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Chapter 1

Some geometry of sheaves

1.1 The exponential sequence on a C-manifold

Let X be a complex manifold. An amazing amount of geometry of X is encoded
in the long exact cohomology sequence of the exponential sequence of sheaves
on X:

0 → Z→ OX
exp→ O×X → 0,

where exp takes a holomorphic function f on an open subset U to the invertible
holomorphic function exp(f) := e(2πi)f on U ; notice that the kernel is the
constant sheaf on Z, and that the exponential map is surjective as a morphism
of sheaves because every holomorphic function on a polydisk has a logarithm.
Taking sheaf cohomology we get

0 → Z→ H(X)
exp→ H(X)× → H1(X,Z) → H1(X,OX) → H1(X,O×X) → H2(X,Z),

where we have written H(X) for the ring of global holomorphic functions on X.
Now let us reap the benefits:

I. Because of the exactness at H(X)×, we see that any nowhere vanishing holo-
morphic function on any simply connected C-manifold has a logarithm – even
in the complex plane, this is a nontrivial result.

From now on, assume that X is compact – in particular it homeomorphic to a
finite CW complex, so its Betti numbers bi(X) = dimQHi(X,Q) are finite. This
also implies [Cartan-Serre] that hi(X,F ) = dimCHi(X,F ) is finite for all co-
herent analytic sheaves on X, i.e. locally on X F fits into an exact sequence
Om

U → On
U → F → 0. Especially the Hodge numbers hp,q = hp(X, Ωq

X) are
finite.

II. H1(X,O×) is the Picard group of holomorphic line bundles on X. The
map c : H1(X,O×X) → H2(X,Z) is the Chern class map; the image of c
modulo torsion is the Néron-Severi group NS(X) ∼= Zρ, which classifies line
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bundles up to algebraic equivalence; one says that ρ is the Picard num-
ber and that b2 − ρ is the number of transcendental cycles. Line bundles
in the kernel of c are said to be algebraically equivalent to zero and this
subgroup of Pic(X) is denoted by Pic0(X). From the exact sequence we see
Pic0(X) ∼= H1(X,OX)/H1(X,Z); In case we have 2h0,1 = b1 (which will occur
if X is Kahler) we are modding out a C-vector space by a full sublattice – that
is, the Picard group is a complex torus. Notice that if X is simply connected
(and Kahler) then Pic0(X) = 0, and the group of line bundles is just the finitely
generated discrete group H2(X,Z); this occurs e.g. for X = Pn. Finally, if X is
Kahler then we will see in the next chapter that we have a Hodge decomposition

H2(X,C) = H2(X,OX) + H0(X, Ω2
X) + H1(X, ΩX).

The N’eron-Severi group canonically is a Z-lattice in H2(X,C), and it is con-
tained in the (1, 1)-subspace [Griffiths-Harris ??]; thus the Picard inequality
can be refined to ρ ≤ h1,1.1 Moreover one has (still in the Kahler case) that
H1(X, ΩX) ∩ (Im(H2(X,Z)) = NS(X), i.e., every integral (1, 1)-form comes
from the Picard group, the Lefschetz (1,1) Theorem. More generally, to an
i-cycle Z on X – i.e., a Z-linear combination of closed analytic subsets of dimen-
sion i – we can associate, via a triangulation and Poincaré duality, a cohomology
class c(Z) ∈ H2d−2i(X,Z), and one finds that the image of c(Z) ∈ H2d−2i(X,C)
lands in the (d − i, d − i)-subspace. Suppose finally that X is projective. It is
not quite true that every integral (d− i, d− i)-class needs to be represented by
an algebraic cycle, but this is supposed to be true “with denominators”: i.e.,
every element of H(d−i),(d−i) ∩H2d−2i(X,Q) should be a Q-linear combination
of algebraic cycles; this is the Hodge conjecture.2

1.2 Fiber bundles, locally constant sheaves, mon-
odromy

1.2.1 Fiber bundles as an example of descent

We review the notion of an (F, G)-bundle on a topological space, the classifica-
tion via sheaf cohomology, and the special place that locally constant sheaves
have among fiber bundles.

Let F be another topological space. A map π : E → X is said to be an F -
fiber bundle over X if there is an open covering {Ui} of X such that πUi is
isomorphic, over X, to the product F × Ui; such an isomorphism is called a
local trivialization ϕi : EUi → F × Ui . The “data” for a fiber bundle are

1One still need not have equality; e.g. for any d-dimensional complex abelian variety, one
has h1,1 = b2−2h1,0 =

�2d
2

�−2d, whereas the rank of the Néron-Severi group is characterized
in terms of the endomorphism algebra (the Rosati-invariant subalgebra), so is generically just

1 but can be as large as
d(d+1)

2
, attained when A is the dth power of a CM elliptic curve.

2Apparently the Hodge conjecture was first formulated in its integral version but was proven
false with embarrassing swiftness. I do not know the full story nor even the counterexample.
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its transition functions: namely on the overlaps Ui ∩Uj we may consider the
composite ρij := ϕj ◦ ϕ−1

i : Ui ∩ Uj → Aut(F ). The compatibility among triple
intersections is equivalent to ρ being a one-cocycle in Z1(X, Aut(F )c); this is
a (nonabelian) Cech cohomology group, and if G is any topological group, by
Gc we mean the sheaf of continuous G-valued functions on X. This has been
formulated in the topological category, but is easily modified: if X is a real
manifold and G a real Lie group, we can work with G∞, the sheaf of smooth
functions X → G; if X is a complex manifold and G a complex Lie group, we
can work with Gh, the sheaf of holomorphic functions X → G. (Unless we are
considering more than one of these categories at once, we may abusively write
just G, trusting that the context will make clear whether we are working with
continuous, smooth or holomorphic functions.)

On the other hand, we probably do not want the transition functions to be
arbitrary automorphisms of F – for instance if F = Rn its automorphism group
is an enormous (infinite-dimensional) space. This leads to (F, G)-bundles: we
prescribing a structure group G ≤ Aut(F ) and requiring the transition func-
tions to lie in G. It is not news, but this simple idea is miraculous in its range
of applicability. For instance if F = Rn and we want to get real vector bundles,
we take G = GLn(R); similarly if F = Cn we get complex vector bundles; if
G = GL+

n (R) we get oriented vector bundles; if G = SOn(R) we get oriented
vector bundles endowed with a Riemannian metric, and so on. The basic result
is as follows:

Proposition 1 The set of (F,G)-bundles on X is naturally in bijection with
H1(X,Gc); under the correspondence the trivial F -bundle corresponds to the
identity cocycle.

Given an acquaintance with Cech cohomology (we are passing to the direct
limit over refinements of covers, of course), the proof is almost immediate: we
have associated a Cech class to a fiber bundle; conversely, given a cocycle ρij ∈
Z1({Ui}, Gc), we form the space

∐
i Ui×F and mod out by (u, f) ∼ (u, gij(u)f)

whenever u ∈ Ui ∩ Uj . One striking aspect of the correspondence is that the
fiber F appears on one side but not on the other! One take on this is that it is
enough to consider principal bundles, i.e., where the fiber F = G acting (left
or right; one must choose) regularly on itself.

