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1. Example

We begin with abelian groups Ep,q0 for every p, q ≥ 0 and maps

dp,q0 : Ep,q0 → Ep,q+1
0

(here, as in all of homological algebra, all maps are indexed by the group where
they originate) making the columns into complexes; that is,

dp,q+1
0 dp,q0 = 0

for all p and q. For convenience, if either p or q is negative we define Ep,q0 = 0, and
we let dp,q0 be the zero map.

E0,2
0

OO

E1,2
0

OO

E2,2
0

OO

E3,2
0

OO

E0,1
0

OO

E1,1
0

OO

E2,1
0

OO

E3,1
0

OO

E0,0
0

OO

E1,0
0

OO

E2,0
0

OO

E3,0
0

OO

Now, since the columns are complexes, we can take their cohomology. Specifi-
cally, for all p and q we define

Ep,q1 = ker dp,q0 / im dp,q−1
0 .

(By our conventions before we automatically have Ep,q1 = 0 if either p or q is
negative.) Now, suppose that we somehow magically obtain horizontal maps

dp,q1 : Ep,q1 → Ep+1,q
1

which make the rows into complexes; that is,

dp+1,q
1 dp,q1 = 0

1
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for all p and q.

E0,2
1

// E1,2
1

// E2,2
1

// E3,2
1

//

E0,1
1

// E1,1
1

// E2,1
1

// E3,1
1

//

E0,0
1

// E1,0
1

// E2,0
1

// E3,0
1

//

Again, let us take the cohomology; that is, define

Ep,q2 = ker dp,q1 / im dp−1,q
1

for all p and q. Further, let us suppose that we somehow obtain maps

dp,q2 : Ep,q2 → Ep+2,q−1
2

satisfying dp+2,q−1
2 dp,q2 = 0. Here the terminal point of each map has shifted one to

the right and one down from the terminal point at the previous step.

E0,2
2

((QQQQQQQQQQQQQQQQ E1,2
2

((QQQQQQQQQQQQQQQQ E2,2
2

((QQQQQQQQQQQQQQQQQQ E3,2
2

((QQQQQQQQQQQQQQQQQQ

E0,1
2

((QQQQQQQQQQQQQQQQ E1,1
2

((QQQQQQQQQQQQQQQQ E2,1
2

((QQQQQQQQQQQQQQQQQQ E3,1
2

((QQQQQQQQQQQQQQQQQQ

E0,0
2 E1,0

2 E2,0
2 E3,0

2

Note that the maps leaving the bottow row Ep,02 all must be 0, since they land in
Ep+2,−1

2 = 0. Similarly, the maps entering the first two columns E0,q
2 and E1,q

2 all
originiate in 0 groups, and thus are 0. In particular, for both groups E0,0

2 and E1,0
2

both the maps entering and leaving are 0; we will return to this observation in a
moment.

Now, continue our procedure another step. That is, define

Ep,q3 = ker dp,q2 / im dp−2,q+1
3 .

Again, let us suppose that we somehow obtain maps

dp,q3 : Ep,q3 → Ep+3,q−2
3 ,

shifted one to the right and one down of the previous maps, such that dp+3,q−2
3 dp,q3 =

0.

E0,2
3

&&MMMMMMMMMMMMMMMMMMMMMMMMMMMM E1,2
3

&&MMMMMMMMMMMMMMMMMMMMMMMMMMMMMMM E2,2
3

&&MMMMMMMMMMMMMMMMMMMMMMMMMMMMMMM E3,2
3

&&MMMMMMMMMMMMMMMMMMMMMMMMMMMMMMM

E0,1
3 E1,1

3 E2,1
3 E3,1

3

E0,0
3 E1,0

3 E2,0
3 E3,0
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Returning to our previous observation, we see that since both the maps d0,0
2 and

d−2,1
2 entering and leaving E0,0

2 are zero,

E0,0
3 = E0,0

2 .

Similarly,
E1,0

3 = E1,0
2 .

