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Chapter 1

Introduction: Etale
Cohomology Pro and Con

Today’s lecture has a somewhat schizophrenic goal: we come to praise étale
cohomology and to bury it.

To fix ideas, all varieties will be nonsingular, projective and connected over
an algebraically closed field k.

1.1 `-adic cohomology is the bomb. . .

Let X/k be a variety and ` a prime number. We can define the `-adic coho-
mology groups of X as follows:

Hi(X,Zl) := lim
←−n

Hi
ét(X,Z/lnZ).

Hi(X,Ql) := Hi(X,Zl)⊗Z Q.

Here Hi
ét(X,Z/lnZ) denotes the ith etale cohomology group – i.e., the ith right

derived functor of the global section functor – for the constant sheaf Z/lnZ on
the étale site of X, as defined in Andrew’s lectures. (Indeed the abelian sheaves
on Xét form an abelian category with sufficiently many injectives.) It is easy to
see that Hi(X,Zl) is a Zl-module, so Hi(X,Ql) is a Ql-vector space, so its only
invariant is its dimension (possibly infinite), which we denote by bi,l(X). Now
we have some wonderful news:

Theorem 1 (Comparison Theorem) Suppose k = C and let X(C) denote the
corresponding compact complex manifold with its classical (“analytic”) topology.
a) There is a canonical isomorphism Hi(X,Zl) ∼= Hi(X(C),Zl), where the right
hand side is singular cohomology with coefficients in the abelian group Zl. It fol-
lows that:
b) Each Hi(X,Zl) is a finitely generated Zl-module;
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c) For all primes `, bi,`(X) = bi(X(C)) = Hi(X,Q), the ith Betti number; and
d) Knowing all the `-adic cohomology groups, we can recover the singular coho-
mology Hi(X,Z).

Indeed part a) implies that all the pleasant properties of the singular cohomol-
ogy groups will be satisfied by the `-adic cohomology groups: Poincaré duality,
Kunneth formula, Lefschetz trace formula. . .

An analogous – but easier in the proper case – comparison theorem holds for
the étale fundamental group πét

1 (X). We do not want to go into the details
of the definition, but: just as the fundamental group of a topological space
is the group of deck transformations of the universal cover, the étale funda-
mental group would be the automorphism group of the universal étale covering
of a variety X, except that since étale covers have finite fibers by definition,
such a universal covering, if of infinite degree, will not exist as an étale (or
even algebraic) map. So instead we consider only the automorphism groups of
finite Galois covers and define πét

1 (X) as the inverse limit of these. (In partic-
ular – considering for just a moment a not-necessarily algebraically closed field
k, πét

1 (Spec k) is nothing else but the absolute Galois group of k.) To be sure,
πét

1 (X/k) makes sense for varieties over fields of any characteristic. When k = C
we can ask for the relationship between πét

1 (X) and π1(X(C)). The relevant fact
here is that if Y → X(C) is a finite unramified covering of the compact manifold
X(C) in the topological sense, then Y = Y (C) for a unique projective variety Y
such that Y → X is a finite étale morphism (a theorem of Grauert-Remmert).
Then:

Proposition 2 The étale fundamental group of X/C is the profinite completion
of the usual fundamental group π1(X(C)).

(Despite our benevolent intentions, we should point out that the canonical
map π1(X(C)) → ̂π1(X(C)) = πét

1 (X) need not be an injection – among
combinatorial group theorists the property of a group injecting into its profi-
nite completion is called residual finiteness, and not every finitely presented
group has this property. Serre has constructed an example of a variety X/C
and a discontinuous field automorphism σ of the complex numbers such that
π1(X(C)) 6= π1(σ(X)(C), although nevertheless the profinite completions are
isomorphic.)

For example, if X/C is either a genus g curve or a g-dimensional abelian variety,
then πét

1 (X) = Ẑ2g.

One can also show that if k0 ≤ k is an extension of algebraically closed fields of
characteristic zero, then base change from k0 to k induces isomorphisms both
on the `-adic cohomology groups and on the finite étale sites.1

1This becomes false in positive characteristic for nonprojective varieties: the size of the
fundamental group of the affine line over an algebraically closed field of characteristic p depends
upon the size of the field!
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Well, after all we already have topological cohomology in characteristic zero;
though it is certainly interesting to see to what extent this topological informa-
tion can be recaptured algebraically, it is more interesting to ask about `-adic
cohomology for varieties over fields k of characteristic p > 0.

So that we can continue to say nice things about `-adic cohomology, we take
` 6= p for the remainder of the section.

Theorem 3 (Grothendieck,Deligne) Let X/k be a smooth projective variety of
dimension d over an algebraically closed field of characteristic p, and fix any
` 6= p. The `-adic cohomology groups H•(X,Ql) have the following properties:
a) Each Hi(X,Ql) is finite-dimensional, and Hi(X,Ql) = 0 for i > 2d.
b) There is a cup product operation making H•(X,Ql) into a graded Ql-algebra.
c) (Poincaré duality) There is a natural isomorphism H2d(X,Ql) ∼= Ql; com-
posing with this automorphism gives a pairing of Ql-vector spaces Hi(X,Ql)×
H2d−i(X,Ql) → Ql which is nondegenerate.
d) (Kunneth formula) If Y/k is another variety, there is a natural isomorphism
H•(X,Ql)⊗H•(Y,Ql)

∼→ H•(X × Y ).
e) (Lefschetz trace formula) For a morphism f : X → X with finitely many fixed
points of multiplicity one, the number of fixed points is given by the usual alter-
nating sum

∑2d
i=1(−1)iTr(Hi(f)) of the traces of f acting on the Hi(X,Ql).

f) (Lefschetz embedding theorem) If Y ⊂ X is a nonsingular subvariety of
codimension one, the canonical maps Hi(X,Ql) → Hi(Y,Ql) are bijective for
i ≤ d− 2 and injective for i = d− 1.
g) (Hard Lefschetz theorem) Let h ∈ H2(X,Ql) correspond by Poincaré duality
to a hyperplane section of a projective embedding of X. Let L : Hi(X,Ql) →
Hi+2(X,Ql) be the map obtained by cupping with h. Then for i ≤ d, the iterated
map Ld−i : Hi(X,Ql) → H2d−i(X,Ql) is an isomorphism.
h) (Smooth base change) If X/k admits a lift to characteristic zero – i.e., if X
can be viewed as the special fiber of a smooth scheme X/W (k), then Hi(X,Ql)
coincides with the ith Betti number of (the analytic space associated to a complex
embedding of) the generic fiber of X .

We should put these results in persective as follows: although we didn’t write
them down, they are all true when k = C because they are true for the singular
cohomology (we regard h) as being trivially true for the singular cohomology.)
A more abstract perspective on all of this is the notion of a Weil cohomology
theory with coefficients in a field K of characteristic zero – it is a functor
from smooth projective varieties X/k to graded K-algebras X 7→ H•(X, K)
satisfying the properties of the previous theorem. So singular cohomology is
a Weil cohomology for complex varieties with coefficients in Q, and for any
` 6= p `-adic cohomology (with Ql-coefficients) gives a Weil cohomology with
coefficients in Ql. For its intended application, any field K of characteristic
zero will do:

Theorem 4 (Grothendieck) The first two-thirds of the Weil conjectures for
smooth projective varieties over a finite field Fq – i.e., the rationality of the
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zeta function and the existence of a functional equation – follow formally from
the existence of a Weil cohomology for varieties over Fq with coefficients in any
field K of characteristic zero. In particular, any Ql with l 6= p will do.

Of course, the final third of the Weil conjectures – the Riemann hypothesis
– was proved by Deligne using `-adic cohomology, but the proof does not (to
say the least!) follow immediately from Theorem 3. There is also a compar-
ison theorem for the étale fundamental group. More precisely, let X/W (k)
be a scheme which is proper and smooth; write Xη for the generic fiber and
X0 = X/k for the special fiber. By Proposition 2 we can compute πét

1 (Xη) as
the profinite completion of the classical fundamental group of any associated
complex manifold. Grothendieck [SGAI] shows there is a specialization map
sp : πét

1 Xη) → πét
1 (X0) which is an “isomorphism away from p”:

Theorem 5 (Grothendieck) For any group G, define the p-tame quotient G6p

to be the inverse limit of all finite quotients of G of order prime to p. Passage
to the tame quotient is clearly functorial, and we have:

sp6p : πét
1 (Xη)6p ∼→ πét

1 (X0)6p.

Remark: The relationship between πét
1 (X) and H1(X,Zl) is the same as in the

topological case: namely for all n, Hom(πét
1 (X),Z/lnZ) ∼= H1(X,Z/lnZ), so

passing to the inverse limit we get Homc(πét
1 ,Zl) = H1(X,Zl). Indeed, when

πét
1 (X) is abelian, this reduces to the previous comparison theorem, since one

needs only to see that for all primes ` different from p, there is a canonical
isomorphism between the pro-` completions of πét

1 (Xη) and πét
1 (X0). Especially,

when X is a genus g curve or a g-dimensional abelian variety, this result is part
of the basic theory of abelian varieties: for ` 6= p, πét

1 (X)` ∼= Z2g
l , obtained by

passing to the limit under the Galois groups of [`n] : A = J(X) → A = J(X),
the multiplication by elln maps.

1.2 . . . unless ` is the characteristic of k

If we look instead at the p-adic cohomology groups Hi(X,Zp) of a (smooth,
proper, connected) variety over an algebraically closed field of characteristic p,
we find that they are miserable: none of the properties of Theorem 3 hold! First,
the most dramatic:

Proposition 6 Hi(X,Zp) = 0 for i > d.

Idea of proof: The first step is to show that Hi(X,Z/pZ) = 0 when i > d, and
we will give a reasonably complete discussion of this. Afterwards we discuss the
modification necessary to show Hi(X,Z/pnZ) = 0 for all n.

Let GaFp be the additive group scheme, i.e., A1/Fp with its natural group law.
The map x 7→ xp − x gives an endomorphism ϕp : Ga → Ga, called the Artin-
Schreier isogeny – indeed its kernel is just the fixed points of Frobenius on
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A1, or Z/pZ. We have an exact sequence of group schemes

0 → Z/pZ→ Ga
ρp→ Ga.

If X is any scheme of characteristic p – i.e., a scheme over Fp – we can (flatly)
basechange this sequence to X, getting

0 → Z/pZ
X
→ GaX

ρp→ GaX

On the other hand, we can consider any groupscheme G/X as a “representable
sheaf” on the étale site: if Y → X is an étale map, then G(Y ), the set of
Y -valued points MapsX(Y,G) of the X-scheme G, is canonically endowed with
the structure of an abelian group. So we may view the Artin-Schreier sequence
as an exact sequence of étale sheaves.

In particular it is an exact sequence of Zariski sheaves, but at the level of
Zariski sheaves ϕp is not surjective: as a morphism of Zariski sheaves over Fp,
ϕp = 0. However it is surjective as a morphism of étale sheaves: to solve the
equation xp − x = y in Ga(U) = OU , we need only pass to the étale cover
OU [t]/(tp − t− y) of U (by construction we have a separable polynomial!).

On the other hand, for any Y → X, Ga(Y ) = OY (Y ) is just the global functions
on Y , in other words, as étale sheaves we have GaX = OX . At last we have a
short exact sequence of sheaves on X′et

0 → Z/pZ→ OX
ϕp→ OX → 0.

Taking cohomology, we get

. . . Hd(X,OX)
ϕp

ra Hd(X,OX) → Hd+1(X,Z/pZ) → Hd+1(X,OX) = 0 → . . .

and certainly Hi(X,Z/pZ) = 0 for i ≥ d+2. Moreover we get Hd+1(X,Z/pZ) =
Hd(X,OX)/(F −1)Hd(X,OX), and as a matter of (semi)linear algebra one can
show that if F is any p-linear map on a finite-dimensional k-vector space, then
F − 1 is surjective. This completes the proof for Z/pZ.

To handle the Z/pnZ in the same way, one needs to find a commutative group
scheme Gn over Fp such that the kernel of kernel of the Artin-Schreier isogeny
ϕp : Gn → Gn, x 7→ xp − x is isomorphic to the constant groupscheme Z/pnZ.
Such a group scheme exists – it is the scheme representing the functor which
sends an Fp-scheme X to the additive group of Witt vectors of length n
Wn(X). The corresponding sheaf, which we denote Wn, is not an OX -module
when n > 1 (it is a sheaf of rings of characteristic pn, not characteristic p), but
since Wn is a repeated extension of W1 = OX , it equally well has vanishing
cohomology in degree greater than the dimension of X, and the proof can be
completed as above.
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Because of this there is certainly no Poincaré duality, none of the Lefschetz
theorems, and no comparison of Hi(X,Qp) with the Betti numbers of a lifting
to characteristic zero. Moreover, it need not even be the case that Hi(X,Qp) is
finite-dimensional for a proper smooth variety.

So really the p-adic étale cohomology groups have nothing to recommend them.

1.3 So what?

We can restate the title of this section a bit more carefully as follows: given that
we can get a wonderful cohomology theory by taking any ` 6= p, what does the
pathological nature of p-adic étale cohomology mean we are missing out on?

Well, for one thing, the p-torsion. We begin by performing the following thought
experiment: suppose that for a variety in characteristic zero, we were for some
reason forbidden to use the 17-adic cohomology, but we could use the `-adic co-
homology for all ` 6= 17. We would still know the Betti numbers, but we would
not know the finitely generated groups Hi(X(C),Z) e.g. if H1(X(C),Zl) =
0 for all allowable `, is H1(X(C),Z) = 0, or is it equal to Z/17Z (or to
(Z/289Z)3 ⊕ (Z/17)5 or . . . ). From a purely topological perspective this is
unacceptable.

