How to Win Dots and Boxes

Lessons and Play: M.H. Albert, R.J. Nowakowski, D. Wolfe

Presented by: April Niu, Mentor: Jordan Barrett
Rules

Dots and Boxes

• Two players, Alice and Bob, start from a (rectangular) array of vertices (dots) and take turns to add edges horizontally or vertically.

• The player who completes the fourth side of a unit square (box) earns one point and takes another turn.

• The game ends when there is no more box can be completed. Whoever has more boxes is the winner (optimization).

• Note: there are two phases for this game (1. connecting vertices 2. collecting boxes).

Cr: https://en.wikipedia.org/wiki/Dots_and_Boxes
Let’s Play

Consider the following game board

- It’s Alice’s turn, she want to force Bob to play on the shorter chain.
Let’s Play

Consider the following game board

- It’s Alice’s turn, she wants to force Bob to play on the shorter chain.
Let’s Play

Consider the following game board

- It’s Alice’s turn, she wants to force Bob to play on the shorter chain.
- Suppose you are Bob, what is your next move?
Let’s Play
Consider the following game board

- It’s Alice’s turn, she want to force Bob to play on the shorter chain.
- Suppose you are Bob, what is your next move?
Let’s Play

Consider the following game board

• It’s Alice’s turn, she want to force Bob to play on the shorter chain.
• Suppose you are Bob, what is your next move?
Let’s Play

Consider the following game board

• It’s Alice’s turn, she want to force Bob to play on the shorter chain.
• Suppose you are Bob, what is your next move?
Let’s Play

Consider the following game board

• It’s Alice’s turn, she want to force Bob to play on the shorter chain.
• Suppose you are Bob, what is your next move?
 • Choice 1: greedily take the chain, and open the long chain to Alice
Let’s Play

Consider the following game board

It’s Alice’s turn, she want to force Bob to play on the shorter chain.

Suppose you are Bob, what is your next move?

• Choice 1: greedily take the chain, and open the long chain to Alice
• Choice 2: sacrifice 2 boxes, Alice is forced to open the long chain and then Bob can take the long chain
Double-Crossing

A Winning Strategy

• When Bob was forced to take a chain opened by Alice, he could close it with a double-cross move: sacrificing 2 boxes, but then Alice is forced to open a longer chain to Bob.

• After double-crossing, Bob gains control of the game. Otherwise, Alice has the control.

• The player who has control usually wins when there are several long chains.

• A long chain is a chain contains 3 or more boxes: it takes at least 3 boxes to complete a double-crossing move. (Note that a 2-box chain can be broken into 2 individual boxes, preventing the opponent from double-crossing.)
Long Chain
• In the previous game board, there were 2 long chains.
In the previous game board, there were 2 long chains.
In general, if there are more than 1 long chains, it is always a winning strategy to take the control by double-crossing.
• Let m be the number of long chains and n be the number of boxes, then if Bob use the strategy of double-crossing, he can score $n - 2m + 2 > 0$

• In the previous game board, there were 2 long chains.

• In general, if there are more than 1 long chains, it is always a winning strategy to take the control by double-crossing.
Definitions
Combinatorial Game Theory

- Combinatorial game theory studies two-player sequential games: players move sequentially as opposed to simultaneously in economic game theory.
- The winners in most combinatorial games depend on the last player, in contrast to Dots and Boxes.
- By convention \(L \) and \(R \) are used for each of the two players (instead of Alice and Bob).
- A game \(G \) is defined by \(G = \{ G^L | G^R \} \) where \(G^L \) and \(G^R \) stand for the set of left and right options respectively.
Game Tree

Combinatorial Game Theory

- For impartial games, the set of options for left and right are the same.
- We can draw a game tree of a position:
 - The root node is the original position
 - Create a node for each option from the root and connect to the root
 - For each node create node for its options and connect to the node
 - Repeat until there is not more options

Cr: https://en.wikipedia.org/wiki/Game_tree
More Definitions

Birthday of a Game

• Recall $G = \{ \mathcal{G}^L | \mathcal{G}^R \}$ where \mathcal{G}^L and \mathcal{G}^R stand for the set of left and right options.

• The *birthday* of a game $G = \{ \mathcal{G}^L | \mathcal{G}^R \}$ is defined as $1 + \max$ birthday of any game in $\mathcal{G}^L \cup \mathcal{G}^R$.

• Base case: if $\mathcal{G}^L = \mathcal{G}^R = \emptyset$, then the birthday of G is 0, i.e. $0 = \{ \mid \}$.

• Apply the definition recursively we have:
 • $1 = \{0 \mid \}$
 • $-1 = \{ \mid 0 \}$
 • $* = \{0 \mid 0 \}$
Thanks