Another viewpoint is that we have an instance of what (following Serre in the
case of Galois cohomology) I call the first principle of descent: we start with
an “object” F0 on a “space” X (here we have a topological space; for algebraic
purposes probably the best example is the flat site of a scheme, e.g. Spec k!),
and a covering {Ui} of X. Let Y =

∐
Ui; there is a natural surjective local

homeomorphism3 π : Y → X. An object F on X such that π∗F ∼= π∗F0 is
called a twisted form of F0; denote by TY/X(F0) the space of all twisted forms

3which is not necessarily a covering map – it need not be “flat,” i.e., the fibers may have
different cardinalities
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which are trivialized over Y . In our case every (F, G)-bundle E over X admits a
covering such that the pullback to Y is equal to the pullback to Y of the trivial
bundle. Then:

Proposition 2 (Descent principle) The pointed set TY/X(F0) of Y/X-twisted
forms is naturally in bijection with H1(X, Aut(π∗F0)).

We remark that there is no typo: the automorphism group of the trivial objects
pulled back to Y is a sheaf (of not necessarily abelian groups) on X: its sections
over Y are indeed Aut(π∗F0) and its sections over X ′, Y → X ′ → X are the
X ′-equivariant automorphisms of Aut(π∗F0), and its sections over an arbitrary
covering Z of X are the same as its sections over Z ×X Y .

Corollary 3 Any two objects F0 and G0 on X – however dissimilar! – such
that Aut(π∗F0) ∼= Aut(π∗G0) will have bijectively corresponding sets of Y/X-
twisted forms: TY/X(F0) ∼= TY/X(F0).

Here is an application of this:

Let X be a (real or complex) manifold, and consider the set of finite rank
projective OX -modules. One can interpret “projective” purely algebraically:
for all open subsets U , M(U) is a finitely generated module over the ring
OX(U). Also as a matter of pure algebra, every finite rank projective mod-
ule over a commutative ring R becomes free over a Zariski-open subset of ev-
ery point of R – this is more than enough to ensure the existence of an open
cover {Ui} such that the pullback of M to

∐
Ui is a free OX -module. So the

set of rank n projective OX -modules is classified by H1(X, Aut(On
X)), where

Aut(M) = EndOX−Mod(M, M)× is the sheaf of automorphisms of the OX -
module M , i.e., over any open subset U we take the OU -module automorphisms
of M |U . We have that Aut(On

X) = GLn(OX) = (GLn)h. Because this is the
same automorphism group for a rank n holomorphic vector bundle, we conclude:

Proposition 4 On any (real or complex) manifold X, there is a canonical bi-
jection of pointed sets between rank n projective OX-modules and (real or holo-
morphic) rank n vector bundles on X.

Of course, in such a situation, one would like to have an explicit bijection. The
descent principle does not tell us how to write down such a bijection (but assures
us that we will find one, which gives us the motivation to look). In this case it is
easy to go from a vector bundle to a locally free sheaf: we just take the sheaf of
local sections. The inverse is not as transparent – see [Hartshorne, pp. 128-129].

We mention in passing one more example: let X be a scheme and G = PGLnX ,
considered as a representable sheaf on the étale site of X. Since PGLn is the
common automorphism group of both Pn−1

X and Mn(X)X (matrix algebra bun-
dle), we find a canonical correspondence between projective bundles on X
and bundles of central simple algebras on X, i.e. Azumaya algebras. This
leads to the interpretation of the Brauer group of X as classifying both geo-
metric and algebraic objects on X. For more details, see either [Grothendieck
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I,II,III] or (for a much-abbreviated version) [Clark].

A look at complex line bundles: suppose we want to study complex line bundles
on a real manifold X. If we (temporarily) write OX for the sheaf of C-valued
C∞-functions on X, then we still have the exponential sequence 0 → Z →
OX → O×X → 0: even a smooth function nonzero at a point is, locally about
that point, the exponential of another smooth function. But since OX is fine, it
is acyclic for sheaf cohomology, and the cohomology of the exponential sequence
gives an isomorphism

c1 : H1(X,O×X) ∼→ H2(X,Z).

That is, in the smooth category, a complex line bundle is determined by its
Chern class.

When X is a complex manifold, this need not be the case, as we saw in the
previous section: the kernel of c1 is the complex torus H1(X,OX)/H1(X,Z),
whose dimension is the first Betti number b1(X). Thus we see that c1(L) de-
termines L if and only if b1(X) = 0, in particular if X is simply connected.

1.2.2 Locally constant sheaves

The aim of this section is to define locally constant sheaves, understand their
relation to fiber bundles, and give their monodromy classification.

Definition: A locally constant sheaf of abelian groups F on X is a sheaf
for which there admits a cover {Ui} of X such that F |Ui is isomorphic to a
constant sheaf. If X is connected, the stalks of a locally constant sheaf are
mutually isomorphic to a common abelian group Λ.

Relation with fiber bundles: we can use the principle of descent to associate
a fiber bundle to a locally constant sheaf: A locally constant sheaf with group
Λ is a twisted form of the constant sheaf with group Λ, whose sheaf of automor-
phisms is just Aut(Λ)c. However, since Λ is merely an “abstract” abelian group,
Aut(Λ) is given the discrete topology, and Aut(Λ)c means the sheaf of locally
constant functions from X to the group Aut(Λ). We can similarly speak of
locally constant sheaves with G-structure, where G ≤ Aut(Λ) – in particular
taking, Λ = Rn or Cn and G = GLn(R) or GLn(C), we have a notion of locally
constant sheaves of vector spaces.

Write G for the constant sheaf with group G. Since GLn ↪→ (GLn)c (or (GLn)∞
or (GLn)h), the mapping

H1(X, GLn) → H1(X, (GLn c/∞/h)

shows that any locally constant sheaf of vector spaces can be viewed as a con-
tinuous, smooth or holomorphic vector bundle on X, albeit one of a very special
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form.

Example: Consider the sheaf of differentials Ω1 on P1/C as in [Hartshorne],
[C-K]. In terms of transition functions, it is given by the standard covering
U1 = P1 − ∞ = A1[x], U2 = P1 − 0 = A1[y] and with transition function
ρ12 : U1∩U2 → O×U1∩U2

given by −1/x2. This is not a locally constant function!
Moreover, since its divisor has degree −2, the line bundle is nontrivial. We will
soon see that there are no nontrivial locally constant sheaves on P1(C) = S2, so
that the line bundle Ω1 cannot be given by locally constant transition functions.

We should also give an example of a locally constant sheaf that is not con-
stant! Let X = S1, and let E → X be the Mobius band, which a priori is
a real line bundle on X in the broader sense of the previous section, famously
nontrivial. But the structure group can be reduced from R× to Z/2Z, i.e., it is a
locally constant sheaf. This is also well known and easy to check: indeed when
we make the Mobius band out of two strips U1 and U2 with two components
of intersection U1 ∩ U2 = V 1

12

∐
V 2

12, at one end we glue U1 to U2 identically,
and at the other hand we glue by a uniform half twist – i.e., the first transition
function is 1 and the second is −1.

Of course we could untwist the Mobius band by pulling back via z2 : S1 → S1,
and this leads us to suspect that the reason there are no nonconstant locally
constant sheaves on S2 is that it is simply connected. This is true and leads us
directly to the considerations of the next section.

1.2.3 Monodromy

In this section, we will need covering space theory to be applicable to X, so
we suppose that X is connected, locally path-connected and semi-locally simply
connected – in particular, it has a universal cover X̃ → X.

Let f : X → Y be a continuous map of topological spaces and F a locally
constant sheaf on Y . Then f∗F is a locally constant sheaf on X.