Thus these two entries have stabilized at the E2 step. We will denote these (now
and forever) constant values by E0,0

∞ and E1,0
∞ respectively.

We get more entries stabilizing now at the E3 step. This time, all of the maps
leaving the bottom two rows and entering the first three columns are the zero map.
Thus all of the entries E0,0

3 , E1,0
3 , E2,0

3 , E0,1
3 , E1,1

3 and E1,2
3 have stabilized. As

before, we denote these constant values by Ep,q∞ for the appropriate p and q; this is
of course consistent with our earlier definitions of E0,0

∞ and E1,0
∞ .

Roughly speaking, a spectral sequence is all of the data in the above construction.
The general idea is that one starts with interesting groups Ep,qr at some early stage r
and that the stable values Ep,q∞ are also related to other interesting groups. Thus the
spectral sequence would somehow codify a relationship between these two families
of groups. Specifically, the content of a spectral sequence is in three pieces of
information : interesting interpretations of Ep,qr for some small r (very often 2);
the construction of the new maps dp,qr at each stage; and interesting interpretations
of the stable values Ep,q∞ . Of course, it is not clear how precisely the spectral
sequence relates all of these groups; in general the relationship is so complicated as
to be unusable. There are several important cases where precise information can
be obtained, however; we will give two examples below.

2. Formal Definitions

Definition 1. A ath-stage (first quadrant cohomological) spectral sequence is a
collection of abelian groups Ep,qr for all p, q ≥ 0 and for all r ≥ a for some positive
integer a, together with maps

dp,qr : Ep,qr → Ep+r,q−r+1
r

such that
dp+r,q−r+1
r dp,qr = 0

and
Ep,qr+1

∼= ker dp,qr / im dp−r,q+r−1
r

for all p, q and r as above.
As we have seen above, in any spectral sequence the (p, q) spot eventually stabi-

lizes; we denote this stable value of Ep,qr by Ep,q∞ . As can be seen easily by continuing
the construction of the first section, this will be achieved at least by the p+ q + 2
step, and often earlier.

The definition above makes no mention of these stable values, however. To relate
these to the spectral sequence we need to introduce the notion of convergence.
Definition 2. An ath-stage spectral sequence Ep,qr is said to converge to groups
Hn, written

Ep,qr ⇒ Hp+q,

if there is a filtration

0 = Hn
n+1 ⊆ Hn

n ⊆ Hn
n−1 ⊆ · · · ⊆ Hn

2 ⊆ Hn
1 ⊆ Hn

0 = Hn
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such that
Ep,n−p∞

∼= Hn
p /H

n
p+1

for all p.

0 � � //�

En,0∞

� Hn
n

� � // · · · � � // Hn
p+1

� � //�

Ep,n−p∞

� H
n
p

� � // · · · � � // Hn
1

� � //�

E0,n
∞

� Hn

Thus the stable values Ep,q∞ on the line p+ q = n are the succesive quotients in
a filtration of Hn, so that knowledge of them gives a lot of information about Hn.
The simplest such information are the edge maps

En,0a � En,0∞
∼= Hn

n ↪→ Hn

and
Hn � Hn/Hn

1
∼= E0,n

∞ ↪→ E0,n
a .

(En,0∞ is a quotient of En,0a since all maps leaving the (n, 0)-entry are 0, so that
at each stage the kernel is the whole entry. E0,n

∞ is a subgroup of E0,n
a for similar

reasons.) There is even a very important special case where knowledge of the Ep,q∞
actually gives complete information about Hn.

Definition 3. An ath-stage spectral sequence Ep,qr is said to collapse at the bth-
stage if there is only one non-zero row or column in Ep,qb .

Let
Ep,qa ⇒ Hp+q

be a convergent spectral sequence collapsing at the bth-stage, and assume that b ≥ 2
To fix ideas let us suppose that only the q0 row is non-zero.

