satisfies the following properties:

f(r) = O(rk) ∇f(r) = O(rk−1) ∇2f(r) = O(rk−2) (6.1)

Theorem 6.1. Let (M, g) be a Riemannian manifold of dimension n ≥ 2, let (M̂, ĝ) be the
image manifold of M obtained by stereographic projection from some point p ∈ M . Let {xi} be
a conformal normal coordinate system on a neighbourhood U of p, and let {zi} be an inverted
conformal normal coordinate system on U\{p}. Define:

γ = |x|n−2G (6.2)

where G is as defined in Equation (5.12).

Then, using Equation (5.16), the metric ĝ in inverted conformal normal coordinates is given by:

ĝij(z) = γp−2|z|4g
(
∂

∂zi
,
∂

∂zj

)
(6.3)

= γp−2

(
δik − 2

zizk

|z|2

)(
δjℓ − 2

zjzℓ

|z|2

)
gkℓ
(
|z|−2z

)
(6.4)

= γp−2
(
δij +O′′(|z|−2)

)
(6.5)

For large values of |z|, it follows from Equation (6.5) that:

ĝρρ = γ2−p det(ĝ) = γ2p (6.6)
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Additionally, if n = 3, 4, 5, or if M is conformally flat in a neighbourhood of p, the functions G,
and consequently γ, have the following asymptotic expansions:

G(x) = |x|2−n + C +O′′(r) γ(z) = 1 + C|z|2−n +O′′(|z|1−n) (6.7)

for some constant C.

Definition 6.1 (Spherical Density Function). Let (M, g̃) be a Riemannian manifold of dimension
n, let p ∈ M , and let {xi} be a set of normal coordinates associated with the metric g̃ in some
neighbourhood of p. Let r = |x|, and denote by ∂Br the geodesic (n − 1)-sphere of radius r
centered around p. The ratio of the g̃-volume of ∂Br around p to its Euclidean volume is given by
the spherical density function:

h(r) =
1

rn−1 vol(Sn−1)

∫
∂Br

dω̃r (6.8)

where dω̃r = rn−1dω̃ is the volume form on ∂Br induced by g̃.

Proposition 6.2 (Distortion Coefficient). Let (M, g) be a compact, Riemannian manifold of di-
mension n ̸= 6. Let (M̂, ĝ) be the Riemannian manifold obtained from (M, g) by stereographic
projection, and let {zi} be a set of inverted conformal normal coordinates on M̂ . The asymptotic
expansion of the spherical density function as |z| → ∞ is given by:

h(|z|) = 1 +
(µ
k

)
|z|−k +O′′(|z|−(k+1)) (6.9)

for some constant k which depends on n.

The constant µ, computed in conformal normal coordinates {zi}, is called the distortion coefficient
ĝ. Its geometric meaning of µ at infinity is analogous to that of the scalar curvature at a finite
point.

Proof. Let {xi} be a set of normal coordinates associated with the metric g̃ on M , and let r = |x|.
Observe that ∇r/|∇r|, where ∇ here denotes the gradient, is the unit normal vector to ∂Br. Then:

h(r) =
1

rn−1 vol(Sn−1)

∫
∂Br

dω̃r

=
1

rn−1 vol(Sn−1)

∫
∂Br

∇r
|∇r|

⌟ dVg̃

=
1

rn−1 vol(Sn−1)

∫
∂Br

∇r
|∇r|

⌟ (det(g̃))
1
2 dx

=
1

rn−1 vol(Sn−1)

∫
∂Br

∇r√
⟨∇r,∇r⟩

⌟ (det(g̃))
1
2 dx

=
1

rn−1 vol(Sn−1)

∫
∂Br

∇r√
g̃(∇r,∇r)

⌟ (det(g̃))
1
2 dx

=
1

rn−1 vol(Sn−1)

∫
∂Br

(g̃rr)−
1
2 ∇r ⌟ (det(g̃))

1
2 dx

Observe that ∇r = g̃ijr−1xj∂i, where the inverse metric g̃ij was included to ensure that the result
is a vector field. Then:

h(r) =
1

rn−1 vol(Sn−1)

∫
∂Br

(g̃rr)−
1
2 r−1g̃ijxj∂i ⌟ (det(g̃))

1
2 dx
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Since ∂i ⌟ dx = r−1xi dωr on ∂Br, the expression reduces to:

h(r) =
1

rn−1 vol(Sn−1)

∫
∂Br

(g̃rr det(g̃))
1
2 dωr (6.10)