Let F be a locally constant sheaf on X with fibers isomorphic to Λ. Fix a
basepoint x ∈ X, and let γ : [0, 1] → X be a loop based at x. Then by the
remark, γ∗F is a locally constant sheaf on [0, 1]. But we claim that any locally
constant sheaf on the unit interval is constant. By an immediate compactness
argument, it comes down to showing: if we have a sheaf F on I = I1 ∪ I2 a
union of overlapping intervals such that F |I1 and F |I2 are both isomorphic to
constant sheaves, then so is F itself. But this is itself a kind of descent argument,
involving the familiar ([Hartshorne], [Alon])

Lemma 5 (Glueing lemma) If {Ui} is an open cover of X and we have sheaves
Fi on each Ui and the data of an isomorphism ϕij : Fi|Ui∩Uj → Fj |Ui∩Uj satis-
fying the conditions ϕii = 1, ϕik = ϕjk ◦ ϕij, then there is a unique sheaf F on
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X together with isomorphisms ψi : F |Ui

∼→ Fi such that ψj ◦ ψ−1
i = ϕij.

We leave it to the reader to check that the glueing lemma implies the following
generalization of our claim: let X = U1 ∪ U2 such that U1 ∩ U2 is connected.
Then a sheaf F on X which restricts to a constant sheaf on U1 and on U2 is
already constant on X.

Back to the case of our loop γ : [0, 1] → X. We now know that there is an
isomorphism Ψ : γ∗F ∼= Λ[0,1]: in particular we have Ψ(0) : (Γ∗F )0 ∼= Λ and
Ψ(1) : (Γ∗F )1 ∼= Λ. On the other hand, the stalks at 0 and 1 are identified with
the stalks at γ(0) = x = γ(1). It follows that the trivialization Ψ gives rise to
an automorphism Ψ(1) ◦Ψ(0)−1 of the stalk of F at x.

Exercise: Suppose γ1 ∼ γ2 are homotopic paths. Show that the induced au-
tomorphisms are the same. (Hint: View the homotopy as giving a morphism
[0, 1] × [0, 1] → X, divide the square into sufficiently small nicely overlapping
squares on which the pulled back sheaf is constant, and argue as in the previous
exercise.)

It follows that we have defined a homomorphism π1(X, x) → Aut(Fx), called
the monodromy representation.

Theorem 6 The monodromy representation gives a categorical equivalence be-
tween G-structured Λ-locally constant sheaves on X and G-compatible π1(X)-
module structures on Λ.

Proof: We shall construct the inverse functor. Our hypotheses are such as to
ensure that there is a universal cover X̃ → X, and since the theorem, if true,
implies that the pullback of any locally constant sheaf to X̃ will be constant,
this suggests our strategy: given the data of ρ : π1(X, x) → AutΛ, we will
construct a locally constant sheaf Fρ on X by descent from a constant sheaf on
X̃. Indeed, let Ẽ = X̃ × Λ (Λ is viewed as a discrete space), and consider the
quotient space E := Ẽ/ ∼, where (x, f) ∼ (gx, gf) for all g ∈ π1(X, x). Clearly
projection onto the first factor gives a map π : E → X. Since π1(X,x) acts
discretely on X̃, every point of X̃ has a neighborhood Ũ such that Ũ × F is
mapped homeomorphically onto its image – i.e., π : E → X is a fiber bundle
over F . We leave it as an exercise to show that the associated sheaf of local
sections to π is a locally constant sheaf, and that this construction is indeed
inverse to our association of a representation to a locally constant sheaf.

Remark: It is useful to recall that there were two steps to the proof of the
monodromy theorem, the first being an argument that every locally constant
fiber bundle became trivial when pulled back to the universal cover, and the sec-
ond being an interpretation of such bundles as being equivalent to (G-)π1(X)-
module structures on Λ. Note also that it is certainly not always the case that
a fiber bundle on X must trivialize on its universal cover (again recall Ω1 on
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P1(C) = S2), but this happens often enough that it is worth abstracting the
second part of the argument as follows:

Proposition 7 Let X be a topological space with universal cover π : X̃ →
X and fundamental group g. Then the pointed set of (topological, smooth or
holomorphic) (F,G)-bundles which trivialize over X̃ is isomorphic to the group
cohomology set H1(g, π∗(G)).

Compare with [Mumford, pp. 22-23] for an analogoue valid for all sheaves F on
X (but with a somewhat weaker conclusion). The point is that the automor-
phism group (sheaf) G of a locally constant sheaf is a trivial g-module, but this
is not necessarily true for more general fiber bundles.

Example: In the topological category, every fiber bundle over a contractible
paracompact base is trivial, a consequence of the following basic result.

Theorem 8 (Covering Homotopy Theorem) Let π : E → Y be an (F, G)-bundle
over a paracompact base. Let g1, g2 : X → Y be homotopic maps. Then the
pullbacks g∗1π and g∗2π are isomorphic. In particular, every (F, G)-bundle over
a contractible base is trivial.

For the proof see e.g. [Milnor-Stasheff]. It follows that (F, G)-bundles over a
K(π, 1)-space4 are classified by Hom(π, G). There is, up to homotopy equiv-
alence, a unique K(π, 1)-space for each group π, but we are rather lucky if
it is finite-dimensional – for instance, there is an isomorphism H•(π,Λ) ∼=
H•(K(π, 1), Λ) from the group cohomology of π (with coefficients in the triv-
ial π-module Λ) to the singular cohomology of the Eilenberg-MacLane space
[Brown], so for instance, for any n > 1, Hk(K(Z/nZ, 1),Z/nZ) 6= 0 for ev-
ery even k. (One knows that in fact K(Z/2Z, 1) = RP∞ = lim

−→n
RPn, and

the other K(Z/nZ, 1)’s are infinite-dimensional “lens spaces.”) But for all n,
Tn := S1 × . . . × S1 is K(Zn, 1). It follows that the (F, G)-bundles on an n-
dimensional real torus are classified by Hom(Zn, G) = Gn.

Example: A coherent analytic sheaf on a Stein manifold is acyclic for sheaf
cohomology; this is a theorem due to Serre which is the analytic analogue (but
proved first!) of the acyclity of coherent sheaves on affine varieties. In partic-
ular, a nonsingular affine analytic space is a Stein manifold – so Cn is a Stein
manifold. If we further assume that b1(X) = h1(X,Z) = 0, then the exponential
sequence gives H1(X,O×X) = 0, whence:

Proposition 9 Let X be a complex manifold with fundamental group g whose
universal cover X̃ is Stein. Then holomorphic line bundles on X are classified
by the group cohomology group H1(g,O×

X̃
).

In particular this result applies to complex tori, and we get the fact that we
can represent any line bundle on Cn/Λ as a collection of functions Λ → O×Cn

4A space with a contractible universal cover and fundamental group π. These are also
called Eilenberg-MacLane spaces.
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satisfying the cocycle condition, i.e., by theta functions.

Consider now the place of locally constant line bundles on an abelian vari-
ety among all line bundles: these are given by homomorphisms Λ → C×. The
group of all such is just (C×)2n, which is not quite what we expect to see. The
problem is that the map which associates to a locally constant line bundle its
associated holomorphic line bundle is neither surjective nor injective. To repair
matters, one considers the composite “change of structure groups”

S1 → C× → H(Cn)×,

and it turns out that the image in the Picard group of Cn/Λ of the locally con-
stant sheaves with structure group S1 coincides with the image of the locally con-
stant sheaves with structure group C×, and moreover the map T 2n =H1(Λ, S1) →
H1(Λ,O×Cn) is injective; indeed the image of the composite is precisely the Picard
variety of line bundles algebraically equivalent to zero. These statements are
not immediate; rather, they are much of the content of the Appell-Humbert
theorem classifying line bundles on a complex torus. We will however be able
to see later that every locally constant line bundle on a complex manifold has
vanishing Chern class, by showing that it admits a flat connection. This brings
us to the next section.