But this is exactly what happens when we work over a field of characteris-
tic p. 2 Of course, this is a sort of philosophical reasoning by analogy that
would make Plato proud (“Yes, of course Socrates, that’s how it is for horses,
so it must be exactly the same for men”). But there are reasons both obvious
and deep to believe that there is “topological p-torsion in characteristic p”, and
many of the “pathologies” of algebraic geometry of characteristic p are related
to p-torsion existing in a way which is not seen by étale cohomology.

This is most clear for (algebraic curves and) abelian varieties: let A/k be a
g-dimensional principally polarized abelian variety over a field of characteristic
p which can be lifted to characteristic zero.3 As we discussed above, for ev-
ery ` 6= p, we have Hom(pi1(X),Zl)) = H1(X,Zl) = Z2g

l , essentially due to
the fact that the finite flat group schemes A[`n] are étale. But the finite flat
group scheme A[p] is never étale; indeed the (log to the base p of the) maximum
rank of an étale subgroup scheme, a, is called the a-number of A, and satisfies
0 ≤ a ≤ g, the case a = g being called ordinary. It does not follow that we
should ignore the nonétale part of A[p] (and indeed of the p-divisible group) –
e.g. when one is trying to calculate the image of a p-adic Galois representation
of an A/Q, the most important single case to examine is the local representation

2Okay, it’s exactly what happens when we work over a field of characteristic 17, but allow
a little poetic license.

3Every abelian variety can be lifted, by Hensel’s Lemma and the smoothness of the Siegel
moduli space over Zp.
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at Qp, and we do not give up if the abelian variety has a-number zero!

Rather in this case, the theory of p-divisible groups provides a solution to this:
we study the p-divisible group A[p∞] of A via its Dieudonné module DA,
which is a free W (k)-module of dimension 2g endowed with certain extra semi-
linear structure (the F and V ). In other words, this is exactly the sort of object
that H1(A,Zl) (aka, up to duality, Tl(A), the `-adic Tate module) provides at
every other prime! In fact it is quite standard in the theory of abelian varieties
to define the “full Tate module”

TA =
∏

6̀=p

TlA× DA.

In summary, in the case of an abelian variety in characteristic p, we know what
“the first cohomology group with W (k)-coefficients” should be – it should be
DA – and we know that this is always larger (in rank) than the étale cohomol-
ogy group H1

ét(X,Zp).

But there is more to the story than this – indeed there must be, because I
am quite literally here to tell you that one can study abelian varieties in char-
acteristic p without needing a wholly new cohomology theory. Indeed, although
we found torsion in the sense that the “first cohomology with coefficients in
Z/pZ” should always have rank 2g, because of the group structure the “first
cohomology with coefficients in Zp” is torsionfree so in topological terms is cap-
tured by its Betti number b1, which we already know how to compute in terms
of b1,` for any other `. On the other hand, there are varieties – with liftings
to characteristic zero – for which the “true H1(X,Zp)” has p-torsion, and this
reification is justified by certain behavior of varieties in characteristic p which
seems completely “pathological” compared to characteristic zero – for instance,
(liftable) varieties which have b1 = 0 but H1(X,OX) 6= 0.

This brings up a key point: differentials, although purely algebraically defined,
behave strangely in positive characteristic – for instance in characteristic zero
one has hp(X, Ωq) = hq(X, Ωp), but this can fail in characteristic p. This phe-
nomenon is both the problem and the beginning of the cure: if X/k has a
smooth lifting to X/W (k), then H•(X , Ωp

X/W (k)
) is a graded algebra of W (k)-

modules, so (loosely speaking; as we shall discuss, we want really to take the
hypercohomology) they are candidates for giving both p-torsion and, by tensor-
ing with Q, giving a p-adic Weil cohomology theory. The problems are twofold:
i) Are these W (k)-modules are independent of the lifting? ii) Is there always
some (smooth!) lifting? It shall turn out that the answer to ii) is “no,” and
that this requires construction of a more complicated theory, the crystalline
cohomology. After the fact, we shall see that the answer to i) is “yes,” and
that crystalline cohomology can be viewed as an “interpolation” of DeRham
cohomology to nonliftable varieties.
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In fact the issue of liftability itself is interesting and in turn related to fur-
ther topological invariants in characteristic p: over the complex numbers one
knows that the coherent sheaf cohomology groups Hq(X, Ωp) are related to the
DeRham cohomology groups by the Hodge theorem. This is expressed most
baldly as a key “refinement” of the Betti numbers:

bn =
⊕

p+q=n

hq(X(C),Ωp).

The second real merit of crystalline cohomology – beyond its giving topological
p-torsion a place to live – is its intimate relationship with Hodge theory and
DeRham cohomology in characteristic p.

In order to further motivate the definition of crystalline cohomology, we are go-
ing to review the classical (i.e., complex-analytic and even differential-geometric)
DeRham cohomology and Hodge theory for complex manifolds. We want to, at
least on paper, describe enough of this theory so that the all-important notion
of a family of Hodge structures varying over a base can at least be defined,
as this is a basic and fundamental notion in both complex and arithmetic al-
gebraic geometry (e.g., Shimura varieties arise as moduli of Hodge structures).
We want to then show how these deep analytic theorems (due to Hodge, Atiyah,
Kodaira,. . . ) can be reformulated so as to make sense as statements completely
algebraically – this will involve a discussion of spectral sequences and hypercoho-
mology4 Finally, we want to examine some examples – curves, abelian varieties,
and surfaces – in characteristic p which show that what holds classically over C
can fail in characteristic p, but that this failure is not random or “pathological”
but related to the issues of nonliftability and topological p-torsion discussed
above. We end our survey by mentioning a relatively recent (1987) result of
Deligne-Illusie which gives a spectacular vindication of algebraic geometry in
characteristic p.

One final remark about the Witt vectors: the alert reader will have noticed that
the proposed field of our p-adic cohomology theory was not Qp but the alge-
braically closed field W (k) – unless we choose k to have absolute transcendence
degree greater than the cardinality of the continuum, this field is abstractly iso-
morphic to C. The “bar” is just to make good on our promise only to consider
varieties over algebraically closed fields: DeRham cohomology (and crystalline
cohomology) is defined relative to any field k of characteristic p and the coef-
ficients live in W (k). Thus, what can be done arithmetically over say Fp can
be done in crystalline cohomology over W (Fp) = Zp. This functoriality in the
field of definition is key, because in fact there is no Qp-Weil cohomology theory
in characteristic p:

Proposition 7 (Serre) There is no Weil cohomology theory for varieties in
characteristic p with coefficients in any of the following fields: Q, Qp, R.

4Don’t worry; there will be no derived categories.
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Proof: Let H be a K-valued Weil cohomology theory, and consider H1(E),
where E/k is a supersingular elliptic curve. A characterization of supersingular
elliptic curves is that their endomorphism algebra End(E)⊗ZQ is a quaternion
algebra B over Q, ramified at precisely the places p and ∞ (in other words,
B ⊗Qp and B ⊗R are still division algebras, but for any finite l different from
p, B ⊗ Ql

∼= M2(Ql).) Since every elliptic curve can be lifted to characteristic
zero – e.g., just lift the j-invariant – and in characteristic zero the first Betti
number of an elliptic curve is 2, our Weil cohomology theory must have H1(E)
a 2-dimensional K-vector space, and by functoriality we get a unital, hence
faithful as B is simple, representation B ⊗K ↪→ End(H1(K)) ∼= M2(K). This
embedding of four-dimensional K-algebras must be an isomorphism – in other
words, K is a splitting field for B. As discussed, this rules out K = Q, Qp, R.
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Chapter 2

Some geometry of sheaves

2.1 The exponential sequence on a C-manifold

Let X be a complex manifold. An amazing amount of geometry of X is encoded
in the long exact cohomology sequence of the exponential sequence of sheaves
on X:

0 → Z→ OX
exp→ O×X → 0,

where exp takes a holomorphic function f on an open subset U to the invertible
holomorphic function exp(f) := e(2πi)f on U ; notice that the kernel is the
constant sheaf on Z, and that the exponential map is surjective as a morphism
of sheaves because every holomorphic function on a polydisk has a logarithm.
Taking sheaf cohomology we get

0 → Z→ H(X)
exp→ H(X)× → H1(X,Z) → H1(X,OX) → H1(X,O×X) → H2(X,Z),

where we have written H(X) for the ring of global holomorphic functions on X.
Now let us reap the benefits:

I. Because of the exactness at H(X)×, we see that any nowhere vanishing holo-
morphic function on any simply connected C-manifold has a logarithm – even
in the complex plane, this is a nontrivial result.

From now on, assume that X is compact – in particular it homeomorphic to a
finite CW complex, so its Betti numbers bi(X) = dimQHi(X,Q) are finite. This
also implies [Cartan-Serre] that hi(X,F ) = dimCHi(X,F ) is finite for all co-
herent analytic sheaves on X, i.e. locally on X F fits into an exact sequence
Om

U → On
U → F → 0. Especially the Hodge numbers hp,q = hp(X, Ωq

X) are
finite.

II. H1(X,O×) is the Picard group of holomorphic line bundles on X. The
map c : H1(X,O×X) → H2(X,Z) is the Chern class map; the image of c
modulo torsion is the Néron-Severi group NS(X) ∼= Zρ, which classifies line
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bundles up to algebraic equivalence; one says that ρ is the Picard num-
ber and that b2 − ρ is the number of transcendental cycles. Line bundles
in the kernel of c are said to be algebraically equivalent to zero and this
subgroup of Pic(X) is denoted by Pic0(X). From the exact sequence we see
Pic0(X) ∼= H1(X,OX)/H1(X,Z); In case we have 2h0,1 = b1 (which will occur
if X is Kahler) we are modding out a C-vector space by a full sublattice – that
is, the Picard group is a complex torus. Notice that if X is simply connected
(and Kahler) then Pic0(X) = 0, and the group of line bundles is just the finitely
generated discrete group H2(X,Z); this occurs e.g. for X = Pn. Finally, if X is
Kahler then we will see in the next chapter that we have a Hodge decomposition

H2(X,C) = H2(X,OX) + H0(X, Ω2
X) + H1(X, ΩX).

The N’eron-Severi group canonically is a Z-lattice in H2(X,C), and it is con-
tained in the (1, 1)-subspace [Griffiths-Harris ??]; thus the Picard inequality
can be refined to ρ ≤ h1,1.1 Moreover one has (still in the Kahler case) that
H1(X, ΩX) ∩ (Im(H2(X,Z)) = NS(X), i.e., every integral (1, 1)-form comes
from the Picard group, the Lefschetz (1,1) Theorem. More generally, to an
i-cycle Z on X – i.e., a Z-linear combination of closed analytic subsets of dimen-
sion i – we can associate, via a triangulation and Poincaré duality, a cohomology
class c(Z) ∈ H2d−2i(X,Z), and one finds that the image of c(Z) ∈ H2d−2i(X,C)
lands in the (d − i, d − i)-subspace. Suppose finally that X is projective. It is
not quite true that every integral (d− i, d− i)-class needs to be represented by
an algebraic cycle, but this is supposed to be true “with denominators”: i.e.,
every element of H(d−i),(d−i) ∩H2d−2i(X,Q) should be a Q-linear combination
of algebraic cycles; this is the Hodge conjecture.2

2.2 Fiber bundles, locally constant sheaves, mon-
odromy

2.2.1 Fiber bundles as an example of descent

We review the notion of an (F, G)-bundle on a topological space, the classifica-
tion via sheaf cohomology, and the special place that locally constant sheaves
have among fiber bundles.

Let F be another topological space. A map π : E → X is said to be an F -
fiber bundle over X if there is an open covering {Ui} of X such that πUi is
isomorphic, over X, to the product F × Ui; such an isomorphism is called a
local trivialization ϕi : EUi → F × Ui . The “data” for a fiber bundle are

1One still need not have equality; e.g. for any d-dimensional complex abelian variety, one
has h1,1 = b2−2h1,0 =

�2d
2

�−2d, whereas the rank of the Néron-Severi group is characterized
in terms of the endomorphism algebra (the Rosati-invariant subalgebra), so is generically just

1 but can be as large as
d(d+1)

2
, attained when A is the dth power of a CM elliptic curve.

2Apparently the Hodge conjecture was first formulated in its integral version but was proven
false with embarrassing swiftness. I do not know the full story nor even the counterexample.
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its transition functions: namely on the overlaps Ui ∩Uj we may consider the
composite ρij := ϕj ◦ ϕ−1

i : Ui ∩ Uj → Aut(F ). The compatibility among triple
intersections is equivalent to ρ being a one-cocycle in Z1(X, Aut(F )c); this is
a (nonabelian) Cech cohomology group, and if G is any topological group, by
Gc we mean the sheaf of continuous G-valued functions on X. This has been
formulated in the topological category, but is easily modified: if X is a real
manifold and G a real Lie group, we can work with G∞, the sheaf of smooth
functions X → G; if X is a complex manifold and G a complex Lie group, we
can work with Gh, the sheaf of holomorphic functions X → G. (Unless we are
considering more than one of these categories at once, we may abusively write
just G, trusting that the context will make clear whether we are working with
continuous, smooth or holomorphic functions.)