Consider now an image manifold (M̂, ĝ) with inverted normal conformal normal coordinates ob-
tained by stereographic projection from some point p in M , and let ρ = |z|. In these coordinates,
the spherical density function is given by:

h(ρ) =
1

ρn−1 vol(Sn−1)

∫
∂Bρ

(ĝρρ det(ĝ))
1
2 dωρ

Since ĝρρ = γ2−p and det(ĝ) = γ2p (Theorem 6.1):

h(ρ) =
1

ρn−1 vol(Sn−1)

∫
∂Bρ

(
γ2−pγ2p

) 1
2 dωρ

=
1

ρn−1 vol(Sn−1)

∫
∂Bρ

γ
p+2
2 dωρ (6.11)

Using the expansion for γ given in Theorem 6.1:

h(ρ) =
1

ρn−1 vol(Sn−1)

∫
∂Bρ

(1 + Cρ2−n +O′′(ρ1−n))
p+2
2 dωρ

Applying the binomial expansion and integrating over the sphere of radius ρ:

h(ρ) = 1 + Cρ−k +O′′(ρ−(k+1)) (6.12)

for k = n− 2 and for some constant C.

We define the distortion coefficient µ to be this leading order coefficient C multiplied by k.

Lemma 6.3. Let (M, g) be a compact, Riemannian manifold of dimension n ̸= 6. Let (M̂, ĝ) be
the Riemannian manifold obtained from (M, g) by stereographic projection, let {zi} be a set of
inverted conformal normal coordinates on M̂ , and let ρ = |z|. Then:

4

2

n− 1

n− 2

∫
∂Bρ

(∂ργ) vol(∂Bρ)
−1 dωρ = h′(ρ) +O(ρ−(2k+1)) (6.13)

= −µρ−k−1 +O(ρ−(k+2)) (6.14)

Proof. Recall that the Euclidean volume of an (n− 1)-sphere of radius ρ is given by:

vol(∂Bρ) = ρn−1 vol(Sn−1) (6.15)

From Equation (6.11):

h′(ρ) =
d

dρ

(
1

vol(∂Bρ)

∫
∂Bρ

γ
p+2
2 dωρ

)

=
d

dρ

(∫
∂Bρ

γ
p+2
2 vol(∂Bρ)

−1 dωρ

)
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Since vol(∂Bρ)
−1dωρ is a homogeneous (n− 1)-form of degree zero, we may differentiate under the

integral sign in the following way:

h′(ρ) =

∫
∂Bρ

∂ρ

(
γ

p+2
2

)
vol(∂Bρ)

−1 dωρ

=

∫
∂Bρ

p+ 2

2
γ

p
2 (∂ργ) vol(∂Bρ)

−1 dωρ

=
4

2

n− 1

n− 2

∫
∂Bρ

γ
p
2 (∂ργ) vol(∂Bρ)

−1 dωρ

where we used the fact that p = 2n/(n− 2).

Using the asymptotic expansion for γ given in Theorem 6.1:

h′(ρ) =
4

2

n− 1

n− 2

∫
∂Bρ

(1 + Cρ2−n +O′′(ρ1−n))
p
2 (∂ργ) vol(∂Bρ)

−1 dωρ

=
4

2

n− 1

n− 2

∫
∂Bρ

(∂ργ) vol(∂Bρ)
−1 dωρ +O(ρ−(k+2))

By direct computation and using the definition of µ:

h′(ρ) = −µρ−k−1 +O(ρ−(k+2))

The desired result follows immediately.

Lemma 6.4. Let (M, g) be a compact, Riemannian manifold of dimension n, and let p ∈ M .
Let (M̂, ĝ) be the stereographic projection of M from p, and let µ be the distortion coefficient
computed in inverted conformal normal coordinates {zi}. If n < 6 or if M is conformally flat in a
neighbourhood of p, then µ = m(ĝ)/2.

Proof. Suppose that n < 6 or that M is conformally flat in a neighbourhood of p ∈ M . Using
Theorem 6.1 and the fact that the scalar curvature R̂ of ĝ is identically zero on M̂ (Proposition
5.4), we may conclude that ĝ ∈ Mτ with τ > (n− 2)/2. The mass m(ĝ) can then be defined.