1.3 Flat connections, especially Gauss-Manin

Let E → X be a (say complex) vector bundle on a real manifold X. In this
section, we plunge to the core of differential geometry (but of course for our own
nefarious, ultimately algebraic, purposes) by defining a connection on E: it is
a C-linear morphism of sheaves E → Ω1(E) := Ω1 ⊗ E satisfying the Leibniz
rule

D(fg) = f · dg + gD(f),

where d denotes the usual exterior derivative. Note that D is of course not
an OX -module map: the special case to keep in mind is the trivial line bundle
L0

∼= OX on X; then d itself gives a connection on L0, and differentiation is by
its nature C-linear but not OX -linear.

The matrix of one-forms: it is quite easy to write down connections locally.
Namely, over any trivializing open subset U for E, choose a local frame e =
(e1, . . . , ed) – i.e., sections ei ∈ Γ(U,E) such that e1 ∧ . . . ∧ ed is a nowhere
vanishing section of the line bundle Γ(U, ΛdE). Because of the Leibniz rule, D
is determined by its action on e, and can in these local coordinates be given
simply by a d× d matrix with entries in Ω1, via

Dei =
d∑

j=1

θijei.
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Viewing E|U = Od
XU via e, and writing a section s ∈ Γ(U,E) in vector form as

s =
∑d

i=1 siei = se · e, a short calculation gives the matrix equation

Dse = (d + θ)se.

There is no condition to be imposed on the matrix θ, so indeed every connection
can be given in local coordinates as d + M where M ∈ Md(Ω1). In particular,
the difference of any two connections is an OX -linear map.

Globally, every vector bundle over a paracompact base admits a connection:
in local coordinates we can take D = d, and smooth via a partition of unity.

The curvature matrix: It is defined in local coordinates e on U as

Θ = ΘD,e = dθ + θ ∧ θ,

i.e., it is an n× n-matrix of two-forms on U . We have the equation

(d + θe)(d + θe)se = Θse.

In other words, the curvature matrix gives an OX -linear map E → Ω2(E) which
looks for all the world like D◦D. Indeed it is as soon as we extend the connection
to a map D : Ωi(E) → Ωi+1(E), via

D(ηe) = d(ηe) + θe ∧ ηe,

or globally by continuing to enforce the Leibniz rule:

D(ω ∧ η) = dω ∧ η + (−1)deg ωω ∧D(η).

We say the connection D is flat if Θ = 0.5

There is a clear “formal” reason to be interested in flat connections: it says
precisely that the sequence

0 → E
D→ Ω1(E) D→ Ω2(E) D→ . . . (1.1)

is a complex of sheaves on X, a kind of generalized DeRham complex giving
a resolution of the vector bundle E. We will see in Chaper 2 that the Hodge
theorem can be generalized to a theorem about such a complex of sheaves.

But there are more immediate, geometric reasons to be interested in flat connec-
tions: suppose that E is a line bundle, so that Θ is just a 2-form on X. Notice
that it is closed: θ ∧ θ = −θ ∧ θ = 0, so dΘ = d(dθ + θ ∧ θ) = 0. Therefore, via
the DeRham theorem, Θ ∈ H2(X,R).

5One also says that a connection D with D2 = 0 is integrable, which could be preferred
on the grounds that it uses a term not already ubiquitous in algebraic geometry (beware:
every vector bundle is a flat module!) On the other hand, I think the differential geometers
have us beat on this point: calling something which has zero curvature flat makes more sense
than calling something for which tensoring with that thing is exact flat.
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Proposition 10 Suppose that E → X is a complex line bundle on a real mani-
fold X. The curvature two-form Θ of a line bundle E is the image of the Chern
class c1(E) under the natural map H2(X,Z) → H2(X,R).

For a proof of this, see [Griffiths-Harris] or [Wells]. In particular, a line bundle
is algebraically equivalent to zero if and only if it admits a flat connection.

More generally, (almost) the entire theory of characteristic (Chern) classes of
complex vector bundles on a real manifold in terms of the curvature matrix Θ.
The key observation is that, if (E, D) has fiber dimension > 1, it need not be
that dΘ = 0 but if P : Mn(C) → C is any polynomial function in the matrix
entries with the invariance property P (Y XY −1) = P (X) for all matrices X
and Y , then dP (Θ) = 0, so that P (Θ) ∈ H•

DR(X). Taking P = σk, the kth
elementary symmetric function of the eigenvalues, gives the kth Chern class
ck(E) ∈ H2k

DR(X), up to a scaling. The reason for the “almost” in the first
sentence of this paragraph, is: since H2k

DR(X) ∼= H2k(X,R), there is a slight loss
of information over the topologically defined Chern classes ck ∈ H2k(X,Z): a
vector bundle which admits a flat connection is such that all of its topological
Chern classes are torsion, but not in general identically zero. For all this, see
Appendix C of [Milnor-Stasheff].

1.3.1 Flat connections versus locally constant sheaves

Let us look once again at the relationship between locally constant sheaves
and fiber bundles. On the geometric side – or in terms of transition functions
– we saw that a locally constant sheaf of complex vector spaces is a vector
bundle with an impressively small structure group. On the sheaf side, this is
not quite true: by definition, the stalks of a Λ = Cn-locally constant sheaf are
all isomorphic to Cn, whereas the corresponding locally free sheaf has stalk at
P isomorphic to the much larger group On

X,P . But this is easily remedied: to go
from a Cn-locally constant sheaf F on X to the locally free sheaf corresponding
to the corresponding vector bundle, we just take

F 7→ F ⊗C OX .

(Depending upon what we mean by OX , this makes sense and is correct in the
topological, smooth, and holomorphic categories.)

But now we have another instance of descent: because it came from F , F =
F ⊗OX can be canonically endowed with a connection: namely, in local coor-
dinates, we take σ =

∑
siei ∈ F , and define

D(σ) :=
∑

dsi ⊗ ei ∈ F ⊗ ΩX .

The point being: this expression is independent of the coordinates, because any
other trivialization is obtained from the first by a transition matrix with con-
stant coefficients; such changes of variables are d-linear.
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Moreover this connection D is flat, since in local coordinates it is just d, and
indeed d2 = 0. We now get the result that we mentioned earlier during our
discussion of line bundles on abelian varieties:

Corollary 11 A locally constant line bundle on a complex manifold is alge-
braically equivalent to zero.

Conversely, if (E → X, D) is a vector bundle endowed with a flat connection, we
define a sheaf FD by taking for FD(U) the horizontal sections over U , namely
the kernel of D|U . One can show (using Frobenius’ integrability criterion for
distributions; see [Voisin]) that FD is a Cn-locally constant sheaf. These two
constructions are mutually inverse to each other, i.e., one has:

Proposition 12 There is a bijective correspondence (in either the smooth or
the holomorphic category) between vector bundles on a (real/complex) manifold
X endowed with a flat connection and Cn-locally constant sheaves on X.

Note that one important consequence of this is that a smooth complex vec-
tor bundle which can be endowed with a flat connection necessarily admits a
canonical structure of a holomorphic vector bundle.