0 0 0 0

E0,q0
b E1,q0

b E2,q0
b E3,q0

b

0 0 0 0

Two important things now happen. First, every dp,qb map must be the zero-map.
Thus we must have

Ep,qb+1 = Ep,qb

for all p and q, and continuing in this way we see that

Ep,q∞ = Ep,qb

for all p and q. Second, the p + q = n diagonal only has the one non-zero term
En−q0,q0b , so our above filtration yields

Hn ∼= En−q0,q0b .

Thus for a collapsing spectral sequence there is no ambiguity about the Hn.
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3. The Hochschild-Serre Spectral Sequence

It is well past time for an example. We will give the most important general
family of examples. For details see [1, Chapter 5]; the construction is fairly involved.

So, suppose that we have two abelian categories A and B. Further suppose that
we have functors G : A → B and F : B → Ab, where Ab is the category of abelian
groups. (There isn’t really any need to require that G takes values in Ab; it could
just as well be any abelian category. One merely has to replace the words “abelian
group” with “object in an abelian category” throughout the previous two sections.)

A G //

FG
!!CCCCCCCC B

F
}}||||||||

Ab

We suppose further that both A and B have enough injectives, and that F and
G are left exact, so that they have right derived functions RrF and RrG for all
r ≥ 0. The Grothendieck spectral sequence compares the composition of the derived
functors with the derived functors of the composition.

Theorem 3.1 (Grothendieck Spectral Sequence). Given the above setup, suppose
further that for any injective object I of A, RrF (G(I)) = 0 for all r > 0. Then
for any object A of A, there exists a second stage (first-quadrant cohomological)
spectral sequence

Ep,q2 = (RpF )(RqG)(A)⇒ Rp+q(FG)(A).

The edge maps

(RpF )(GA)→ Rp(FG)(A)

and

Rq(FG)(A)→ F (RqG(A))

are the natural maps.

As a particular example, we have the Hochschild-Serre spectral sequence for the
cohomology of groups.

Theorem 3.2 (Hochschild-Serre Spectral Sequence). Let G be a group, H a nor-
mal subgroup and A a G-module. Then there is a second stage (first-quadrant,
cohomological) spectral sequence

Ep,q2 = Hp(G/H;Hq(H;A))⇒ Hp+q(G;A).

The edge maps

Hn(G/H;AH)→ Hn(G;A)

and

Hn(G;A)→ Hn(H;A)G/H

are induced from inflation and restriction respectively.

Proof. This is a special case of the Grothendieck spectral sequence; for details, see
[1, Chapter 6, Section 8]. �
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H0(G/H;H2(H;M)) H1(G/H;H2(H;M)) H2(G/H;H2(H;M))

H0(G/H;H1(H;M)) H1(G/H;H1(H;M)) H2(G/H;H1(H;M))

H0(G/H;H0(H;M)) H1(G/H;H0(H;M)) H2(G/H;H0(H;M))

4. The Inflation-Restriction Sequence

Even when a spectral sequence does not collapse, one can often still obtain
information about some of the low-degree terms. In this section we will construct
an exact sequence of fundamental importance in group cohomology.

Let
Ep,q2 ⇒ Hp+q

be a convergent second stage spectral sequence.

E0,2
2

((QQQQQQQQQQQQQQQQ E1,2
2

((QQQQQQQQQQQQQQQQQQ E2,2
2

((QQQQQQQQQQQQQQQQQQ

E0,1
2

((QQQQQQQQQQQQQQQQ E1,1
2

((QQQQQQQQQQQQQQQQQQ E2,1
2

((QQQQQQQQQQQQQQQQQQ

E0,0
2 E1,0

2 E2,0
2

Let us follow through the computation of Ep,q3 a bit. Straight from the definitions,
we get the following picture for the third stage, in which the boxed entries have
already stabilized to their final values.

kerE0,2
2 → E2,1

2 kerE1,2
2 → E3,1

2
mess

kerE0,1
2 → E2,0

2 kerE1,1
2 → E3,0

2
mess

E0,0
2 E1,0

2 E2,0
2 / imE0,1

2

Now, let us combine this with our knowledge of convergence. First, directly from
the filtration of H1, we get an exact sequence

0→ E1,0
2 → H1 → (kerE0,1

2 → E2,0
2 )→ 0.