Let {zi} be a set of inverted conformal normal coordinates on M̂∞. Recall that the mass m(g) is
given by:

m(ĝ) = lim
r→∞

vol(Sn−1)−1

∫
∂Br

(
∂gij
∂zi

− ∂gii
∂zj

)
∂

∂zj
⌟ dz

= lim
r→∞

vol(Sn−1)−1

(∫
∂Br

∂gij
∂zi

∂

∂zj
⌟ dz −

∫
∂Br

∂gii
∂zj

∂

∂zj
⌟ dz

)

Let ρ = |z|. On the (n− 1)-sphere ∂Bρ, we have that:

∂

∂zj
⌟ dz =

zj

|z|
dωρ

=
zjzk

|z|2
∂

∂zk
⌟ dz
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The mass is then given by:

m(ĝ) = lim
r→∞

vol(Sn−1)−1

(∫
∂Br

∂gij
∂zi

zjzk

|z|2
∂

∂zk
⌟ dz −

∫
∂Br

∂gii
∂zk

∂

∂zk
⌟ dz

)
= lim

ρ→∞
vol(Sn−1)−1

∫
∂Bρ

(
zjzk

|z|2
∂gij
∂zi

− ∂gii
∂zk

)
∂

∂zk
⌟ dz

where we relabelled the index j → k in the second integral term.

Consider the (n− 2)-form η given by:

η = zjzkĝij∂i ⌟ ∂k ⌟ dz (6.16)

Observe that the exterior derivative of η is given by:

dη =
(
zjzk∂iĝij − zjzi∂iĝkj + zkĝii − nzj ĝkj

)
∂k ⌟ dz (6.17)

Since the boundary of ∂Bρ is empty, by Stokes’ Theorem:∫
∂Bρ

dη = 0 (6.18)

Observe now that:

ĝρρ = ĝ(∂ρ, ∂ρ) ∂ρĝρρ = ∂ρ

(
zkzj

|z|2
ĝkj

)
=
zkzj

|z|2
ĝkj =

zizjzk

|z|3
∂ĝkj
∂zi

It follows then that:

m(ĝ) = lim
ρ→∞

vol(Sn−1)−1

∫
∂Bρ

(
∂ρ(ĝρρ − ĝii) + ρ−1(nĝρρ − ĝii)

)
dωρ

Recall that, in inverted normal coordinates, ĝρρ = γp−2 and det(ĝ) = γ2p = 1 +O(ρ2−n). Then:

n∂ρĝρρ = n∂ρ(γ
p−2) (6.19)

= n(p− 2)γp−3∂ργ (6.20)

Using the fact that p = 2n/(n− 2) and undoing a chain rule:

n∂ρĝρρ = 2pγp−3∂ργ

= γp−2∂ρ(log(γ
2p))

= γp−2∂ρ(log(det(ĝ)))

= γp−2 det(ĝ)−1∂ρ(det(ĝ))
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Recall that since (M̂, ĝ) is asymptotically flat of order τ > (n−2)/2, we have that ĝij = δij+O(ρ−τ ).
Then, after applying the binomial expansion, we find that det(ĝ)−1 = (1+O(ρ−τ ))−1. Furthermore,
after applying the determinant formula and using the expansion of ĝij in terms of δij we obtain
∂ρ(det(ĝ)) = ∂ρ(ĝii) +O(ρ−(τ+1)).

Finally, using the asymptotic expansion for γ given in Theorem 6.1:

n∂ρĝρρ = ∂ρĝii +O(ρ−(2τ+1)) (6.21)

Due to asymptotic flatness, we also have that ĝii = n (in Einstein summation notation) and ĝρρ = 1
at ρ = ∞. Then, by integrating along the radial direction ρ from infinity, we obtain on M̂∞:

nĝρρ = ĝii +O(ρ−2τ ) (6.22)

Then, using Equation (6.22), the second term in the integrand is O(ρ−(2τ+1)) and vanishes in the
limit as ρ→ ∞:

m(ĝ) = lim
ρ→∞

vol(Sn−1)−1

∫
∂Bρ

(
∂ρ(ĝρρ − ĝii) + ρ−1O(ρ−2τ )

)
dωρ

= lim
ρ→∞

vol(Sn−1)−1

∫
∂Bρ

∂ρ(ĝρρ − ĝii) dωρ

= lim
ρ→∞

vol(Sn−1)−1

∫
∂Bρ

4
1− n

n− 2
∂ργ dωρ

Additionally, using Equations (6.21) and (6.20):

m(ĝ) = lim
ρ→∞

vol(Sn−1)−1

∫
∂Bρ

(
∂ρ(ĝρρ − nĝρρ) +O(ρ−(2τ+1))