1.3.2 The Gauss-Manin connection

Let π : X → B be a proper submersion of (smooth or complex) manifolds.
The implicit function theorem guarantees that the fibers π−1(b) are themselves
manifolds, allowing us to think of π as giving a family of manifolds over the
base B. In fact, our hypotheses ensure that, in the smooth category, we have a
complete understanding of the local behavior of such a family:

Theorem 13 (Ehresmann Lemma) Let π : X → B be a proper smooth submer-
sion of real manifolds over a contractible pointed base (B, 0), and write X0 :=
π−1(0). Then there exists a diffeomorphism over the base T : X

∼→ X0 ×B.

Actually we need this result only locally, where it is a special case of the exis-
tence of tubular neighborhoods. For a proof of the global case (involving some
differential topology), see [Demailly].

In other words, in the smooth category all such families are locally constant
(aha!). Imagine now a holomorphic family satisfying the same hypotheses; of
course it need not be holomorphically locally trivial (there are moduli spaces,
after all), but the fact that it is smoothly locally trivial allows us to view the
family as a deformation of the complex structure on a fixed fiber.

Let A be the constant sheaf on X for some group A (think of Z, Q, R, . . .).
Let Hk

A := Rkπ∗(A), the kth derived functor of the pushforward. One knows
that Rkπ∗(F ) is the sheaf associated to U 7→ Hk(π−1, F |π−1(U)). Since B

is locally contractible, the Ehresmann Lemma implies that Hk(X0 × U,A) ∼=

12



Hk(X0, A) for a fundamental system of neighborhoods X0 ×U of B at 0. That
is, Hk

A = Rkπ∗(A) is a locally constant sheaf, isomorphic in a neighborhood of
0 to Hk(X0, A).

Definition: The corresponding flat connection ∆ : Hk → Ω1(Hk) is called the
Gauss-Manin connection.

When A = C, using the remark at the end of the previous section we may
view Hk as a holomorphic vector bundle on B. We will use this structure at
the end of the next chapter to give a meaning to the holomorphy of the Hodge
filtration.

13



Chapter 2

Hodge theory and DeRham
cohomology: the analytic
case

2.1 Introduction

Let X/C be a (smooth, proper, irreducible) algebraic variety of dimension d.
Classically, the algebraic geometry of X was developed alongside the algebraic
topology of the associated C-manifold X(C) – in particular the intersection the-
ory of algebraic cycles (Z-linear combinations of irreducible subvarieties) was
understood to take place in the cohomology ring H•(X(C),Z) via a cycle class
map c : Zi(X) → H2d−2i(X(C),Z). It is critically important that the singu-
lar cohomology groups are nonvanishing up to dimension 2d. Since the Zariski
topology on (the associated scheme of) X is a d-dimensional Noetherian space,
by Grothendieck’s vanishing theorem [C-K], we have that for any sheaf F on X
Hi(X, F ) = 0 for all i > d, and it seems like the Zariski cohomology groups are
hopelessly incapable of capturing the topological data of the Betti cohomology
groups.

But we are giving up on the sheaf cohomology groups too easily: although
no single sheaf F can play the role of a constant sheaf on Xan, we may still be
able to read the data of the singular cohomology groups off of the cohomology of
a family of sheaves on X. Indeed consider the family of sheaves Ωi

X/C of “regu-
lar i-forms,” defined for all i ∈ N. These are coherent sheaves of OX -modules
on the scheme X: recall that Ω0

X/C = OX itself; Ω1
X/C is the globalization of

the module of differentials. For any affine open subscheme given by a C-algebra
A, Ω1

A/C is the A-module generated by symbols da for a ∈ A and subject to

14



the relations d(a + b) = d(a) + d(b), d(ab) = adb + da(b), dc = 0 for c ∈ C.1

This process is compatible with localization, so we can glue to get a coherent
OX -module Ω1

X/C. Indeed, Ω1
X/C is locally free of dimension d if and only if X/C

is nonsingular, and is nothing but the cotangent bundle. For i > 1, we define
Ωi

X/C := ΛiΩ1
X/C, i.e., just the globalization of the exterior powers of modules.

So if X/C is nonsingular, Ωi
X/C will be a locally free sheaf on X of rank

(
d
i

)
–

especially, Ωd
X/C is an invertible sheaf on X, the canonical bundle. Moreover,

working purely at the level of exterior powers of modules, we have an exterior
derivative d : ΛiM → Λi+1M which, famously, satisfies d2 = 0. Therefore we
have

OX = Ω0
X → Ω1

X → . . . → Ωd
X → 0,

the DeRham complex of X/C.

Consider all possible cohomology groups Hp(X, Ωq): they must vanish when
p > d or when q > d. Because we have assumed X is complete, the alge-
braic analogue of the Cartan-Serre finiteness theorem [Hartshorne, ???] tells us
that the cohomology groups of any coherent sheaf on X are finite dimensional
C-vector spaces. We put hp,q = dimCHp(X, Ωq), and we are ready for the fol-
lowing celebrated theorem, implying in particular that the Betti numbers can
be calculated from cohomology of coherent sheaves.

Theorem 14 (Hodge Theorem) The Betti numbers of Xan are determined by
the coherent cohomology of the sheaves Ωi: for all n, we have

dimCHn(X,C) =
∑

p+q=n

hp,q.

Moreover, hp,q = hq,p.

In the next two sections we give the proof of this theorem, or rather the proof
modulo some (not at all trivial) analytic and differential geometric facts. In
fact, part of the point of giving the proof is to appreciate its essentially non-
algebraic nature.

2.2 Summary of Hodge Theory on Riemannian
manifolds

Let (M, g) be a compact oriented Rn-manifold endowed with a Riemannian
metric g. Every (paracompact!) real manifold can be so endowed – the easy
way to do this is to take a locally finite covering of M by subsets homeomorphic
to Rn, endow each of these with the standard Euclidean metric, and add up all
these individual metrics, smoothing with a partition of unity. Another way to
prove this result is to realize M as a submanifold of RN by Whitney embedding,

1A useful special case is that if A = C[X1, . . . , Xn]/(fj) is a finite-type C-algebra, ΩA/C
is the finitely generated A-module with generators dXi for 1 ≤ i ≤ n and relations d(fj) = 0.
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take the Euclidean metric on RN and restrict to N .2 For now, we write Λp
M =

Λp
M (R) for the space of C∞ p-forms on M with real coefficients. Let dV be the

volume n-form on M associated to the metric g – in local coordinates x1, . . . , xn,
it is given by

dV =
√

det(gij)dx1 ∧ . . . ∧ dxn.

We define, using the metric, the Hodge star operator

? : Λp
M → Λn−p

M ,

defined as follows: in a neighborhood U about every point M admits an or-
thonormal frame e1, . . . , en of sections of the tangent bundle – i.e., g(ei(x), ej(x)) =
δij for all x ∈ U . Every i-form can be written as a sum of terms

∑
I fI(x)deI ,

where I ⊂ {1, . . . , n} is a subset of cardinality i and deI =
∧

i∈I dei. Define
I? = {1, . . . , n} \ I, the complementary subset, and finally define

?(
∑

I

fI(x)deI) =
∑

I

fI(x)deI? .

This allows us to endow Λi
M with an inner product, namely

〈α, β〉 =
∫

?(α ∧ (?β))dV.

The completion of this real inner product space is denoted L2(Λp
M ), the Hilbert

space of square-integrable p-forms on M . It is built into our definition that the
Hodge star operator is a Hilbert space isometry L2(Λp

M ) → L2(Λn−p
M ). We put

L2(ΛM ) :=
⊕

p L2(Λp
M ) (Hilbert space direct sum, i.e., 〈 , 〉 =

∑
p〈 , 〉p.)