Next, we know that we have an edge map

0→ E2,0
2 / imE0,1

2 → H2.

Thus these two exact sequences splice together to give a five term exact sequence

0→ E1,0
2 → H1 → E0,1

2 → E2,0
2 → H2.
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Further, every map except for E0,1
2 → E2,0

2 is just an edge map. We state the
special case of this for the Hochschild-Serre spectral sequence as a theorem.

Theorem 4.1 (Inflation-Restriction). If H is a normal subgroup of G and M is a
G-module, then there is an exact sequence

0 −−−−→ H1(G/H;MH) inf−−−−→ H1(G;M) res−−−−→ H1(H;M)G/H

−−−−→ H2(G/H;MH) inf−−−−→ H2(G;M)

where inf and res are the inflation and restriction maps.

Now, suppose further that the q = 1 row of our spectral sequence vanishes.
That is, suppose that Ep,12 = 0 for all p. Since every Ep,1r is a subquotient of Ep,12 ,
it follows that this row is zero for all r. (In general, any entry in the spectral
sequence which is ever zero is always and forever zero.) In particular, our above
exact sequence now becomes an isomorphism

E1,0
2

∼=−→ H1

and an injection

E2,0
2 ↪→ H2.

In this case we can actually extend this second exact sequence farther to the right.
So, we begin with a second stage spectral sequence with zero q = 1 row.

E0,2
2

((QQQQQQQQQQQQQQQQQQ E1,2
2

((QQQQQQQQQQQQQQQQQQ E2,2
2

((QQQQQQQQQQQQQQQQQQ E3,2
2

((QQQQQQQQQQQQQQQQQQ

0

((QQQQQQQQQQQQQQQQQQ 0

((QQQQQQQQQQQQQQQQQQ 0

((QQQQQQQQQQQQQQQQQQQQ 0

((QQQQQQQQQQQQQQQQQQQQ

E0,0
2 E1,0

2 E2,0
2 E3,0

2

We again follow along to the third stage. This time we get

E0,2
2

&&MMMMMMMMMMMMMMMMMMMMMMMMMMMMMM E1,2
2

&&MMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMM mess mess

0 0 0 0

E0,0
2 E1,0

2 E2,0
2 E3,0

2



8 TOM WESTON

Now, let us go to the fourth stage. This time we get

kerE0,2
2 → E3,0

2 kerE1,2
2 → E3,1

2
mess mess

0 0 0 0

E0,0
2 E1,0

2 E2,0
2 E3,0

2 / imE0,2
2

where all of the entires pictured above have stabilized to their∞ values. As before,
the filtration of H2 is reflected by the exact sequence

0→ E2,0
2 → H2 → (kerE0,2

2 → E3,0
2 )→ 0.

We also again get an edge map injection

0→ E3,0
2 / imE0,2

2 → H3.

These splice together to give the five term exact sequence

0→ E2,0
2 → H2 → E0,2

2 → E3,0
2 → H3 → 0,

in which all but one of the maps is simply an edge map.
It is easy to generalize the above construction to the case where each of the rows

q = 1 up to q = q0−1 vanishes. We state the group cohomology case as a theorem.
Theorem 4.2 (Higher Inflation-Restriction). Let H be a normal subgroup of G and
M a G-module. Suppose that Hq(H;M) = 0 for 1 ≤ q < q0. Then for 1 ≤ q < q0,
inflation induces isomorphisms

Hq(G/H;MH)
∼=−→ Hq(G;M)

and there is an exact sequence

0 −−−−→ Hq0(G/H;MH) inf−−−−→ Hq0(G;M) res−−−−→ Hq0(H;M)G/H

−−−−→ Hq0+1(G/H;MH) inf−−−−→ Hq0+1(G;M)
where inf and res are the inflation and restriction maps.
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