)
dωρ

= lim
ρ→∞

vol(Sn−1)−1

∫
∂Bρ

(1− n)∂ρĝρρ dωρ

= lim
ρ→∞

vol(Sn−1)−1

∫
∂Bρ

(1− n)(p− 2)γp−3∂ργ dωρ

Using the asymptotic expansion for γ and the fact that p = 2n/(n− 2):

m(ĝ) = lim
ρ→∞

vol(Sn−1)−1

∫
∂Bρ

4
1− n

n− 2

(
1 + Cρ2−n +O(ρ1−n)

)p−3
∂ργ dωρ

= lim
ρ→∞

vol(Sn−1)−1

∫
∂Bρ

4
1− n

n− 2
γp−3∂ργ dωρ

Recall from Lemma 6.3 that:

ρ1−n vol(Sn−1)−1

∫
∂Bρ

4
n− 1

n− 2
∂ργ dωρ = −2µρ−k−1 +O(ρ−(k+2)) (6.23)

Since k = n− 2, it follows by taking the limit that m(ĝ) = 2µ.
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Theorem 6.5. Let n ∈ N, and consider the Sobolev extremal functions on Rn given by:

uα(x) =

(
|x|2 + α2

α

) 2−n
2

(6.24)

The Yamabe constant of the n-sphere λ(Sn) is given by:

λ(Sn) = 4n(n− 1)∥uα∥p−2
p (6.25)

where p = 2n/(n− 2) is the critical Sobolev exponent.

Proof. Let ∆ denote the Euclidean Laplacian. It can be shown by direct computation that:

∆uα = n(n− 2)up−1
α (6.26)

where p = 2n/(n− 2) is the critical Sobolev exponent.

Multiplying both sides by uα and integrating:∫
Rn

uα∆uα dx = n(n− 2)

∫
Rn

upα dx

Applying integration by parts on the left-hand side:∫
Rn

|∇uα|2 dx = n(n− 2)

∫
Rn

upα dx

Then:

∥∇uα∥22 = n(n− 2)∥uα∥pp

Recall that, on Rn, the functions uα satisfy Equation (4.6) from Theorem 4.3:

4
n− 1

n− 2
∥∇uα∥22 = λ(Sn)∥uα∥2p

It directly follows that:

λ(Sn) = 4n(n− 1)∥uα∥p−2
p

Proposition 6.6. Let (M, g) be a compact, Riemannian manifold of dimension n. Suppose that
n = 3, 4 5, or suppose M is locally conformally flat. Fix a large radius R > 0, and let {zi} be a
set of inverted conformal normal coordinates associated with the conformal metric g̃. Define a set
of smooth, positive functions φα :M → R by:

φα(z) =

{
uα(z), |z| ≥ R

uα(R), |z| ≤ R
(6.27)

where

uα(z) =

(
|z|2 + α2

α

) 2−n
2

(6.28)

Then, as α→ ∞, there exist positive constants k and C such that:

Qg(φα) ≤ λ(Sn)− Cµα−k +O(α−(k+1)) (6.29)
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Proof. Let (M̂, ĝ) be the image manifold of a stereographic projection of M from some point
x0 ∈M . It follows by Proposition 5.5 that M̂ is asymptotically flat. Then M̂ = M̂0 ∪ M̂∞.

By definition of asymptotically flat manifolds, recall that M̂∞ is diffeomorphic to Rn\Br for some
radius r > 0. Let the radius R defined in Equation (6.27) be this radius r.

Recall that the energy E(φα) on M̂ is given by:

E(φα) =

∫
M̂

(
4
n− 1

n− 2
|∇φα|2 + R̂φ2

α

)
dVĝ

= 4
n− 1

n− 2

(∫
M̂0

|∇φα|2 dVĝ +
∫
M̂∞

|∇φα|2 dVĝ
)
+

∫
M̂
R̂φ2

α dVĝ

By Proposition 5.4, the scalar curvature R̂ of ĝ is zero:

E(φα) = 4
n− 1

n− 2

(∫
M̂0

|∇φα|2 dVĝ +
∫
M̂∞

|∇φα|2 dVĝ
)

Let ρ = |z|. Using the definition of φα (Equation (6.27)) and the fact that uα is only a function of
ρ:

E(φα) = 4
n− 1

n− 2

(∫
M̂0

|∇ (uα(R)) |2 dVĝ +
∫
M̂∞

|∇uα(z)|2 dVĝ(z)
)