On the other hand, we probably do not want the transition functions to be
arbitrary automorphisms of F – for instance if F = Rn its automorphism group
is an enormous (infinite-dimensional) space. This leads to (F, G)-bundles: we
prescribing a structure group G ≤ Aut(F ) and requiring the transition func-
tions to lie in G. It is not news, but this simple idea is miraculous in its range
of applicability. For instance if F = Rn and we want to get real vector bundles,
we take G = GLn(R); similarly if F = Cn we get complex vector bundles; if
G = GL+

n (R) we get oriented vector bundles; if G = SOn(R) we get oriented
vector bundles endowed with a Riemannian metric, and so on. The basic result
is as follows:

Proposition 8 The set of (F,G)-bundles on X is naturally in bijection with
H1(X,Gc); under the correspondence the trivial F -bundle corresponds to the
identity cocycle.

Given an acquaintance with Cech cohomology (we are passing to the direct
limit over refinements of covers, of course), the proof is almost immediate: we
have associated a Cech class to a fiber bundle; conversely, given a cocycle ρij ∈
Z1({Ui}, Gc), we form the space

∐
i Ui×F and mod out by (u, f) ∼ (u, gij(u)f)

whenever u ∈ Ui ∩ Uj . One striking aspect of the correspondence is that the
fiber F appears on one side but not on the other! One take on this is that it is
enough to consider principal bundles, i.e., where the fiber F = G acting (left
or right; one must choose) regularly on itself.

Another viewpoint is that we have an instance of what (following Serre in the
case of Galois cohomology) I call the first principle of descent: we start with
an “object” F0 on a “space” X (here we have a topological space; for algebraic
purposes probably the best example is the flat site of a scheme, e.g. Spec k!),
and a covering {Ui} of X. Let Y =

∐
Ui; there is a natural surjective local

homeomorphism3 π : Y → X. An object F on X such that π∗F ∼= π∗F0 is
called a twisted form of F0; denote by TY/X(F0) the space of all twisted forms

3which is not necessarily a covering map – it need not be “flat,” i.e., the fibers may have
different cardinalities
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which are trivialized over Y . In our case every (F, G)-bundle E over X admits a
covering such that the pullback to Y is equal to the pullback to Y of the trivial
bundle. Then:

Proposition 9 (Descent principle) The pointed set TY/X(F0) of Y/X-twisted
forms is naturally in bijection with H1(Y/X, Aut(π∗F0)).

Corollary 10 Any two objects F0 and G0 on X – however dissimilar! – such
that Aut(π∗F0) ∼= Aut(π∗G0) will have bijectively corresponding sets of Y/X-
twisted forms: TY/X(F0) ∼= TY/X(F0).

Here is an application of this:

Let X be a (real or complex) manifold, and consider the set of finite rank
projective OX -modules. One can interpret “projective” purely algebraically:
for all open subsets U , M(U) is a finitely generated module over the ring
OX(U). Also as a matter of pure algebra, every finite rank projective mod-
ule over a commutative ring R becomes free over a Zariski-open subset of ev-
ery point of R – this is more than enough to ensure the existence of an open
cover {Ui} such that the pullback of M to

∐
Ui is a free OX -module. So the

set of rank n projective OX -modules is classified by H1(X, Aut(On
X)), where

Aut(M) = EndOX−Mod(M, M)× is the sheaf of automorphisms of the OX -
module M , i.e., over any open subset U we take the OU -module automorphisms
of M |U . We have that Aut(On

X) = GLn(OX) = (GLn)h. Because this is the
same automorphism group for a rank n holomorphic vector bundle, we conclude:

Proposition 11 On any (real or complex) manifold X, there is a canonical
bijection of pointed sets between rank n projective OX-modules and (real or
holomorphic) rank n vector bundles on X.

Of course, in such a situation, one would like to have an explicit bijection. The
descent principle does not tell us how to write down such a bijection (but assures
us that we will find one, which gives us the motivation to look). In this case it is
easy to go from a vector bundle to a locally free sheaf: we just take the sheaf of
local sections. The inverse is not as transparent – see [Hartshorne, pp. 128-129].

We mention in passing one more example: let X be a scheme and G = PGLnX ,
considered as a representable sheaf on the étale site of X. Since PGLn is the
common automorphism group of both Pn−1

X and Mn(X)X (matrix algebra bun-
dle), we find a canonical correspondence between projective bundles on X
and bundles of central simple algebras on X, i.e. Azumaya algebras. This
leads to the interpretation of the Brauer group of X as classifying both geo-
metric and algebraic objects on X. For more details, see either [Grothendieck
I,II,III] or (for a much-abbreviated version) [Clark].

A look at complex line bundles: suppose we want to study complex line bundles
on a real manifold X. If we (temporarily) write OX for the sheaf of C-valued
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C∞-functions on X, then we still have the exponential sequence 0 → Z →
OX → O×X → 0: even a smooth function nonzero at a point is, locally about
that point, the exponential of another smooth function. But since OX is fine, it
is acyclic for sheaf cohomology, and the cohomology of the exponential sequence
gives an isomorphism

c1 : H1(X,O×X) ∼→ H2(X,Z).

That is, in the smooth category, a complex line bundle is determined by its
Chern class.

When X is a complex manifold, this need not be the case, as we saw in the
previous section: the kernel of c1 is the complex torus H1(X,OX)/H1(X,Z),
whose dimension is the first Betti number b1(X). Thus we see that c1(L) de-
termines L if and only if b1(X) = 0, in particular if X is simply connected.

2.2.2 Locally constant sheaves

The aim of this section is to define locally constant sheaves, understand their
relation to fiber bundles, and give their monodromy classification.

Definition: A locally constant sheaf of abelian groups F on X is a sheaf
for which there admits a cover {Ui} of X such that F |Ui is isomorphic to a
constant sheaf. If X is connected, the stalks of a locally constant sheaf are
mutually isomorphic to a common abelian group Λ.

Relation with fiber bundles: we can use the principle of descent to associate
a fiber bundle to a locally constant sheaf: A locally constant sheaf with group
Λ is a twisted form of the constant sheaf with group Λ, whose sheaf of automor-
phisms is just Aut(Λ)c. However, since Λ is merely an “abstract” abelian group,
Aut(Λ) is given the discrete topology, and Aut(Λ)c means the sheaf of locally
constant functions from X to the group Aut(Λ). We can similarly speak of
locally constant sheaves with G-structure, where G ≤ Aut(Λ) – in particular
taking, Λ = Rn or Cn and G = GLn(R) or GLn(C), we have a notion of locally
constant sheaves of vector spaces.

Write G for the constant sheaf with group G. Since GLn ↪→ (GLn)c (or (GLn)∞
or (GLn)h), the mapping

H1(X, GLn) → H1(X, (GLn c/∞/h)

shows that any locally constant sheaf of vector spaces can be viewed as a con-
tinuous, smooth or holomorphic vector bundle on X, albeit one of a very special
form.

Example: Consider the sheaf of differentials Ω1 on P1/C as in [Hartshorne],
[C-K]. In terms of transition functions, it is given by the standard covering
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U1 = P1 − ∞ = A1[x], U2 = P1 − 0 = A1[y] and with transition function
ρ12 : U1∩U2 → O×U1∩U2

given by −1/x2. This is not a locally constant function!
Moreover, since its divisor has degree −2, the line bundle is nontrivial. We will
soon see that there are no nontrivial locally constant sheaves on P1(C) = S2, so
that the line bundle Ω1 cannot be given by locally constant transition functions.

We should also give an example of a locally constant sheaf that is not con-
stant! Let X = S1, and let E → X be the Mobius band, which a priori is
a real line bundle on X in the broader sense of the previous section, famously
nontrivial. But the structure group can be reduced from R× to Z/2Z, i.e., it is a
locally constant sheaf. This is also well known and easy to check: indeed when
we make the Mobius band out of two strips U1 and U2 with two components
of intersection U1 ∩ U2 = V 1

12

∐
V 2

12, at one end we glue U1 to U2 identically,
and at the other hand we glue by a uniform half twist – i.e., the first transition
function is 1 and the second is −1.

Of course we could untwist the Mobius band by pulling back via z2 : S1 → S1,
and this leads us to suspect that the reason there are no nonconstant locally
constant sheaves on S2 is that it is simply connected. This is true and leads us
directly to the considerations of the next section.

2.2.3 Monodromy

In this section, we will need covering space theory to be applicable to X, so
we suppose that X is connected, locally path-connected and semi-locally simply
connected – in particular, it has a universal cover X̃ → X.

Let f : X → Y be a continuous map of topological spaces and F a locally
constant sheaf on Y . Then f∗F is a locally constant sheaf on X.

Let F be a locally constant sheaf on X with fibers isomorphic to Λ. Fix a
basepoint x ∈ X, and let γ : [0, 1] → X be a loop based at x. Then by the
remark, γ∗F is a locally constant sheaf on [0, 1]. But we claim that any locally
constant sheaf on the unit interval is constant. By an immediate compactness
argument, it comes down to showing: if we have a sheaf F on I = I1 ∪ I2 a
union of overlapping intervals such that F |I1 and F |I2 are both isomorphic to
constant sheaves, then so is F itself. But this is itself a kind of descent argument,
involving the familiar ([Hartshorne], [Alon])

Lemma 12 (Glueing lemma) If {Ui} is an open cover of X and we have sheaves
Fi on each Ui and the data of an isomorphism ϕij : Fi|Ui∩Uj → Fj |Ui∩Uj satis-
fying the conditions ϕii = 1, ϕik = ϕjk ◦ ϕij, then there is a unique sheaf F on
X together with isomorphisms ψi : F |Ui

∼→ Fi such that ψj ◦ ψ−1
i = ϕij.

We leave it to the reader to check that the glueing lemma implies the following
generalization of our claim: let X = U1 ∪ U2 such that U1 ∩ U2 is connected.
Then a sheaf F on X which restricts to a constant sheaf on U1 and on U2 is
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already constant on X.

Back to the case of our loop γ : [0, 1] → X. We now know that there is an
isomorphism Ψ : γ∗F ∼= Λ[0,1]: in particular we have Ψ(0) : (Γ∗F )0 ∼= Λ and
Ψ(1) : (Γ∗F )1 ∼= Λ. On the other hand, the stalks at 0 and 1 are identified with
the stalks at γ(0) = x = γ(1). It follows that the trivialization Ψ gives rise to
an automorphism Ψ(1) ◦Ψ(0)−1 of the stalk of F at x.

Exercise: Suppose γ1 ∼ γ2 are homotopic paths. Show that the induced au-
tomorphisms are the same. (Hint: View the homotopy as giving a morphism
[0, 1] × [0, 1] → X, divide the square into sufficiently small nicely overlapping
squares on which the pulled back sheaf is constant, and argue as in the previous
exercise.)

It follows that we have defined a homomorphism π1(X, x) → Aut(Fx), called
the monodromy representation.

Theorem 13 The monodromy representation gives a categorical equivalence be-
tween G-structured Λ-locally constant sheaves on X and G-compatible π1(X)-
module structures on Λ.

Proof: We shall construct the inverse functor. Our hypotheses are such as to
ensure that there is a universal cover X̃ → X, and since the theorem, if true,
implies that the pullback of any locally constant sheaf to X̃ will be constant,
this suggests our strategy: given the data of ρ : π1(X, x) → AutΛ, we will
construct a locally constant sheaf Fρ on X by descent from a constant sheaf on
X̃. Indeed, let Ẽ = X̃ × Λ (Λ is viewed as a discrete space), and consider the
quotient space E := Ẽ/ ∼, where (x, f) ∼ (gx, gf) for all g ∈ π1(X, x). Clearly
projection onto the first factor gives a map π : E → X. Since π1(X,x) acts
discretely on X̃, every point of X̃ has a neighborhood Ũ such that Ũ × F is
mapped homeomorphically onto its image – i.e., π : E → X is a fiber bundle
over F . We leave it as an exercise to show that the associated sheaf of local
sections to π is a locally constant sheaf, and that this construction is indeed
inverse to our association of a representation to a locally constant sheaf.

Remark: It is useful to recall that there were two steps to the proof of the
monodromy theorem, the first being an argument that every locally constant
fiber bundle became trivial when pulled back to the universal cover, and the sec-
ond being an interpretation of such bundles as being equivalent to (G-)π1(X)-
module structures on Λ. Note also that it is certainly not always the case that
a fiber bundle on X must trivialize on its universal cover (again recall Ω1 on
P1(C) = S2), but this happens often enough that it is worth abstracting the
second part of the argument as follows:

Proposition 14 Let X be a topological space with universal cover π : X̃ →
X and fundamental group g. Then the pointed set of (topological, smooth or
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holomorphic) (F,G)-bundles which trivialize over X̃ is isomorphic to the group
cohomology set H1(g, π∗(G)).

Compare with [Mumford, pp. 22-23] for an analogoue valid for all sheaves F on
X (but with a somewhat weaker conclusion). The point is that the automor-
phism group (sheaf) G of a locally constant sheaf is a trivial g-module, but this
is not necessarily true for more general fiber bundles.

Example: In the topological category, every fiber bundle over a contractible
paracompact base is trivial, a consequence of the following basic result.

Theorem 15 (Covering Homotopy Theorem) Let π : E → Y be an (F, G)-
bundle over a paracompact base. Let g1, g2 : X → Y be homotopic maps. Then
the pullbacks g∗1π and g∗2π are isomorphic. In particular, every (F, G)-bundle
over a contractible base is trivial.