Because of this, it makes sense to speak of the adjoint operator to the exte-
rior derivative d on L2(ΛM ), denoted d?. One can check that it exists and is
given by (−1)n+1 ? ◦ d ◦ ?.

Finally, we define the Laplace-Beltrami operator on Λ•M as

∆ = d ◦ d∗ + d∗ ◦ d.

We remark that if M is the (noncompact; in this case we should take the comple-
tion of the space of compactly supported smooth forms) manifold Rn endowed
with the Euclidean metric ds2 =

∑
dx2

i then, up to a sign, the Laplacian of a
zero form is the familiar

∑
i

∂2f
∂x2

i
.)

In general, we define Hp(M) = ker(∆), the harmonic p-forms.
2The latter approach raises the issue of whether every compact Riemannian manifold arises

as a submanifold of Euclidean space. The answer is yes; this is the celebrated Nash Embedding
Theorem [Nasar].
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Lemma 15 For any s ∈ Λp
M , we have

〈∆s, s〉 = ||ds||2 + ||d∗s||2

.

Moreover, s ∈ Λp
M is harmonic iff ds = d∗s = 0.

Proof: The formula is immediate: 〈∆s, s〉 = 〈d(d?s)+d?(ds), s〉 = 〈d(d?s), s〉+
〈d?(ds), s〉 = 〈d?s, d?s〉 + 〈ds, ds〉 = ||ds||2 + ||d?s||2. It clearly follows that a
harmonic form is both d-closed and d?-closed. Conversely, if ds = d?s = 0, then

〈∆s, ∆s〉 = 〈dd?s + d?ds, dd?s + d?ds〉 = 0.

Theorem 16 (Hodge theorem for Riemannian manifolds)
a) For all p, there is an orthogonal decomposition Λp

M = Hp(M)⊕ Im d⊕ Im d?.
b) Since d and d∗ are adjoint, Ker d = (Im d∗)⊥, and we conclude that Zp

DR(M) :=
Ker(d : Λp

M → Λp+1
M ) is naturally isomorphic to Hp(M) ⊕ Im d. That is, each

DeRham cohomology class contains a unique harmonic representative.

“Proof”: It is easy to see that Hp(M), Im d and Im d∗ are mutually orthogonal
subspaces of Λp

M : indeed 〈ds, d∗t〉 = 〈d2s, t〉 = 0. Moreover (using that har-
monic forms are d-closed and d?-closed), since Im d∗ = (Ker d)⊥, no harmonic
form is in the image of d∗; similarly, no harmonic form is in the image of d. To
show that this subspace is all of Λp

M is another matter entirely. For this we need
to know that ∆ is an elliptic operator on M .

For completeness, we indicate briefly the definition of an elliptic differential
operator: a differential operator of order at most m between vector bundles E
and F on M with Riemannian metrics is a thing which can in local coordi-
nates be written as a matrix

∑
I : |I|≤m aI

ij(x)DI , where e.g. D(1,2) = ∂
∂x1

∂2

∂x2
2
.

The associated symbol is obtained by dropping all the lower order terms and
formally replacing the DI ’s with (ζ)I = (ζ1, . . . , ζn)I = ζi1

1 · · · ζin
n , so

σ(D)(x, ζ) =
∑

I:|I|=m

aI
ij(x)ζi1

1 · · · ζin
n .

The operator is elliptic if for all x ∈ M and all ζ ∈ Rn\O, the symbol σ(D)(x, ζ)
is an invertible matrix. For instance, since the homogeneous form x2

1 + . . . + x2
n

has no nontrivial real zeros, the classical Laplacian on Rn is elliptic. It is not
so hard to see that the general Laplace-Beltrami operator is elliptic; see e.g.
[Demailly]. The hard part is the following result, which is an entirely serious
theorem in the realm of PDEs, using Sobolev spaces, Garding’s inequality, and
so on.

Theorem 17 (Finiteness theorem for elliptic operators) Let P be an elliptic
operator on the sections of a vector bundle E → M , whose fibres are equipped
with an inner product. Then the Γ(M,E) = Im(P ) ⊕ KerP ∗, where the first
summand is a closed subspace of finite codimension.
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Theorem 4 (proved by Hodge, of course, for the Laplace-Beltrami operator; later
the general theory of elliptic operators developed around his proof) finishes the
proof for us, since ∆ = ∆∗ is self-adjoint and

Im∆ = Im(d ◦ d∗ + d∗ ◦ d) ⊂ Im d + Im d∗.

An application: Let ρ : M̃ → M be a degree N unramified cover of a compact
smooth manifold M . One knows that χ(M̃) = Nχ(M) for truly topological
reasons (pull back a sufficiently fine triangulation of M), but it is not as clear
that we have inequalities bi(M̃) ≥ bi(M). But we claim that indeed Hi(ρ) is an
injection for all i, and harmonic cohomology gives an easy proof of this: indeed
it is certainly true that pullback map is injective on the level of differential forms
(as follows immediately from the chain-rule and that ρ is a submersion). Now
choose any Riemannian metric on M and pull it back to M̃ ; since ρ is unrami-
fied, M̃ is locally isometric to M ; since the Laplace-Beltrami operator is local by
construction, it follows that the Laplacian commutes with pullback of differen-
tial forms. We conclude that the harmonic forms on M map monomorphically
into the harmonic forms on M̃ , whence the claim.3

2.3 A quick proof of the DeRham Theorem

For comparison, we recall the DeRham Theorem, which gives a canonical
isomorphism between the DeRham cohomology H•

DR(M) of a real manifold M
and the singular cohomology with R-coefficients. It is instructive to note that
in constrast to the hard analysis of the Hodge theorem, the DeRham theorem
can be proved using only the machinery of sheaf cohomology.

On the one hand we have the DeRham resolution of the constant sheaf R on
X:

0 → R ι→ Λ0
M

d→ Λ1
M . . . → Λn

M → 0.

Certainly d2 = 0 – even at the level of presheaves. Moreover, upon restriction
to any star-shaped domain, closed forms are exact (Poincar’ Lemma), so as a
sequence of sheaves it is exact, i.e., it gives a resolution of R. But the sheaf of
sections of any vector bundle on a manifold is soft (indeed it is fine: we have
partitions of unity), hence acyclic for sheaf cohomology (as discussed in [C-K]).
This shows that the DeRham cohomology naturally isomorphic to H•(X,R).

What about the singular cohomology? Let X be a locally contractible topo-
logical space and G an abelian group. We define a sheaf Sp(G) as follows: for
any open subset U , we put Sp(G)(U) := HomZ(Sp(U,Z), G), where Sp(U,Z)
is the usual group of U -valued singular p-chains. We have coboundary maps
δ : Sp(G)(U) → Sp+1(U). Here’s the punchline: of course this is not an exact

3In fact there is a proof using only DeRham cohomology: we must show that if ρ∗(ω) is
exact, then so was ω. Writing ρ∗(ω) = dθ, it need not be the case that θ “descends” to M ,
but its “norm” (in the Galois-theoretic sense!) does; we leave the details to the reader.
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sequence at the level of presheaves – indeed, taking U -sections, the cohomol-
ogy is precisely the singular cohomology H•

sing(U,G). But by the assumed
local contractibility, on stalks we get an exact sequence. Therefore, letting
Sp(G) be the sheafification of U 7→ Sp(G)(U), we have a long exact sequence
of sheaves. Moreover, the kernel – which does not need to be sheafified – of
S0(G)(U) → S1(G)(U) is canonically identified with the constant sheaf G,
so we find that G → S•(G) is a resolution of G. Moreover we claim it is
a soft resolution: S0(G)(U) = HomZ(S0(U,Z), G) = HomZ(