= 4
n− 1

n− 2

∫
M̂∞

ĝρρ(∂ρuα)
2 dVĝ

= 4
n− 1

n− 2

∫
M̂∞

ĝρρ(∂ρuα)
2
√
det(ĝ) dz

It follows from Theorem 6.1 that ĝρρ = γ2−p and det(ĝ) = γ2p:

E(φα) = 4
n− 1

n− 2

∫
M̂∞

γ2−p(∂ρuα)
2
√
γ2p dz

= 4
n− 1

n− 2

∫
M̂∞

(∂ρuα)
2γ2 dz (6.30)

Consider now the following integral:

4
n− 1

n− 2

∫
BL−BR

(∂ρuα)
2γ2 dz (6.31)

where BL −BR denotes the annulus {R ≤ |z| ≤ L}.

Let ∆0 denote the Euclidean Laplacian. Applying integration by parts to Equation (6.31):

4
n− 1

n− 2

∫
BL−BR

(∂ρuα)
2γ2 dz = 4

n− 1

n− 2

∫
BL−BR

uα∆0uαγ
2 dz

− 4
n− 1

n− 2

∫
BL−BR

uα∂ρuα∂ρ(γ
2) dz

− 4
n− 1

n− 2

∫
∂BL∪ ∂BR

uα∂ρuαγ
2∂ρ ⌟ dz (6.32)
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Consider the third integral term in Equation (6.32). Observe that:

uα∂ρuα =

(
ρ2 + α2

α

) 2−n
2 (2− n)ρ

α

(
ρ2 + α2

α

)−n
2

=
(2− n)ρ

α

(
ρ2 + α2

α

)1−n

Then, for a fixed α, we find that uα∂ρuα is O(L3−2n) on ∂BL. Since γ is bounded and the volume
form ∂ρ ⌟ dz on ∂BL contributes O(Ln−1), the integral over ∂BL is O(L2−n) for a fixed α and
vanishes as L→ ∞ since n > 2.

Similarly, we find that the integral over ∂BR is O(α−n) because uα∂ρuα is O(α−n) on ∂BR.

Consider now the first integral term in Equation (6.32). Evaluating the Laplacian of uα by direct
computation:

4
n− 1

n− 2

∫
BL−BR

uα∆0uαγ
2 dz = 4

n− 1

n− 2

∫
BL−BR

n(n− 2)uαu
p−1
α γ2 dz

= 4n(n− 1)

∫
BL−BR

up−2
α (uαγ)

2 dz

Let α = 1/(1− 2/p) and β = p/2 be conjugate exponents. By Hölder’s inequality:

4
n− 1

n− 2

∫
BL−BR

uα∆0uαγ
2 dz ≤ 4n(n− 1)

(∫
BL−BR

uα(p−2)
α dz

) 1
α
(∫

BL−BR

(uαγ)
2β dz

) 1
β

= 4n(n− 1)

(∫
BL−BR

upα dz

)1− 2
p
(∫

BL−BR

(uαγ)
p dz

) 2
p

≤ 4n(n− 1)

(∫
M̂
upα dz

)1− 2
p
(∫

M̂
upαγ

p dz

) 2
p

≤ 4n(n− 1)∥uα∥p−2
p

(∫
M̂
upαγ

p dz

) 2
p

Recall that det(ĝ) = γ2p (Theorem 6.1). Then, by Theorem 6.5:

4
n− 1

n− 2

∫
BL−BR

uα∆0uαγ
2 dz ≤ 4n(n− 1)∥uα∥p−2

p

(∫
M̂
upα
√

det(ĝ) dz

) 2
p

= 4n(n− 1)∥uα∥p−2
p

(∫
M̂
upα dVĝ

) 2
p

= 4n(n− 1)∥uα∥p−2
p ∥φ∥2p

= λ(Sn)∥φ∥2p

Consider finally the second integral term. Denote by dωρ the standard volume form on ∂Bρ. Then,
letting L→ ∞:

4
n− 1

n− 2
lim
L→∞

∫
BL−BR

uα∂ρuα∂ρ(γ
2) dz = 4

n− 1

n− 2

∫ ∞

R
uα∂ρuα

∫
∂Bρ

∂ρ(γ
2) dωρdρ (6.33)

43



Using the asymptotic expansion for γ given in Theorem 6.1:

4
n− 1

n− 2

∫
∂Bρ

∂ρ(γ
2) dωρ = 8

n− 1

n− 2

∫
∂Bρ

γ∂ργ dωρ

= 8
n− 1

n− 2

∫
∂Bρ

(
1 + Cρ2−n +O(ρ1−n)

)
∂ργ dωρ

= 8
n− 1

n− 2

∫
∂Bρ

∂ργ dωρ +O(ρ−2n+3)

= 4
4

2

n− 1

n− 2

∫
∂Bρ

∂ργ dωρ +O(ρ−(2k+1))

where we used the fact that k = n− 2.