For the proof see e.g. [Milnor-Stasheff]. It follows that (F, G)-bundles over a
K(π, 1)-space4 are classified by Hom(π, G). There is, up to homotopy equiv-
alence, a unique K(π, 1)-space for each group π, but we are rather lucky if
it is finite-dimensional – for instance, there is an isomorphism H•(π,Λ) ∼=
H•(K(π, 1), Λ) from the group cohomology of π (with coefficients in the triv-
ial π-module Λ) to the singular cohomology of the Eilenberg-MacLane space
[Brown], so for instance, for any n > 1, Hk(K(Z/nZ, 1),Z/nZ) 6= 0 for ev-
ery even k. (One knows that in fact K(Z/2Z, 1) = RP∞ = lim

−→n
RPn, and

the other K(Z/nZ, 1)’s are infinite-dimensional “lens spaces.”) But for all n,
Tn := S1 × . . . × S1 is K(Zn, 1). It follows that the (F, G)-bundles on an n-
dimensional real torus are classified by Hom(Zn, G) = Gn.

Example: A coherent analytic sheaf on a Stein manifold is acyclic for sheaf
cohomology; this is a theorem due to Serre which is the analytic analogue (but
proved first!) of the acyclity of coherent sheaves on affine varieties. In partic-
ular, a nonsingular affine analytic space is a Stein manifold – so Cn is a Stein
manifold. If we further assume that b1(X) = h1(X,Z) = 0, then the exponential
sequence gives H1(X,O×X) = 0, whence:

Proposition 16 Let X be a complex manifold with fundamental group g whose
universal cover X̃ is Stein. Then holomorphic line bundles on X are classified
by the group cohomology group H1(g,O×

X̃
).

In particular this result applies to complex tori, and we get the fact that we
can represent any line bundle on Cn/Λ as a collection of functions Λ → O×Cn

satisfying the cocycle condition, i.e., by theta functions.

Consider now the place of locally constant line bundles on an abelian vari-
ety among all line bundles: these are given by homomorphisms Λ → C×. The

4A space with a contractible universal cover and fundamental group π. These are also
called Eilenberg-MacLane spaces.
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group of all such is just (C×)2n, which is not quite what we expect to see. The
problem is that the map which associates to a locally constant line bundle its
associated holomorphic line bundle is neither surjective nor injective. To repair
matters, one considers the composite “change of structure groups”

S1 → C× → H(Cn)×,

and it turns out that the image in the Picard group of Cn/Λ of the locally con-
stant sheaves with structure group S1 coincides with the image of the locally con-
stant sheaves with structure group C×, and moreover the map T 2n =H1(Λ, S1) →
H1(Λ,O×Cn) is injective; indeed the image of the composite is precisely the Picard
variety of line bundles algebraically equivalent to zero. These statements are
not immediate; rather, they are much of the content of the Appell-Humbert
theorem classifying line bundles on a complex torus. We will however be able
to see later that every locally constant line bundle on a complex manifold has
vanishing Chern class, by showing that it admits a flat connection. This brings
us to the next section.

2.3 Flat connections, especially Gauss-Manin

Let E → X be a (say complex) vector bundle on a real manifold X. In this
section, we plunge to the core of differential geometry (but of course for our own
nefarious, ultimately algebraic, purposes) by defining a connection on E: it is
a C-linear morphism of sheaves E → Ω1(E) := Ω1 ⊗ E satisfying the Leibniz
rule

D(fg) = f · dg + gD(f),

where d denotes the usual exterior derivative. Note that D is of course not
an OX -module map: the special case to keep in mind is the trivial line bundle
L0

∼= OX on X; then d itself gives a connection on L0, and differentiation is by
its nature C-linear but not OX -linear.

The matrix of one-forms: it is quite easy to write down connections locally.
Namely, over any trivializing open subset U for E, choose a local frame e =
(e1, . . . , ed) – i.e., sections ei ∈ Γ(U,E) such that e1 ∧ . . . ∧ ed is a nowhere
vanishing section of the line bundle Γ(U, ΛdE). Because of the Leibniz rule, D
is determined by its action on e, and can in these local coordinates be given
simply by a d× d matrix with entries in Ω1, via

Dei =
d∑

j=1

θijei.

Viewing E|U = Od
XU via e, and writing a section s ∈ Γ(U,E) in vector form as

s =
∑d

i=1 siei = se · e, a short calculation gives the matrix equation

Dse = (d + θ)se.
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There is no condition to be imposed on the matrix θ, so indeed every connection
can be given in local coordinates as d + M where M ∈ Md(Ω1). In particular,
the difference of any two connections is an OX -linear map.

Globally, every vector bundle over a paracompact base admits a connection:
in local coordinates we can take D = d, and smooth via a partition of unity.

The curvature matrix: It is defined in local coordinates e on U as

Θ = ΘD,e = dθ + θ ∧ θ,

i.e., it is an n× n-matrix of two-forms on U . We have the equation

(d + θe)(d + θe)se = Θse.

In other words, the curvature matrix gives an OX -linear map E → Ω2(E) which
looks for all the world like D◦D. Indeed it is as soon as we extend the connection
to a map D : Ωi(E) → Ωi+1(E), via

D(ηe) = d(ηe) + θe ∧ ηe,

or globally by continuing to enforce the Leibniz rule:

D(ω ∧ η) = dω ∧ η + (−1)deg ωω ∧D(η).

We say the connection D is flat if Θ = 0.5

There is a clear “formal” reason to be interested in flat connections: it says
precisely that the sequence

0 → E
D→ Ω1(E) D→ Ω2(E) D→ . . . (2.1)

is a complex of sheaves on X, a kind of generalized DeRham complex giving
a resolution of the vector bundle E. We will see in Chaper 2 that the Hodge
theorem can be generalized to a theorem about such a complex of sheaves.

But there are more immediate, geometric reasons to be interested in flat connec-
tions: suppose that E is a line bundle, so that Θ is just a 2-form on X. Notice
that it is closed: θ ∧ θ = −θ ∧ θ = 0, so dΘ = d(dθ + θ ∧ θ) = 0. Therefore, via
the DeRham theorem, Θ ∈ H2(X,R).

Proposition 17 Suppose that E → X is a complex line bundle on a real mani-
fold X. The curvature two-form Θ of a line bundle E is the image of the Chern
class c1(E) under the natural map H2(X,Z) → H2(X,R).

5One also says that a connection D with D2 = 0 is integrable, which could be preferred
on the grounds that it uses a term not already ubiquitous in algebraic geometry (beware:
every vector bundle is a flat module!) On the other hand, I think the differential geometers
have us beat on this point: calling something which has zero curvature flat makes more sense
than calling something for which tensoring with that thing is exact flat.
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For a proof of this, see [Griffiths-Harris] or [Wells]. In particular, a line bundle
is algebraically equivalent to zero if and only if it admits a flat connection.

More generally, (almost) the entire theory of characteristic (Chern) classes of
complex vector bundles on a real manifold in terms of the curvature matrix Θ.
The key observation is that, if (E, D) has fiber dimension > 1, it need not be
that dΘ = 0 but if P : Mn(C) → C is any polynomial function in the matrix
entries with the invariance property P (Y XY −1) = P (X) for all matrices X
and Y , then dP (Θ) = 0, so that P (Θ) ∈ H•

DR(X). Taking P = σk, the kth
elementary symmetric function of the eigenvalues, gives the kth Chern class
ck(E) ∈ H2k

DR(X), up to a scaling. The reason for the “almost” in the first
sentence of this paragraph, is: since H2k

DR(X) ∼= H2k(X,R), there is a slight loss
of information over the topologically defined Chern classes ck ∈ H2k(X,Z): a
vector bundle which admits a flat connection is such that all of its topological
Chern classes are torsion, but not in general identically zero. For all this, see
Appendix C of [Milnor-Stasheff].

2.3.1 Flat connections versus locally constant sheaves

Let us look once again at the relationship between locally constant sheaves
and fiber bundles. On the geometric side – or in terms of transition functions
– we saw that a locally constant sheaf of complex vector spaces is a vector
bundle with an impressively small structure group. On the sheaf side, this is
not quite true: by definition, the stalks of a Λ = Cn-locally constant sheaf are
all isomorphic to Cn, whereas the corresponding locally free sheaf has stalk at
P isomorphic to the much larger group On

X,P . But this is easily remedied: to go
from a Cn-locally constant sheaf F on X to the locally free sheaf corresponding
to the corresponding vector bundle, we just take

F 7→ F ⊗C OX .

(Depending upon what we mean by OX , this makes sense and is correct in the
topological, smooth, and holomorphic categories.)

But now we have another instance of descent: because it came from F , F =
F ⊗OX can be canonically endowed with a connection: namely, in local coor-
dinates, we take σ =

∑
siei ∈ F , and define

D(σ) :=
∑

dsi ⊗ ei ∈ F ⊗ ΩX .

The point being: this expression is independent of the coordinates, because any
other trivialization is obtained from the first by a transition matrix with con-
stant coefficients; such changes of variables are d-linear.

Moreover this connection D is flat, since in local coordinates it is just d, and
indeed d2 = 0. We now get the result that we mentioned earlier during our
discussion of line bundles on abelian varieties:
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Corollary 18 A locally constant line bundle on a complex manifold is alge-
braically equivalent to zero.

Conversely, if (E → X, D) is a vector bundle endowed with a flat connection, we
define a sheaf FD by taking for FD(U) the horizontal sections over U , namely
the kernel of D|U . One can show (using Frobenius’ integrability criterion for
distributions; see [Voisin]) that FD is a Cn-locally constant sheaf. These two
constructions are mutually inverse to each other, i.e., one has:

Proposition 19 There is a bijective correspondence (in either the smooth or
the holomorphic category) between vector bundles on a (real/complex) manifold
X endowed with a flat connection and Cn-locally constant sheaves on X.

Note that one important consequence of this is that a smooth complex vec-
tor bundle which can be endowed with a flat connection necessarily admits a
canonical structure of a holomorphic vector bundle.

2.3.2 The Gauss-Manin connection

Let π : X → B be a proper submersion of (smooth or complex) manifolds.
The implicit function theorem guarantees that the fibers π−1(b) are themselves
manifolds, allowing us to think of π as giving a family of manifolds over the
base B. In fact, our hypotheses ensure that, in the smooth category, we have a
complete understanding of the local behavior of such a family:

Theorem 20 (Ehresmann Lemma) Let π : X → B be a proper smooth submer-
sion of real manifolds over a contractible pointed base (B, 0), and write X0 :=
π−1(0). Then there exists a diffeomorphism over the base T : X

∼→ X0 ×B.

Actually we need this result only locally, where it is a special case of the exis-
tence of tubular neighborhoods. For a proof of the global case (involving some
differential topology), see [Demailly].

In other words, in the smooth category all such families are locally constant
(aha!). Imagine now a holomorphic family satisfying the same hypotheses; of
course it need not be holomorphically locally trivial (there are moduli spaces,
after all), but the fact that it is smoothly locally trivial allows us to view the
family as a deformation of the complex structure on a fixed fiber.

Let A be the constant sheaf on X for some group A (think of Z, Q, R, . . .).
Let Hk

A := Rkπ∗(A), the kth derived functor of the pushforward. One knows
that Rkπ∗(F ) is the sheaf associated to U 7→ Hk(π−1, F |π−1(U)). Since B

is locally contractible, the Ehresmann Lemma implies that Hk(X0 × U,A) ∼=
Hk(X0, A) for a fundamental system of neighborhoods X0 ×U of B at 0. That
is, Hk

A = Rkπ∗(A) is a locally constant sheaf, isomorphic in a neighborhood of
0 to Hk(X0, A).

Definition: The corresponding flat connection ∆ : Hk → Ω1(Hk) is called the
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Gauss-Manin connection.

When A = C, using the remark at the end of the previous section we may
view Hk as a holomorphic vector bundle on B. We will use this structure at
the end of the next chapter to give a meaning to the holomorphy of the Hodge
filtration.
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Chapter 3

Hodge theory and DeRham
cohomology: the analytic
case

3.1 Introduction

Let X/C be a (smooth, proper, irreducible) algebraic variety of dimension d.
Classically, the algebraic geometry of X was developed alongside the algebraic
topology of the associated C-manifold X(C) – in particular the intersection the-
ory of algebraic cycles (Z-linear combinations of irreducible subvarieties) was
understood to take place in the cohomology ring H•(X(C),Z) via a cycle class
map c : Zi(X) → H2d−2i(X(C),Z). It is critically important that the singu-
lar cohomology groups are nonvanishing up to dimension 2d. Since the Zariski
topology on (the associated scheme of) X is a d-dimensional Noetherian space,
by Grothendieck’s vanishing theorem [C-K], we have that for any sheaf F on X
Hi(X, F ) = 0 for all i > d, and it seems like the Zariski cohomology groups are
hopelessly incapable of capturing the topological data of the Betti cohomology
groups.

But we are giving up on the sheaf cohomology groups too easily: although
no single sheaf F can play the role of a constant sheaf on Xan, we may still be
able to read the data of the singular cohomology groups off of the cohomology of
a family of sheaves on X. Indeed consider the family of sheaves Ωi

X/C of “regu-
lar i-forms,” defined for all i ∈ N. These are coherent sheaves of OX -modules
on the scheme X: recall that Ω0

X/C = OX itself; Ω1
X/C is the globalization of

the module of differentials. For any affine open subscheme given by a C-algebra
A, Ω1

A/C is the A-module generated by symbols da for a ∈ A and subject to
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the relations d(a + b) = d(a) + d(b), d(ab) = adb + da(b), dc = 0 for c ∈ C.1

This process is compatible with localization, so we can glue to get a coherent
OX -module Ω1

X/C. Indeed, Ω1
X/C is locally free of dimension d if and only if X/C

is nonsingular, and is nothing but the cotangent bundle. For i > 1, we define
Ωi

X/C := ΛiΩ1
X/C, i.e., just the globalization of the exterior powers of modules.