⊕
u∈U Z[u], G) =⊕

u∈U Hom(Z[u], G) =
⊕

u∈U G = C0(G), the canonical flasque sheaf (of dis-
continuous sections) associated to the constant sheaf G. So S0(G) – which is
already a sheaf – is flasque, and flasque sheaves are soft. Moreover, taking now
G = R, the Si(R)’s are modules over S0(R), via the cup-product. But in gen-
eral, a sheaf of modules F over a soft sheaf of rings R is soft. Indeed, take a
section s of F over a closed subset K of M . By definition of the sections of a
sheaf over closed subsets, s extends to some open neighborhood U of K. Since
K ∩ (X \ U) = ∅, we can define a section ρ of R over K ∪ (X \ U) by making
it identically equal to the unity 1 on K and identically 0 on X \ U . Since R is
assumed to be soft, ρ extends to all of X, and the product ρs gives an extension
of s to all of X. Thus the singular resolution R → S•(R) is also an acyclic
resolution and can be used to compute the cohomology of X.

In fact, we can make the isomorphism between DeRham cohomology and sin-
gular cohomology explicit, as follows: first, we may as well work with differen-
tiable p-chains (the above argument goes through verbatim). Then we have a
commutative diagram

R→ Λ•X
R→ S•(X,R)

given by integration of p-forms against p-chains. Since both complexes are
acyclic and the left-hand map is an isomorphism, the general theory of acyclic
resolutions shows that the induced map on cohomology must be an isomorphism.
This is the usual form of DeRham’s theorem.

2.4 Hodge theory for complex & Kahler mani-
folds

Suppose X is now a Cn-manifold, endowed with a Hermitian metric h. Note well
that a Hermitian metric is still a C∞-object – it has nothing to do with the C-
structure on X and indeed (unsing partitions of unity, as above) any Cn-bundle
on a real manifold can be endowed with a Hermitian metric. Viewing X as an
R2n-manifold via local coordinates z1, z1, . . . , zn, zn, we consider Λ•X = Λ•X(C)
the sheaves of C-valued C∞-differential forms on X, which are local expres-
sions of the form fI(z)dzI ∧ dzJ – note well that fI(z) is a C-valued merely
C∞ function. By definition of a complex manifold, transitions between coordi-
nate systems preserve the decomposition into z-coordinates and z-coordinates:
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this allows us to decompose the exterior derivative as d = ∂ + ∂, where e.g.
on zero forms ∂f =

∑n
i=1

∂f
∂zi

dzi and ∂f =
∑n

i=1
∂f
∂zi

dzi. We thus visibly get a
decomposition of Λr

X into
⊕

p+q=r Λp,q
X , the sheaf of C-valued C∞ “(p, q)”-forms.

We also have a Hermitian Hodge-star operator defined by

u ∧ (?v) = 〈u, v〉dV,

where the volume form is associated to the “underlying” Riemannian metric –
the real part of a Hermitian metric gives a Riemannian metric. The Hodge star
operator gives a C-linear isometry Λp,q → Λn−q,n−p, and in this way we have
not one but three Laplacians. The first is ∆, which is just obtained tensoring
from R to C the Laplacian on the underlying real manifold. We also have ∆1

and ∆2 (slightly nonstandard notation, but the standard notation, ¤ and ¤,
seems rather silly), obtained by using ∂ (respectively ∂) in place of d:

∆1 = ∂ ◦ ∂∗ + ∂∗ ◦ ∂,

∆2 = ∂ ◦ ∂
∗

+ ∂
∗ ◦ ∂.

Among several identities relating these operators, we single out

∂∗ = − ? ∂?, ∂
∗

= − ? ∂ ? .

We work with ∆ and ∆2, defining

Hp(X) = Hp(X,C) = ker(∆ : Λn → Λn)

and
Hp,q(X) = Hp,q

2 (X) = ker(∆2 : Λp,q → Λp,q).

We speak of the harmonic n-forms and harmonic (p, q)-forms respectively.

Now we have three different versions of (p, q)-cohomology: the harmonic co-
homology Hp,q

2 (X); the coherent analytic sheaf cohomology Hq(X, Ωp), and
finally the Dolbeault cohomology, i.e., the “∂-DeRham cohomology”:

Hp,q

∂
(X) := Hq((Λp,•

X , ∂).

There is also a ∂-analogue of the DeRham theorem: namely we have the Dol-
beault resolution

0 → Ωp
X → Λp,0

X
∂→ Λp,1

X
∂→ . . .

∂→ Λp,n
X → 0,

and since the sheaves Λp,q
X are fine, we conclude

Hq(X, Ωp
X) =

(Ker(Λp,q
X

∂→ Λp,q+1
X )

Im(Λp,q−1
X

∂→ Λp,q
X )

= Hp,q

∂
(X).

The analogue of Theorem 16 for ∆2 is:
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Theorem 18 For all (p, q), there is an orthogonal decomposition

Λp,q
X = Hp,q

X ⊕ Im ∂ ⊕ Im(∂
∗
).

Corollary 19 On a complex manifold, Dolbeault, harmonic and coherent coho-
mology coincide:

Hp(X, Ωq) = Hp,q
X = Hp,q

∂
(X).

But we still do not know how any of these cohomology groups compute H•(X,C).
Indeed, they need not, until we add an extra hypothesis.

Our Hermitian metric,
∑

ij hijzizj can be written as h = S + iA, where S is
symmetric and A is skew-symmetric; put Ω := 1/2A, a real-valued (1, 1)-form.
One says that h is a Kahler metric if dΩ = 0. (Notice that any Hermitian
metric on a one-dimensional C-manifold is automatically Kahler.) A C-manifold
is said to be Kahler if it admits a Kahler metric.

The property of a metric being Kahler is preserved upon passage to submani-
folds, so any submanifold of a Kahler manifold is Kahler. Moreover, CPn has
a canonical Kahler metric, the Fubini-Study metric; we conclude that any
compact complex manifold which is algebraic is a Kahler manifold.

Theorem 20 (Kahler identities) Let (X,h) be a Kahler metric on a complex
manifold. Then

∆1 = ∆2 = 1/2∆.

Again this theorem has too much content for us to review here (the standard
proof requires some representation theory of sl2(C)) but unlike the purely an-
alytic Theorem 17, it is discussed in every reputable text on Hodge theory,
e.g. [Wells], [Griffiths-Harris], [Voisin I], [Demailly]. But it is certainly what
we need: it tells us that on a Kahler manifold we have a unique notion of a
harmonic form, so that

Hn
X =

⊕
p+q=n

Hp,q
X .

Actually more is true: since (even without the Kahler condition), ∆1 = ∆2, on
a Kahler manifold we get that ∆2 = ∆1 = ∆2, so if a (p, q)-form is harmonic,
so is its complex conjugate (q, p)-form. Thus we have canonical isomorphisms
Hp,q(X,C) ∼= Hq,p(X,C), and in particular hp,q = hq,p.