Since n ̸= 6 or if M is conformally flat near p ∈M , we may apply Lemma 6.3:

4
n− 1

n− 2

∫
∂Bρ

∂ρ(γ
2) dωρ = 4

(
h′(ρ) +O(ρ−(2k+1))

)
ρn−1 vol(Sn−1)

= −4
(
µρ−(k+1) +O(ρ−(k+2))

)
ρn−1 vol(Sn−1)

= −4µρ−(k+1) vol(Sn−1)ρn−1 + ρn−1O(ρ−(k+2))

Then the second integral term (continuing from Equation (6.33)) is given by:

4
n− 1

n− 2
lim
L→∞

∫
BL−BR

uα∂ρuα∂ρ(γ
2) dz = −4µ vol(Sn−1)

∫ ∞

R
uα∂ρuαρ

−(k+1)ρn−1 dρ

−
∫ ∞

R
uα∂ρuαO(ρ−(k+2))ρn−1 dρ

= −4µα−1(2− n) vol(Sn−1)

∫ ∞

R
ρ−k

(
ρ2 + α2

α

)1−n

ρn−1 dρ

− α−1

∫ ∞

R
O(ρ−(k+1))

(
ρ2 + α2

α

)1−n

ρn−1 dρ

Using a similar reasoning as in Lemma 4.5, the substitution σ = ρ/α shows that if 2− n < k < n,
the following integral is bounded:

C−1α−k+1 ≤
∫ ∞

R
ρ−k

(
ρ2 + α2

α

)1−n

ρn−1 dρ ≤ Cα−k+1

for some constant C.

It follows then that:

4
n− 1

n− 2
lim
L→∞

∫
BL−BR

uα∂ρuα∂ρ(γ
2) dz ≤ −Cµα−1α−k+1 + α−1O(α−k)

≤ −Cµα−k −O(α−(k+1))

for some new constant C.

44



Combining the above results:

E(φα) ≤ λ(Sn)∥φα∥2p − Cµα−k +O(α−(k+1)) (6.34)

for some positive constants C and k.

Dividing by ∥φα∥2p, we obtain the desired result:

Qg(φα) ≤ λ(Sn)− Cµα−k +O(α−(k+1)) (6.35)

for some new constant C.

Theorem C (Schoen). Suppose that (M, g) is a compact, Riemannian manifold of dimension
n = 3, 4, or 5 or is locally, conformally flat. Then λ(M) < λ(Sn) unless M is conformal to Sn.

Proof. Suppose that (M, g) is a compact, Riemannian manifold of dimension n = 3, 4, or 5 or is
locally, conformally flat. Without loss of generality, suppose that λ(M) > 0. This is because the
inequality λ(M) < λ(Sn) is trivial since λ(Sn) > 0.

Fix some p ∈ M , and denote by (M̂, ĝ) the stereographic projection of M from p. If (M̂, ĝ)
is isometric to (Rn, δ), then (M, g) is necessarily conformal to (Sn, g0) and has constant scalar
curvature. Suppose then that (M̂, ĝ) is not isometric (Rn, δ).

Recall that (M̂, ĝ) is an asymptotically flat manifold of order τ > (n − 2)/2 and that the scalar
curvature R̂ of ĝ is zero (Proposition 5.4). Since (M̂, ĝ) is not isometric (Rn, δ) and the scalar
curvature is non-negative, we may apply the positive mass theorem (Theorem PMT) to conclude
that the mass m(ĝ) is positive. By Lemma 6.4, it follows that the distortion coefficient µ is positive
as well.

Let {φα} be the sequence of smooth, positive functions as defined in Proposition 6.6. Then, as
α→ ∞, φα satisfies:

Qg(φα) ≤ λ(Sn)− Cµα−k +O(α−(k+1)) (6.36)

for some positive constants C and k.

Since µ > 0, it follows immediately by the definition of infimum that λ(M) < λ(Sn) for a sufficiently
large α.
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