So if X/C is nonsingular, Ωi
X/C will be a locally free sheaf on X of rank

(
d
i

)
–

especially, Ωd
X/C is an invertible sheaf on X, the canonical bundle. Moreover,

working purely at the level of exterior powers of modules, we have an exterior
derivative d : ΛiM → Λi+1M which, famously, satisfies d2 = 0. Therefore we
have

OX = Ω0
X → Ω1

X → . . . → Ωd
X → 0,

the DeRham complex of X/C.

Consider all possible cohomology groups Hp(X, Ωq): they must vanish when
p > d or when q > d. Because we have assumed X is complete, the alge-
braic analogue of the Cartan-Serre finiteness theorem [Hartshorne, ???] tells us
that the cohomology groups of any coherent sheaf on X are finite dimensional
C-vector spaces. We put hp,q = dimCHp(X, Ωq), and we are ready for the fol-
lowing celebrated theorem, implying in particular that the Betti numbers can
be calculated from cohomology of coherent sheaves.

Theorem 21 (Hodge Theorem) The Betti numbers of Xan are determined by
the coherent cohomology of the sheaves Ωi: for all n, we have

dimCHn(X,C) =
∑

p+q=n

hp,q.

Moreover, hp,q = hq,p.

In the next two sections we give the proof of this theorem, or rather the proof
modulo some (not at all trivial) analytic and differential geometric facts. In
fact, part of the point of giving the proof is to appreciate its essentially non-
algebraic nature.

3.2 Summary of Hodge Theory on Riemannian
manifolds

Let (M, g) be a compact oriented Rn-manifold endowed with a Riemannian
metric g. Every (paracompact!) real manifold can be so endowed – the easy
way to do this is to take a locally finite covering of M by subsets homeomorphic
to Rn, endow each of these with the standard Euclidean metric, and add up all
these individual metrics, smoothing with a partition of unity. Another way to
prove this result is to realize M as a submanifold of RN by Whitney embedding,

1A useful special case is that if A = C[X1, . . . , Xn]/(fj) is a finite-type C-algebra, ΩA/C
is the finitely generated A-module with generators dXi for 1 ≤ i ≤ n and relations d(fj) = 0.
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take the Euclidean metric on RN and restrict to N .2 For now, we write Λp
M =

Λp
M (R) for the space of C∞ p-forms on M with real coefficients. Let dV be the

volume n-form on M associated to the metric g – in local coordinates x1, . . . , xn,
it is given by

dV =
√

det(gij)dx1 ∧ . . . ∧ dxn.

We define, using the metric, the Hodge star operator

? : Λp
M → Λn−p

M ,

defined as follows: in a neighborhood U about every point M admits an or-
thonormal frame e1, . . . , en of sections of the tangent bundle – i.e., g(ei(x), ej(x)) =
δij for all x ∈ U . Every i-form can be written as a sum of terms

∑
I fI(x)deI ,

where I ⊂ {1, . . . , n} is a subset of cardinality i and deI =
∧

i∈I dei. Define
I? = {1, . . . , n} \ I, the complementary subset, and finally define

?(
∑

I

fI(x)deI) =
∑

I

fI(x)deI? .

This allows us to endow Λi
M with an inner product, namely

〈α, β〉 =
∫

?(α ∧ (?β))dV.

The completion of this real inner product space is denoted L2(Λp
M ), the Hilbert

space of square-integrable p-forms on M . It is built into our definition that the
Hodge star operator is a Hilbert space isometry L2(Λp

M ) → L2(Λn−p
M ). We put

L2(ΛM ) :=
⊕

p L2(Λp
M ) (Hilbert space direct sum, i.e., 〈 , 〉 =

∑
p〈 , 〉p.)

Because of this, it makes sense to speak of the adjoint operator to the exte-
rior derivative d on L2(ΛM ), denoted d?. One can check that it exists and is
given by (−1)n+1 ? ◦ d ◦ ?.

Finally, we define the Laplace-Beltrami operator on Λ•M as

∆ = d ◦ d∗ + d∗ ◦ d.

We remark that if M is the (noncompact; in this case we should take the comple-
tion of the space of compactly supported smooth forms) manifold Rn endowed
with the Euclidean metric ds2 =

∑
dx2

i then, up to a sign, the Laplacian of a
zero form is the familiar

∑
i

∂2f
∂x2

i
.)

In general, we define Hp(M) = ker(∆), the harmonic p-forms.
2The latter approach raises the issue of whether every compact Riemannian manifold arises

as a submanifold of Euclidean space. The answer is yes; this is the celebrated Nash Embedding
Theorem [Nasar].
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Lemma 22 For any s ∈ Λp
M , we have

〈∆s, s〉 = ||ds||2 + ||d∗s||2

.

Moreover, s ∈ Λp
M is harmonic iff ds = d∗s = 0.

Proof: The formula is immediate: 〈∆s, s〉 = 〈d(d?s)+d?(ds), s〉 = 〈d(d?s), s〉+
〈d?(ds), s〉 = 〈d?s, d?s〉 + 〈ds, ds〉 = ||ds||2 + ||d?s||2. It clearly follows that a
harmonic form is both d-closed and d?-closed. Conversely, if ds = d?s = 0, then

〈∆s, ∆s〉 = 〈dd?s + d?ds, dd?s + d?ds〉 = 0.

Theorem 23 (Hodge theorem for Riemannian manifolds)
a) For all p, there is an orthogonal decomposition Λp

M = Hp(M)⊕ Im d⊕ Im d?.
b) Since d and d∗ are adjoint, Ker d = (Im d∗)⊥, and we conclude that Zp

DR(M) :=
Ker(d : Λp

M → Λp+1
M ) is naturally isomorphic to Hp(M) ⊕ Im d. That is, each

DeRham cohomology class contains a unique harmonic representative.

“Proof”: It is easy to see that Hp(M), Im d and Im d∗ are mutually orthogonal
subspaces of Λp

M : indeed 〈ds, d∗t〉 = 〈d2s, t〉 = 0. Moreover (using that har-
monic forms are d-closed and d?-closed), since Im d∗ = (Ker d)⊥, no harmonic
form is in the image of d∗; similarly, no harmonic form is in the image of d. To
show that this subspace is all of Λp

M is another matter entirely. For this we need
to know that ∆ is an elliptic operator on M .

For completeness, we indicate briefly the definition of an elliptic differential
operator: a differential operator of order at most m between vector bundles E
and F on M with Riemannian metrics is a thing which can in local coordi-
nates be written as a matrix

∑
I : |I|≤m aI

ij(x)DI , where e.g. D(1,2) = ∂
∂x1

∂2

∂x2
2
.

The associated symbol is obtained by dropping all the lower order terms and
formally replacing the DI ’s with (ζ)I = (ζ1, . . . , ζn)I = ζi1

1 · · · ζin
n , so

σ(D)(x, ζ) =
∑

I:|I|=m

aI
ij(x)ζi1

1 · · · ζin
n .

The operator is elliptic if for all x ∈ M and all ζ ∈ Rn\O, the symbol σ(D)(x, ζ)
is an invertible matrix. For instance, since the homogeneous form x2

1 + . . . + x2
n

has no nontrivial real zeros, the classical Laplacian on Rn is elliptic. It is not
so hard to see that the general Laplace-Beltrami operator is elliptic; see e.g.
[Demailly]. The hard part is the following result, which is an entirely serious
theorem in the realm of PDEs, using Sobolev spaces, Garding’s inequality, and
so on.

Theorem 24 (Finiteness theorem for elliptic operators) Let P be an elliptic
operator on the sections of a vector bundle E → M , whose fibres are equipped
with an inner product. Then the Γ(M,E) = Im(P ) ⊕ KerP ∗, where the first
summand is a closed subspace of finite codimension.
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Theorem 4 (proved by Hodge, of course, for the Laplace-Beltrami operator; later
the general theory of elliptic operators developed around his proof) finishes the
proof for us, since ∆ = ∆∗ is self-adjoint and

Im∆ = Im(d ◦ d∗ + d∗ ◦ d) ⊂ Im d + Im d∗.

An application: Let ρ : M̃ → M be a degree N unramified cover of a compact
smooth manifold M . One knows that χ(M̃) = Nχ(M) for truly topological
reasons (pull back a sufficiently fine triangulation of M), but it is not as clear
that we have inequalities bi(M̃) ≥ bi(M). But we claim that indeed Hi(ρ) is an
injection for all i, and harmonic cohomology gives an easy proof of this: indeed
it is certainly true that pullback map is injective on the level of differential forms
(as follows immediately from the chain-rule and that ρ is a submersion). Now
choose any Riemannian metric on M and pull it back to M̃ ; since ρ is unrami-
fied, M̃ is locally isometric to M ; since the Laplace-Beltrami operator is local by
construction, it follows that the Laplacian commutes with pullback of differen-
tial forms. We conclude that the harmonic forms on M map monomorphically
into the harmonic forms on M̃ , whence the claim.3

3.3 A quick proof of the DeRham Theorem

For comparison, we recall the DeRham Theorem, which gives a canonical
isomorphism between the DeRham cohomology H•

DR(M) of a real manifold M
and the singular cohomology with R-coefficients. It is instructive to note that
in constrast to the hard analysis of the Hodge theorem, the DeRham theorem
can be proved using only the machinery of sheaf cohomology.

On the one hand we have the DeRham resolution of the constant sheaf R on
X:

0 → R ι→ Λ0
M

d→ Λ1
M . . . → Λn

M → 0.

Certainly d2 = 0 – even at the level of presheaves. Moreover, upon restriction
to any star-shaped domain, closed forms are exact (Poincar’ Lemma), so as a
sequence of sheaves it is exact, i.e., it gives a resolution of R. But the sheaf of
sections of any vector bundle on a manifold is soft (indeed it is fine: we have
partitions of unity), hence acyclic for sheaf cohomology (as discussed in [C-K]).
This shows that the DeRham cohomology naturally isomorphic to H•(X,R).

What about the singular cohomology? Let X be a locally contractible topo-
logical space and G an abelian group. We define a sheaf Sp(G) as follows: for
any open subset U , we put Sp(G)(U) := HomZ(Sp(U,Z), G), where Sp(U,Z)
is the usual group of U -valued singular p-chains. We have coboundary maps
δ : Sp(G)(U) → Sp+1(U). Here’s the punchline: of course this is not an exact

3In fact there is a proof using only DeRham cohomology: we must show that if ρ∗(ω) is
exact, then so was ω. Writing ρ∗(ω) = dθ, it need not be the case that θ “descends” to M ,
but its “norm” (in the Galois-theoretic sense!) does; we leave the details to the reader.
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sequence at the level of presheaves – indeed, taking U -sections, the cohomol-
ogy is precisely the singular cohomology H•

sing(U,G). But by the assumed
local contractibility, on stalks we get an exact sequence. Therefore, letting
Sp(G) be the sheafification of U 7→ Sp(G)(U), we have a long exact sequence
of sheaves. Moreover, the kernel – which does not need to be sheafified – of
S0(G)(U) → S1(G)(U) is canonically identified with the constant sheaf G,
so we find that G → S•(G) is a resolution of G. Moreover we claim it is
a soft resolution: S0(G)(U) = HomZ(S0(U,Z), G) = HomZ(

⊕
u∈U Z[u], G) =⊕

u∈U Hom(Z[u], G) =
⊕

u∈U G = C0(G), the canonical flasque sheaf (of dis-
continuous sections) associated to the constant sheaf G. So S0(G) – which is
already a sheaf – is flasque, and flasque sheaves are soft. Moreover, taking now
G = R, the Si(R)’s are modules over S0(R), via the cup-product. But in gen-
eral, a sheaf of modules F over a soft sheaf of rings R is soft. Indeed, take a
section s of F over a closed subset K of M . By definition of the sections of a
sheaf over closed subsets, s extends to some open neighborhood U of K. Since
K ∩ (X \ U) = ∅, we can define a section ρ of R over K ∪ (X \ U) by making
it identically equal to the unity 1 on K and identically 0 on X \ U . Since R is
assumed to be soft, ρ extends to all of X, and the product ρs gives an extension
of s to all of X. Thus the singular resolution R → S•(R) is also an acyclic
resolution and can be used to compute the cohomology of X.

In fact, we can make the isomorphism between DeRham cohomology and sin-
gular cohomology explicit, as follows: first, we may as well work with differen-
tiable p-chains (the above argument goes through verbatim). Then we have a
commutative diagram

R→ Λ•X
R→ S•(X,R)

given by integration of p-forms against p-chains. Since both complexes are
acyclic and the left-hand map is an isomorphism, the general theory of acyclic
resolutions shows that the induced map on cohomology must be an isomorphism.
This is the usual form of DeRham’s theorem.

3.4 Hodge theory for complex & Kahler mani-
folds

Suppose X is now a Cn-manifold, endowed with a Hermitian metric h. Note well
that a Hermitian metric is still a C∞-object – it has nothing to do with the C-
structure on X and indeed (unsing partitions of unity, as above) any Cn-bundle
on a real manifold can be endowed with a Hermitian metric. Viewing X as an
R2n-manifold via local coordinates z1, z1, . . . , zn, zn, we consider Λ•X = Λ•X(C)
the sheaves of C-valued C∞-differential forms on X, which are local expres-
sions of the form fI(z)dzI ∧ dzJ – note well that fI(z) is a C-valued merely
C∞ function. By definition of a complex manifold, transitions between coordi-
nate systems preserve the decomposition into z-coordinates and z-coordinates:
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this allows us to decompose the exterior derivative as d = ∂ + ∂, where e.g.
on zero forms ∂f =

∑n
i=1

∂f
∂zi

dzi and ∂f =
∑n

i=1
∂f
∂zi

dzi. We thus visibly get a
decomposition of Λr

X into
⊕

p+q=r Λp,q
X , the sheaf of C-valued C∞ “(p, q)”-forms.

We also have a Hermitian Hodge-star operator defined by

u ∧ (?v) = 〈u, v〉dV,

where the volume form is associated to the “underlying” Riemannian metric –
the real part of a Hermitian metric gives a Riemannian metric. The Hodge star
operator gives a C-linear isometry Λp,q → Λn−q,n−p, and in this way we have
not one but three Laplacians. The first is ∆, which is just obtained tensoring
from R to C the Laplacian on the underlying real manifold. We also have ∆1

and ∆2 (slightly nonstandard notation, but the standard notation, ¤ and ¤,
seems rather silly), obtained by using ∂ (respectively ∂) in place of d:

∆1 = ∂ ◦ ∂∗ + ∂∗ ◦ ∂,

∆2 = ∂ ◦ ∂
∗

+ ∂
∗ ◦ ∂.

Among several identities relating these operators, we single out

∂∗ = − ? ∂?, ∂
∗

= − ? ∂ ? .

We work with ∆ and ∆2, defining

Hp(X) = Hp(X,C) = ker(∆ : Λn → Λn)

and
Hp,q(X) = Hp,q

2 (X) = ker(∆2 : Λp,q → Λp,q).

We speak of the harmonic n-forms and harmonic (p, q)-forms respectively.

Now we have three different versions of (p, q)-cohomology: the harmonic co-
homology Hp,q

2 (X); the coherent analytic sheaf cohomology Hq(X, Ωp), and
finally the Dolbeault cohomology, i.e., the “∂-DeRham cohomology”:

Hp,q

∂
(X) := Hq((Λp,•

X , ∂).

There is also a ∂-analogue of the DeRham theorem: namely we have the Dol-
beault resolution

0 → Ωp
X → Λp,0

X
∂→ Λp,1

X
∂→ . . .

∂→ Λp,n
X → 0,

and since the sheaves Λp,q
X are fine, we conclude

Hq(X, Ωp
X) =

(Ker(Λp,q
X

∂→ Λp,q+1
X )

Im(Λp,q−1
X

∂→ Λp,q
X )

= Hp,q

∂
(X).

The analogue of Theorem 16 for ∆2 is:
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Theorem 25 For all (p, q), there is an orthogonal decomposition

Λp,q
X = Hp,q

X ⊕ Im ∂ ⊕ Im(∂
∗
).

Corollary 26 On a complex manifold, Dolbeault, harmonic and coherent coho-
mology coincide:

Hp(X, Ωq) = Hp,q
X = Hp,q

∂
(X).

But we still do not know how any of these cohomology groups compute H•(X,C).
Indeed, they need not, until we add an extra hypothesis.

Our Hermitian metric,
∑

ij hijzizj can be written as h = S + iA, where S is
symmetric and A is skew-symmetric; put Ω := 1/2A, a real-valued (1, 1)-form.
One says that h is a Kahler metric if dΩ = 0. (Notice that any Hermitian
metric on a one-dimensional C-manifold is automatically Kahler.) A C-manifold
is said to be Kahler if it admits a Kahler metric.

The property of a metric being Kahler is preserved upon passage to submani-
folds, so any submanifold of a Kahler manifold is Kahler. Moreover, CPn has
a canonical Kahler metric, the Fubini-Study metric; we conclude that any
compact complex manifold which is algebraic is a Kahler manifold.

Theorem 27 (Kahler identities) Let (X,h) be a Kahler metric on a complex
manifold. Then

∆1 = ∆2 = 1/2∆.

Again this theorem has too much content for us to review here (the standard
proof requires some representation theory of sl2(C)) but unlike the purely an-
alytic Theorem 17, it is discussed in every reputable text on Hodge theory,
e.g. [Wells], [Griffiths-Harris], [Voisin I], [Demailly]. But it is certainly what
we need: it tells us that on a Kahler manifold we have a unique notion of a
harmonic form, so that

Hn
X =

⊕
p+q=n

Hp,q
X .

Actually more is true: since (even without the Kahler condition), ∆1 = ∆2, on
a Kahler manifold we get that ∆2 = ∆1 = ∆2, so if a (p, q)-form is harmonic,
so is its complex conjugate (q, p)-form. Thus we have canonical isomorphisms
Hp,q(X,C) ∼= Hq,p(X,C), and in particular hp,q = hq,p.

Finally, we should discuss the invariance of the Hodge decomposition: a priori
the direct sum decomposition Hn(X,C) = Hn =

⊕
p+q=nHp,q seems to depend

upon the choice of Kahler metric, but one can show that this is not the case.
Probably the best way to see this is to observe that Hp,q can be intrinsically
defined in terms of the Hodge filtration on the DeRham complex as F p ∩F q;
we will explore this viewpoint in Chapter 3. For an elementary proof involving
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yet a fourth kind of (p, q)-cohomology, namely the Bott-Chern cohomology
groups

Hp,q
BC(X,C) =

Ker(d : Λp,q(X) → Λp+q+1(X))
∂∂(Λp−1,q−1(X))

,

(which are at least a priori independent of the Kahler metric), see [Demailly,
pp. 40-42]. In summary, we have “proved”:

Theorem 28 (Hodge theorem for Kahler manifolds) Let X/C be a compact
Kahler manifold. Then there is a canonical isomorphism

Hn(X,C) =
⊕

p+q=n

Hp,q(X,C)

satisfying Hq,p = Hp,q.

Remark: Let (E, D) be a vector bundle on X endowed with a flat connection.
We have a notion of DeRham cohomology with coefficients in E, namely in the
exact sequence (1.1) of Section 1.3, take global sections and then cohomology; we
denote this H•

DR(X,E). Simply by replacing d everywhere by D, one can redo all
the constructions of this section, getting especially ∆1(E) = ∆2(E) = 1/2∆(E)
and at last an isomorphism

Hn
DR(X, E) =

⊕
p+q=n

Hp,q(X, E)

satisfying Hp,q(X,E) = Hq,p(X, E). This generalization is not so important for
us here, but what we have done is the complex-analytic analogue of taking crys-
talline cohomology of crystals rather than cohomology of the structure sheaf.

Finally, if X/C is projective nonsingular variety, then as mentioned above the
associated complex manifold X(C) is compact Kahler. We must appeal to
Serre’s GAGA theorem: there is a natural analytification functor from coher-
ent sheaves on X/C in the algebraic sense to coherent sheaves on X(C) in the
analytic sense, such that coherent cohomology computed algebraically is canon-
ically isomorphic to coherent cohomology computed analytically. At last we get
our algebraic Theorem 14!

3.5 Implications for the topology of compact Kahler
manifolds

The Hodge Theorem is intriguing even at the level of algebraic topology: it
places constraints on the Betti numbers of compact Kahler manifolds that need
not be satisfied for more general compact complex manifolds (in particular, the
Kahler hypothesis is essential in the Hodge theorem and not just an artifice of
the proof).
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For instance, h1,0 = h0,1 = 1/2b1 for any compact Kahler manifold. Thus the
group of line bundles algebraically equivalent to zero Pic0(X) = H1(X,OX)/H1(X,Z)
really is a complex torus, as promised in Section 1.1. When X is projective
Pic0(X) admits a Riemann form, i.e., is an abelian variety, the Picard variety.
So b1(X) = 0 implies the triviality of the Picard variety of X. Interpreting
b1(X) in the sense of étale cohomology, this statement makes sense purely al-
gebraically, i.e., in all characteristics. In Chapter 4, we will gain a profound
appreciation for the “nonobviousness” of this algebraic statement (i.e., it can
be false in positive characteristic!) In fact the equality h1,0 = 1/2b1 is already
“nonobvious” for complex manifolds:

Example (Hopf surfaces): Consider X = (C2 \ {0})/Γ, where for some fixed
λ ∈ (0, 1), Γ = λZ, viewed as a group of homotheties of C2. Each element of Γ
is a C-manifold automorphism of (C2 \ {0}, so the quotient X is a C-manifold.
Since C2 \ {0} is diffeomorphic to R>0 × S1, we see that X is diffeomorphic
to S1 × S3. Using the Kunneth formula, we compute the Betti numbers of X:
b0 = 1, b1 = 1, b2 = 0, b3 = 1, b4 = 1. X is definitely not a Kahler manifold! Ac-
tually, the b2 = 0 is also enough to ensure that a complex manifold is non-Kahler:
one can show that the top wedge power of the fundamental form Ω is a positive
scalar multiple of the volume form – in particular [Ωn] 6= 0 ∈ H2n

DR(X,C), which
implies that every wedge power of Ω must be cohomologically nontrivial, and
so all the even Betti numbers of a Kahler manifold are positive.

Fundamental groups of compact Kahler manifolds: Of course, that b1(X) must
be even is saying something about π1(X), namely that the free rank of its
abelianization is even. What if we want to know about π1(X) itself? It is
well-known that every finitely presented group arises as the fundamental group
of a compact R4-manifold. Less well-known but still true is that every finitely
presented group is the fundamental group of a compact C3-manifold, so the
above restriction on π1(X) for Kahler manifolds is actually rather surprising.
Say that a group is a Kahler group if it arises as the fundamental group of a
compact Kahler manifold.

Question 29 Which finitely presented groups are Kahler groups?

This is analogous to the question of which finite groups are Galois groups over
Q and to the question of which finitely presented groups are π1 of a compact R3-
manifold but, purely on its own terms, seems more interesting than both, since
the conjectured answer to the first question is “all of them” and to the second
is “very few.” In contrast, the frontier between Kahler and non-Kahler groups
is remarkably rugged. For instance, we will see in Chapter 4 that every finite
group is the fundamental group of an algebraic variety (even in characteristic p
– this is a theorem of Serre). Since the class of Kahler groups is clearly closed
under products and certainly Z2g is a Kahler group (the fundamental group of
a genus g curve or equally well of its Jacobian), we can completely characterize
the abelianizations Kahler groups. To see that this is not enough: the class of
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Kahler groups is closed under passage to subgroups (by covering space theory;
a cover of a Kahler manifold is Kahler), so the free group on two generators is
not Kahler (even though its abelianization is), since it contains free subgroups
on every odd number of generators.

One might ask why we study Kahler groups instead of fundamental groups
of projective manifolds. The answer is that so far no one has ever found a
Kahler group which is non-projective; moreover, it is conjectured that the com-
plex structure on a Kahler manifold can be deformed (in the sense of Section
1.3.2) to a projective complex structure, which would imply that the two classes
are the same. In practice, most constructions of Kahler groups can be done with
algebraic manifolds, while non-existence arguments tend to work for the larger
class of Kahler manifolds. For much more on this fascinating question, see
[Amoros et. al.].
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Chapter 4

Topological Invariants in
Characteristic p

Here we want to use an example of Serre to show that – even when the geometry
is “the same” in characteristic p as in characteristic zero, the Hodge and DeR-
ham numbers can be different. This will motivate us to define carefully three
different kinds of Betti numbers for a variety in characteristic p.

4.1 Serre’s example

We begin with a further application of the Artin-Schreier isogeny considered
already in Chapter 1. So let X/k be a smooth projective variety over an alge-
braically closed field of characteristic p, and consider the Artin-Schreier sequence
of sheaves on Xét:

0 → Z/pZ
X
→ GaX

F−1→ GaX → 0.

Since X(k) = k and k is algebraically closed, F − 1 induces a surjection on
H0(OX), so we deduce immediately that

H1(X,Z/pZ) ∼= H1(X,OX)F−1.

Moreover, since H1(X,Z/pZ) = Hom(π1(X),Z/pZ), we find that if X admits
a connected étale Z/pZ-covering Y → X, then H1(X,OX)F−1 6= 0; a fortiori
h0,1 = dimk H1(X,OX) > 0.

Next we have the following “classical” fact, whose proof we omit.

Proposition 30 (Serre) For p ≥ 5 and k = k any algebraically closed field,
there exists a hypersurface Y ⊂ P3 and a free action of Z/pZ on Y , i.e., an
unramified Z/pZ-cover Y → X. Indeed, there exists Y/W (k) smooth and proper
with such an action. Since π1(Yη) = 0 = π1(Y0), we have that π1(Xη) ∼=
Z/pZ ∼= π1(X0).
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In other words, equally well in characteristic zero and in characteristic p, we
can construct a surface with fundamental group Z/pZ and universal cover-
ing a hypersurface in P3. So in characteristic 0 the first Betti number of
X is 0. By the Hodge theorem, this implies that h1,0 = h0,1 = 0. How-
ever, in characteristic p, we have an unramified Z/pZ-covering Y → X of our
surface, and the previous proposition implies that h0,1 > 0. (Serre sketches
the argument for h0,1 = 1.) On the other hand, standard considerations will
show that h1,0 = 0 independent of the characteristic: indeed, by Serre duality,
h1,0(Y ) = h2,1(Y ) = dim H1(Y, ωY ), and since ωY = O(n) is some multiple of
the hyperplane section (precisely n = d− 4, where d is the degree of the hyper-
surface), it follows from [Hartshorne, Ex. 3.5.5] that H1(Y, ωY ) = 0. Note that
this was for Y , but now since Y → X is surjective, hte pullback on differentials
is injective, so a fortiori H0(X, Ω1

X) = h1,0(X) = 0. (Indeed in our case since
Y → X is étale, ΩY/X = 0 and the aforementioned pullback is an isomorphism.)

The moral of the story is that the Hodge numbers are sensitive to the p-torsion
in characteristic p.

4.2 An Embarrassment of Riches

We actually have three different kinds of Betti number in characteristic p:
i) The `-adic Betti numbers bi,` (equal for all ` 6= p)
ii) The Hodge Betti numbers bi,H =

∑
p+q=i hp,q.

iii) The DeRham Betti numbers bi,DR, which it is the subject of the next chap-
ter to define.

They are related as follows:

bi,H ≥ bi,DR ≥ bi,`.

In general, both inequalities can be strict, for very different reasons. The strict-
ness of the first inequality is equivalent to the failure of the Hodge to DeRham
spectral sequence to degenerate at E1. Although this may sound impressive, we
will see in the next chapter that it is an immediate consequence of the spectral
sequence setup. A much deeper explanation for this strictness is that it related
to the nonliftability of X/k even to W2(k) by work of Deligne-Illusie. We will
say (only) a little more about this later. In turn, the strictness of the second
inequality, which Serre’s example is a case of1 will in all generality turn out
to be equivalent to the existence of p-torsion in the “true p-adic cohomology,”
i.e., the crystalline cohomology, and this is our best motivation for studying
crystalline cohomology.

1I believe the first example was due to Igusa
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Chapter 5

Algebraic DeRham
Cohomology

5.1 Souping up the Hodge Theorem: spectral
sequences and hypercohomology

In the previous chapter we proved the Hodge theorem for smooth, projective
complex varieties – but only by translating the statement into a statement about
Kahler manifolds. We now want to recast a portion of the Hodge theorem in
terms of a statement about degeneration of spectral sequences. The translated
statement, namely, “The Hodge to de Rham spectral sequence for a smooth
projective complex variety degenerates at the E1 term” is itself purely algebraic,
so it is at least meaningful to ask whether it is true in characteristic p.

5.1.1 Spectral sequence of a double complex

Let (Kp,q, d′+d′′) be a double complex with horizontal and vertical differentials
d′ and d′′. We assume it is concentrated in the first quadrant, i.e. Kp,q = 0
unless p, q ≥ 0. From the double complex we pass to the associated total
complex, Kn :=

⊕
p+q=n Kp,q, endowed with the the differential d = d′ +

(−1)qd′′. On the total complex one has a decreasing filtration

F pKn :=
⊕

p≤j≤n

Kj,n−j .

This induces a filtration on the cohomology groups H•(K•) of the total complex,
namely

F pH l(K•) := Im(H l(F pK•) → H l(K•)).

There is a spectral sequence

Ep,q
1 = Hq((Kp,•, d′′)) =⇒ Hp+q(K•).
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Recall this means that for all r ≥ 1 we have differentials dr : Ep,q
r → Ep+r,q−r+1,

such that, inductively, Er+1 = H•(Er). Since the complex is concentrated in the
first quadrant, for any given (p, q) eventually the head or the tail of every “ar-
row” lies outside of the first quadrant, so that the process stabilizes pointwise:
limr→∞Ep,q

r = Ep,q
∞ exists. The convergence means that Ep,q

∞ = GpHp+q(K•),
the pth graded piece of the filtration.

Finally, we say the spectral sequence degenerates at the Er-term if all the
differentials dr+i, for all i ≥ 0, are zero. Then indeed Ep,q

r = Ep,q
∞ . One simply

says the spectral sequence degenerates if it degenerates at the E1-term (or at
the first term under consideration; in a slightly different context, many spectral
sequences start with the E2-term).1

5.2 The Hodge to DeRham spectral sequence

Let X/C be a complex manifold – not yet assumed to be compact or Kahler.
Dolbeault’s theory provides us with a double complex, namely Kp,q = Λp,q

X .
Our two differentials are just ∂ and ∂ – or, to adhere strictly with the sign
conventions of the previous section, take d′′ =(-1)q∂; we will not be so careful
about this – with total differential d. Notice that the asasociated total complex
is in degree n

⊕
p+q=n Λp,q with differential d – i.e, the C-valued DeRham com-

plex Λ•X . The associated spectral sequence is called the Hodge to DeRham
spectral sequence: let’s look at it. The E1 terms are E

(p,q)
1 = Hq((Λp,•, ∂)) =

Hp,q(X,C) = Hp,q(X) = Hq(X, Ωp), the Hodge groups. So we can write the
spectral sequence as

Hp,q(X,C) =⇒ Hp+q
DR (X,C).

We saw above that the convergence is phrased in terms of a canonical decreasing
filtration on the limiting object. In our case, we get a filtration F kH•

DR(X,C),
the Hodge filtration.

So for any complex manifold, the Hodge groups are related to the DeRham
cohomology – somehow. The question is: does this spectral sequence degener-
ate (immediately)?

Suppose now that X is compact; then by the finiteness theorem of Serre we
know that Hp,q(X,C) are all finite dimensional C-vector spaces; we may write
hp,q for their dimensions and bn := dim Hn

DR(X,C) for the Betti numbers. Now
if the spectral sequence degenerates, we can sum along the line x+ y = n to get
the nth Betti number: i.e., degeneration implies

∑
p+q=n hp,q = bn, the greater

part of the Hodge theorem. But in fact the converse is true: notice that since a
1To be sure: in contrast to most instances in mathematics (and in life), degeneration of a

spectral sequence is a joyous occasion: it means that two quantities which abstract nonsense
says are related, albeit in a very complicated way, are actually related in the simplest possible
way, aka the way in which you wanted them to be related.
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spectral sequence involves repeated passage to subquotients, the dimensions of
the C-vector spaces Ep,q

r are nonincreasing functions of r, and that a single dif-
ferential is nonzero is precisely the condition for some subquotient to be proper.
In other words if the spectral sequence does not degenerate we must have for
some n that

∑
p+q=n hp,q > bn. In summary:

Proposition 31 Let X be any compact complex manifold. The Hodge to DeR-
ham spectral sequence degenerates at the E1-term iff for all n we have

∑
p+q=n hp,q =

bn.

So the following is an immediate consequence of the Hodge theorem:

Theorem 32 The Hodge to DeRham spectral sequence of a compact Kahler
manifold degenerates at the E1 term.

Remark: The part of the Hodge theorem that says that a compact Kahler
manifold has Hp,q(X,C) = Hq,p(X,C) is therefore not guaranteed by the de-
generation of this spectral sequence. Indeed, it turns out that if X/C is any
compact complex surface, the spectral sequence degenerates. Moreover X will
be Kahler iff b1 is even; otherwise it turns out that h1,0 = h0,1 +1 [BPV]. Notice
that, together with Serre duality, this computes the Hodge diamond of the Hopf
surfaces studied in Chapter 2.

5.3 Hypercohomology

Let us at long last return to the algebraic category: in particular, suppose X/k
is a smooth projective variety over an algebraically closed field of positive char-
acteristic p. We still have Hodge numbers, defined via coherent cohomology:
hp,q := dimk Hq(X, Ωp). However we do not have anything like DeRham reso-
lution of the constant sheaf C, because indeed constant sheaves on Noetherian
spaces are flasque and do not need to be resolved. Nor do we have the Dolbeault
double complex Λp,q

X . Nevertheless, we can still construct a Hodge to DeR-
ham spectral sequence whose E1 term is Hq(X, Ωp) by using a construction of
pure homological algebra: hypercohomology.

Namely, let S• be a bounded below (cohomological) complex of sheaves on
a topological space.2 Choose I• an injective resolution of the complex S•:
by definition, this means a morphism of complexes ϕ : S• → I• to a complex
of injective objects such that H•(ϕ) : H•(S•) → H•(I•) is an isomorphism (a
so-called quasi-isomorphism of complexes). Note well that this generalizes
the notion of an injective resolution of a single sheaf as soon as we identify the
sheaf S with the complex S → 0 → 0 → . . .. We need two facts about resolu-
tions of complexes of sheaves whose analogues in the case of a single sheaf are
familiar from [CK]: first, that injective resolutions exist, and second that they

2It will be clear that we could work in more generality: in an arbitrary abelian category
with enough injectives and with some left-exact functor R.
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are unique up to homotopy; for the proofs of these facts (which require no new
ideas), see e.g. [Iversen].

So, given S• our complex of sheaves, we define its hypercohomology groups
Hn(S•) := Hn(Γ(X, I•)); observe that this too generalizes the definition of co-
homology groups of a single sheaf, and are similarly independent of the choice
of injective resolution.

In our algebraic setting we have the DeRham complex

Ω•X : OX = Ω0
X → Ω1

X → . . . → Ωd
X → 0,

and we define the algebraic DeRham cohomology of X to be the hyperco-
homology of the DeRham complex:

Hn
DR(X/k) = Hn(Ω•X/k).

In the remainder of this section we explain the following two important facts:

• Why the algebraic DeRham cohomology coincides with the analytic DeR-
ham cohomology in the complex case.

• How to construct a purely algebraic Hodge to DeRham spectral sequence

Hq(X, Ωp
X) =⇒ Hp+q

DR (X). (5.1)

When k = C, the Poincaré Lemma holds for holomorphic differentials:

0 → C→ Ω0
X → Ω1

X → . . . → Ωn
X → 0

so that Ω•X is a resolution – not acyclic! – of the constant sheaf C. But con-
sider: to take the cohomology of C, we take any injective resolution of C. Since
Ω•X is itself a resolution of C, taking an injective resolution I• of the com-
plex Ω•X , the fact that Ω• → I• is a quasi-isomorphism precisely means that
ker(I0 → I1) ∼= ker(Ω0 → Ω1) ∼= C and that thereafter the complex I• is exact,
so that I• is itself an injective resolution of C and Hn(X,C) = Hn(Ω•X). So alge-
braic DeRham cohomology computes DeRham cohomology in the complex case.

Finally, any time we have a complex of sheaves S• we will get a hyperco-
homology spectral sequence

Hq(X,Sp) =⇒ Hp+q(X, S•) (5.2)

Indeed we take for each Sp an injective resolution Sp → Ip,•: these suc-
cessive injective resolutions form the columns of a double complex. More-
over, since we have a natural bijection in the homotopy category between
Hom(Sp, Sp+1) and Homcomplexes(Ip,•, Ip+1,•) we can choose essentially unique
horizontal maps from one injective resolution to the next. The associated to-
tal complex is a complex of injective sheaves quasi-isomorphic to S• – draw
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a picture! – i.e., upon taking global sections and then cohomology we have
computed the hypercohomology of S•. It follows that if we take global sections
of the entire complex, we get a double complex with Ep,q

1 =Ker(Γ(X, Ip,q) →
Γ(X, Ip,q+1))/ Im(Γ(X, Ip,q−1) → Γ(X, I(p, q)) = Hq(X, Sp). This shows that
in general, there is a hypercohomology spectral sequence as in (2) above. Ap-
plying it to Ω•X , we get a Hodge to DeRham spectral sequence, which, although
purely algebraic in nature, coincides in the complex case with the Hodge to
DeRham spectral sequence constructed using Dolbeault cohomology groups.

5.4 An example of nondegeneration of the Hodge
to DeRham spectral sequence

I want to give some indication of an example of a variety for which the Hodge
to DeRham spectral sequence fails to degenerate at E1. The most “concrete”
example I have seen was done by William Lang in his Harvard thesis. Our
discussion of this example is nothing close to complete since, for one, Lang’s
computation of the DeRham Betti numbers uses crystalline cohomology. Nev-
ertheless it is instructive on a rather confusing point in characteristic p geom-
etry: a variety over a nonperfect field can be noninsgular without being smooth!

Let k be an algebraically closed field of characteristic p > 0. A quasi-elliptic
surface is a nonsingular surface X/k which admits a dominant morphism
X → C (C a smooth curve) whose generic fibre is a (geometrically integral)
nonsmooth curve of genus one. (Compare with the definition of an elliptic
surface, which is the same except that the generic fibre is smooth of genus one.)

The first thing to notice is that quasi-elliptic surfaces can only exist in posi-
tive characteristic. Indeed, in characteristic zero a morphism f : X → Y of
nonsingular varieties is generically smooth, i.e., there exists an open subset
U of X such that f |U is smooth (this is equivalent to the generic fibre being
smooth) – see [Hartshorne, 3.10.5 3.10.7], but indeed the result is immediate
once one remembers that if k(V )/k is a finitely generated field extension of
dimension d, then dimk Ωk(V )/k = d iff k(V )/k has a separable transcendence
basis of cardinality d – no worries about this in characteristic 0 In general, what
can be said is that the generic fibre is a nonsingular curve over the imperfect
field k(C), and – alas – over an imperfect field nonsingularity (i.e., regularity of
the local rings) and smoothness (the Jacobian condition) are distinct notions.
We can see this explicitly [Hartshorne, Exercise III.10.1]: consider

y2 = xp − t,

which we may equally well view as giving (the affine model of) a hypersurface
in P3 or as a curve X over k(P1). This curve is geometrically singular: as soon
as we pass to the field extension k′ = k(t1/p), the equation becomes

y2 = (x− t(1/p))p,
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and certainly (t1/p, 0) is a singular point. To see that over k it is not smooth,
consider the differential condition: Ω1

(X/k) is generated by dx and dy and sub-
ject only to the relation 0 = d(y2 − xp − t) = 2ydy – at the unique (scheme-
theoretic, not k-valued!) point P ∈ X with y(P ) = 0, this means that the
module of differentials is free of rank 2 > 1. On the other hand, this strange
point P is not a singular point (over k). Indeed, I claim that mP = (y),
so that the local ring OP is a DVR and is hence nonsingular. And indeed,
OX/(y) = k[x, y]/(y2 − xp + t, y) = k[x]/(xp − t) which is a purely inseparable
field extension of k.

Taking p = 3 in the preceding discussion, we do indeed get a quasi-elliptic
surface X/P1 via y2 = x3− t. (In fact, quasi-elliptic surfaces exist only in char-
acteristics 2 and 3. The generic fibre, being nonsingular of arithmetic genus 1,
must be analytically irreducible – in other words, the preceding considerations
require us to have a cusp and not a regular double point. And it is intuitively
clear that cuspidal curves can behave in weird ways only when p = 2 or 3.) One
of the results in Lang’s thesis computes the Hodge and DeRham Betti numbers
of a quasi-elliptic surface π : X → C fibred over an elliptic curve C/k for which
there exists a section s : C → X such that s(C) is contained in the smooth
locus of X. Then, if the line bundle R1π∗OX on C has degree 1, one has

h0,0 = h2,2 = 1, h0,1 = h1,0 = 2, h1,1 = 4, h0,2 = h2,0 = 1, h1,2 = h2,1 = 2.

b0,DR = 1, b1,DR = 3, b2,DR = 4, b3,DR = 3, b4,DR = 1.

So we have strict inequality wherever possible: for 1 ≤ i ≤ 3, bi,H > bi,DR.

5.5 The Deligne-Illusie Theorem

Quasi-hyperelliptic surfaces are “weird” because they can only exist in char-
acteristic p (and indeed only in characterstics 2 and 3). Another example of
nondegeneration is that of a supersingular Enriques surface, which has
the same “weird” flavor: in characteristic zero (and, indeed, in odd positive
characteristic) an Enriques surface is by definition a surface which admits an
unramified double cover which is a K3 surface (π1(S) = 0, ωS is trivial), so in
particular has fundamental group Z/2Z (in fact Serre’s construction applied to
a suitable quartic hypersurface would yield such a “classical” Enriques surface
in any characteristic). It turns out that in characteristic 2 the classification of
surfaces with Kodaira dimension zero becomes wildly more difficult than in the
classical case (it was done by two Fields Medalists, Bombieri and Mumford) and
one finds an entirely new surface X with the properties h0,1 = h0,2 = 1 (classical
Enriques surfaces have h0,1 = 0, by Hodge theory) and such that Frobenius acts
as zero on H1(X,OX). One finds for these surfaces that b1,H = 2 > 1 = b1,DR,
so we get another example of nondegeneration which this time only occurs in
characteristic two.
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In fact this “weirdness” is characteristic of nondegeneration of the spectral se-
quence.

Theorem 33 (Deligne-Illusie) Let X/k be a smooth projective variety over an
algebraically closed field of characteristic p > 0 and of dimension d < p. If X
lifts even to W2(k), then the Hodge to DeRham spectral sequence degenerates.

Of course liftability to W2(k) certainly does not imply liftability all the way
to W (k), so their proof cannot possibly use the Hodge theorem for Kahler
manifolds. So consider a variety X over a number field K: for all but finitely
many places v of K, X does extend to a smooth scheme over OK , and by
the previous theorem one knows that in characteristic p the spectral sequence
degenerates. Deligne and Illusie exploit this degeneration to show that the
spectral sequence of the generic fibre degenerates. In summary, they give a
purely algebraic proof of the (degeneration of the spectral sequence part of
the) Hodge theorem for algebraic C-manifolds by reducing to characteristic p,
where the degeneration of the spectral sequence is in general false! Those who
prefer to keep their distance from the “pathologies” of algebraic geometry in
positive characteristic would do well to remember this remarkable success story.

5.6 Relative Hodge theory of Kahler manifolds

In this section we will say a bit about the Hodge theory of a smooth family
π : X → S. This material belongs at the end of Chapter 2, but because we will
use the language of spectral sequences, we have chosen to put it here instead.
The source for most of the material in this section was Section 10 of [Demailly];
our remarks about smooth versus holomorphic families from Section 1.3 will be
helpful here.

A clue to the fact that one should be able to consider a much more general
Hodge theory can be found already in the fact that one has not merely sheaves
of differentials for varieties but sheaves of relative differentials ΩX/S associated
to an arbitrary morphism of schemes X → S. Moreover X → S is smooth of
dimension d if and only if ΩX/S is a vector bundle of rank d on X. We assume
for the remainder of the section that we have a proper smooth family of com-
plex manifolds over a connected base π : X → S. The first basic result is the
following

Theorem 34 (Kodaira-Spencer Semicontinuity Theorem)[Demailly] Let X →
S be a proper smooth C-analytic map and E → X a locally free sheaf on X; put
hq(t) := hq(Xt, Et). Then the hq(t) are upper-semicontinuous functions on S,
and more precisely, so is

hq(t)− hq−1(t) + . . . + (−1)qh0(t), 0 ≤ q ≤ n = dim Xt.
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Corollary 35 Let X → S be a smooth, proper morphism of C-analytic spaces
whose fibres Xt are Kahler manifolds. Then the Hodge numbers hp,q(Xt) of the
fibres are constant. Moreover, in the Hodge decomposition

Hk(Xt,C) =
⊕

p+q=k

Hp,q(Xt,C),

the mappings t 7→ Hp,q(Xt,C) give C∞ (but in general not holomorphic) sub-
bundles of the bundle tHk(Xt,C).

Proof: By the Ehresmann Lemma, the Betti numbers bk = Hk(Xt,C) are
constant. Since hp,q(Xt,C) = hq(Xt,Ω

p
Xt

) is by the theorem an upper semicon-
tinuous function of t and

hp,q(t) = bk −
∑

r+s=k,(r,s) 6=(p,q)hr,s(Xt),

they are clearly lower-semicontinuous as well. So they are continuous, and hence
constant.

Theorem 36 (Kodaira)[Voisin I] For our smooth, proper holomorphic family
π : X → S, the Kahler locus – i.e., the subset of s ∈ S such that π−1(s) is
Kahler – is open. Indeed, if ω0 is a Kahler metric on the fiber π−1(s0), then
on a neighborhood of s0 one can endow the fibers with Kahler metrics ω(s) such
that s 7→ ω(s) is C∞.

More precise and more general results are available, using Grauert’s direct image
theorems. Recall that if f : X → Y and E is a sheaf on X, the higher direct im-
age sheaves Rkf∗E on Y are given as the sheafification of U 7→ Hk(f−1(U), E).
We have a hyperanalogue: if A• is a complex of sheaves, we have complexes
Rqf∗(A•),

U 7→ Hk(f−1(U), A•).

We have the following fundamental result:

Theorem 37 (Direct image theorem) Let σ : X → S be a proper morphism of
C-analytic spaces and A• a bounded complex of coherent sheaves of OX-modules.
Then:
a) Rkσ∗A• is a complex of ocherent sheaves on S.
b) Every point of S admits a neighborhood U ⊂ S on which there exists a
bounded complex W • of OS-modules whose sheafified cohomology Hk(W •) are
isomorphic to the complexes Rkσ∗A•).
c) If σ has equidimensional fibers, the hypercohomology of the fiber Xt with
values in A•t := Abullet ⊗OX OXt (OXt = OX/σ∗mS,t) is given by

Hk(Xt, A
•
t ) = Hk(W •

t ),

where W •
t is the finite-dimensional complex of sheaves W k

t := W k⊗OS ,tOs,t/mS,t.
d) Under the hypothesis of c), if the hypercohomology fibrations Hk(Xt, A

•
t ) have

constant dimension, the sheaves Rkσ∗A• are locally free on S.
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From part b) and (the proof of) the Kodaira-Spencer theorem, one deduces:

Theorem 38 (Semicontinuity theorem) If X → S is a proper morphism of C-
analytic spaces with equidimensional fibers and E/X is a coherent sheaf, then,
putting hq(t) := Hq(Xt, Et), we find that

hq(t)− hq−1(t) + . . . + (−1)qh0(t)

are upper semicontinuous functions of t, (even) for the analytic Zariski topology
on S (i.e., where the closed sets are the zero sets of finitely many analytic
functions).

Now is the time to recall (Section 1.3) that the fiber cohomologies Hk(Xt,C)
are locally constant functions of t and are thus canonically endowed with a flat
connection, the Gauss-Manin connection. As we noted at the time, this implies
that tHk(Xt,C) has the canonical structure of a holomorphic vector bundle.
The total cohomology

⊕
k Hk(Xt,C) is called the Hodge bundle of X → S.

Consider now the relative DeRham complex Ω•X/S , dX/S) of X → S. This
complex furnishes us with a resolution of σ−1(OS),

Rkσ∗Ω•X/S = Rkσ∗(σ−1(OS)) = Rkσ∗(σ−1OS) = (Rkσ∗CX)⊗C OS . (5.3)

The last – important! – equality comes from the OS(U)-linearity for the co-
homology caluclated on σ−1OS . In other words, Rkσ∗Ω•X/S is the locally free
OS-module associated to the locally constant sheaf t 7→ Hq(Xt,C).

We get a spectral sequence of hypercohomology

Ep,q
1 = Rqσ∗Ω

p
X/S =⇒ GpRp+qσ∗Ω•X/S = GpRp+qσ∗CX .

(This spectral sequence is obtained from the prior (general) hypercohomology
spectral sequence by sheafifying.) Since the cohomology of Ωp

X/S along the fibres
Xt is nothing but the constant rank guy Hq(Xt, Ω

p
Xt

), part d) of the direct
image theorem shows that the Rqσ∗Ω

p
X/S are locally free. Finally, the filtration

F pHk(Xt,C) ⊂ Hk(Xt,C) is obtained at the level of locally free OS-modules
by taking the image of the OS-linear map

Rkσ∗F pΩ•X/S → Rkσ∗Ω•X/S ,

a coherent subsheaf (in fact locally free, because of the constancy of rank of the
fibres). From this and equation (6) one gets:

Theorem 39 (Holomorphy of the Hodge filtration) The Hodge filtration F pHk(Xt,C) ⊂
Hk(Xt,C) is a holomorphic subbundle, with respect to the holomorphic structure
defined by the Gauss-Manin connection.

In general, Hp,q(Xt,C) = F pHk(Xt,C) ∩ F qHk(Xt,C) has no reason to be a
holomorphic subbundle of Hk(Xt,C), even though Hp,q(Xt,C) has a natural
structure of a holomorphic vector bundle, obtained either from the cohrent sheaf
Rqσ∗Ω

p
X/S or as a quotient of F pHk(Xt,C). Otherwise put, it is the Hodge

decomposition which need not be holomorphic.
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Chapter 6

What should crystalline
cohomology do?

Let X/k be a proper smooth variety over a field of characteristic p (which
we no longer assume to be algebraically closed). Next week we will see the
definition of the crystalline cohomology groups Hn

crys(X), but at least now
we know what to expect: first of all, as in Chapter 1, it is unreasonable for
them to be Zp-valued, unless k = Fp. We could agree to work only with a
fixed algebraically closed field k and get a Weil cohomology with coefficients in
W (k), but crystalline cohomology is actually more flexible than this. Namely,
the functor X 7→ H•

crys(X) goes from varieties over k to graded W (k)-algebras
which are finitely generated as W (k)-modules in a way which is also functorial
in k. Here are three important results about this crystalline cohomology:

Theorem 40 (Comparison Theorem) if X/k lifts to a smooth X/W (k), then
Hn

crys(X) ∼= Hn
DR(X/W (k)), showing that the DeRham cohomology groups are

independent of the choice of a lifting when a lifting exists.

Theorem 41 (Universal Coefficient Theorem) The DeRham Betti numbers bi
DR(X)

may be computed in terms of the crystalline cohomology, as follows:

bi,DR(X) = bi,crys + ti,crys + ti+1,crys = bi,` + ti,crys + ti+1,crys

where bi,crys is the free rank of Hi
crys(X/k) (crystalline Betti number) and ti, =

dimk Hn
crys(X)⊗W (k) k (crystalline torsion coefficent).

In particular, the difference between bi,DR and bi,` is ti,crys + ti+1,crys so is “due
to torsion”.

Theorem 42 (Frobenius functoriality) For all n, Hn
crys(X) has a canonical

semilinear action of F and V making it into a Dieudonné module (or F-crystal)
in such a way that H1

crys(A) ∼= DA for an abelian variety A/k.
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This last theorem has been used by Katz, Mazur and others to relate the Hodge
filtration on the DeRham cohomology to the slopes of the Dieudonné mod-
ule Hn

crys(X). This work can be viewed as a p-adic analogue of the Riemann
hypothesis: rather than studying the Archimedean valuations of the Frobenius
eigenvalues, we study their p-adic valuations, leading to p-adic estimates on the
number of rational points of a variety over a finite field.

In summary, crystalline cohomology was motivated by the search for a coho-
mology theory in characteristic p that would explain topological p-torsion. The
final theory accomplishes this, but is much more interesting than one would
expect from merely topological considerations: it is intimately related to both
Hodge theory and DeRham cohomology.
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