Finally, we should discuss the invariance of the Hodge decomposition: a priori
the direct sum decomposition Hn(X,C) = Hn =

⊕
p+q=nHp,q seems to depend

upon the choice of Kahler metric, but one can show that this is not the case.
Probably the best way to see this is to observe that Hp,q can be intrinsically
defined in terms of the Hodge filtration on the DeRham complex as F p ∩F q;
we will explore this viewpoint in Chapter 3. For an elementary proof involving
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yet a fourth kind of (p, q)-cohomology, namely the Bott-Chern cohomology
groups

Hp,q
BC(X,C) =

Ker(d : Λp,q(X) → Λp+q+1(X))
∂∂(Λp−1,q−1(X))

,

(which are at least a priori independent of the Kahler metric), see [Demailly,
pp. 40-42]. In summary, we have “proved”:

Theorem 21 (Hodge theorem for Kahler manifolds) Let X/C be a compact
Kahler manifold. Then there is a canonical isomorphism

Hn(X,C) =
⊕

p+q=n

Hp,q(X,C)

satisfying Hq,p = Hq,p.

Remark: Let (E, D) be a vector bundle on X endowed with a flat connection.
We have a notion of DeRham cohomology with coefficients in E, namely in the
exact sequence (1.1) of Section 1.3, take global sections and then cohomology; we
denote this H•

DR(X,E). Simply by replacing d everywhere by D, one can redo all
the constructions of this section, getting especially ∆1(E) = ∆2(E) = 1/2∆(E)
and at last an isomorphism

Hn
DR(X, E) =

⊕
p+q=n

Hp,q(X, E)

satisfying Hp,q(X,E) = Hq,p(X, E). This generalization is not so important for
us here, but what we have done is the complex-analytic analogue of taking crys-
talline cohomology of crystals rather than cohomology of the structure sheaf.

Finally, if X/C is projective nonsingular variety, then as mentioned above the
associated complex manifold X(C) is compact Kahler. We must appeal to
Serre’s GAGA theorem: there is a natural analytification functor from coher-
ent sheaves on X/C in the algebraic sense to coherent sheaves on X(C) in the
analytic sense, such that coherent cohomology computed algebraically is canon-
ically isomorphic to coherent cohomology computed analytically. At last we get
our algebraic Theorem 14!

2.5 Implications for the topology of compact Kahler
manifolds

The Hodge Theorem is intriguing even at the level of algebraic topology: it
places constraints on the Betti numbers of compact Kahler manifolds that need
not be satisfied for more general compact complex manifolds (in particular, the
Kahler hypothesis is essential in the Hodge theorem and not just an artifice of
the proof).
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For instance, h1,0 = h0,1 = 1/2b1 for any compact Kahler manifold. Thus the
group of line bundles algebraically equivalent to zero Pic0(X) = H1(X,OX)/H1(X,Z)
really is a complex torus, as promised in Section 1.1. When X is projective
Pic0(X) admits a Riemann form, i.e., is an abelian variety, the Picard variety.
So b1(X) = 0 implies the triviality of the Picard variety of X. Interpreting
b1(X) in the sense of étale cohomology, this statement makes sense purely al-
gebraically, i.e., in all characteristics. In Chapter 4, we will gain a profound
appreciation for the “nonobviousness” of this algebraic statement (i.e., it can
be false in positive characteristic!) In fact the equality h1,0 = 1/2b1 is already
“nonobvious” for complex manifolds:

Example (Hopf surfaces): Consider X = (C2 \ {0})/Γ, where for some fixed
λ ∈ (0, 1), Γ = λZ, viewed as a group of homotheties of C2. Each element of Γ
is a C-manifold automorphism of (C2 \ {0}, so the quotient X is a C-manifold.
Since C2 \ {0} is diffeomorphic to R>0 × S1, we see that X is diffeomorphic
to S1 × S3. Using the Kunneth formula, we compute the Betti numbers of X:
b0 = 1, b1 = 1, b2 = 0, b3 = 1, b4 = 1. X is definitely not a Kahler manifold! Ac-
tually, the b2 = 0 is also enough to ensure that a complex manifold is non-Kahler:
one can show that the top wedge power of the fundamental form Ω is a positive
scalar multiple of the volume form – in particular [Ωn] 6= 0 ∈ H2n

DR(X,C), which
implies that every wedge power of Ω must be cohomologically nontrivial, and
so all the even Betti numbers of a Kahler manifold are positive.

Fundamental groups of compact Kahler manifolds: Of course, that b1(X) must
be even is saying something about π1(X), namely that the free rank of its
abelianization is even. What if we want to know about π1(X) itself? It is
well-known that every finitely presented group arises as the fundamental group
of a compact R4-manifold. Less well-known but still true is that every finitely
presented group is the fundamental group of a compact C3-manifold, so the
above restriction on π1(X) for Kahler manifolds is actually rather surprising.
Say that a group is a Kahler group if it arises as the fundamental group of a
compact Kahler manifold.

Question 22 Which finitely presented groups are Kahler groups?

This is analogous to the question of which finite groups are Galois groups over
Q and to the question of which finitely presented groups are π1 of a compact R3-
manifold but, purely on its own terms, seems more interesting than both, since
the conjectured answer to the first question is “all of them” and to the second
is “very few.” In contrast, the frontier between Kahler and non-Kahler groups
is remarkably rugged. For instance, we will see in Chapter 4 that every finite
group is the fundamental group of an algebraic variety (even in characteristic p
– this is a theorem of Serre). Since the class of Kahler groups is clearly closed
under products and certainly Z2g is a Kahler group (the fundamental group of
a genus g curve or equally well of its Jacobian), we can completely characterize
the abelianizations Kahler groups. To see that this is not enough: the class of
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Kahler groups is closed under passage to subgroups (by covering space theory;
a cover of a Kahler manifold is Kahler), so the free group on two generators is
not Kahler (even though its abelianization is), since it contains free subgroups
on every odd number of generators.

One might ask why we study Kahler groups instead of fundamental groups
of projective manifolds. The answer is that so far no one has ever found a
Kahler group which is non-projective; moreover, it is conjectured that the com-
plex structure on a Kahler manifold can be deformed (in the sense of Section
1.3.2) to a projective complex structure, which would imply that the two classes
are the same. In practice, most constructions of Kahler groups can be done with
algebraic manifolds, while non-existence arguments tend to work for the larger
class of Kahler manifolds. For much more on this fascinating question, see
[Amoros et. al.].
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Chapter 3

Algebraic DeRham
Cohomology

3.1 Souping up the Hodge Theorem: spectral
sequences and hypercohomology

In the previous chapter we proved the Hodge theorem for smooth, projective
complex varieties – but only by translating the statement into a statement about
Kahler manifolds. We now want to recast a portion of the Hodge theorem in
terms of a statement about degeneration of spectral sequences. The translated
statement, namely, “The Hodge to de Rham spectral sequence for a smooth
projective complex variety degenerates at the E1 term” is itself purely algebraic,
so it is at least meaningful to ask whether it is true in characteristic p.

3.1.1 Spectral sequence of a double complex

Let (Kp,q, d′+d′′) be a double complex with horizontal and vertical differentials
d′ and d′′. We assume it is concentrated in the first quadrant, i.e. Kp,q = 0
unless p, q ≥ 0. From the double complex we pass to the associated total
complex, Kn :=

⊕
p+q=n Kp,q, endowed with the the differential d = d′ +

(−1)qd′′. On the total complex one has a decreasing filtration

F pKn :=
⊕

p≤j≤n

Kj,n−j .

This induces a filtration on the cohomology groups H•(K•) of the total complex,
namely

F pH l(K•) := Im(H l(F pK•) → H l(K•)).

There is a spectral sequence

Ep,q
1 = Hq((Kp,•, d′′)) =⇒ Hp+q(K•).
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Recall this means that for all r ≥ 1 we have differentials dr : Ep,q
r → Ep+r,q−r+1,

such that, inductively, Er+1 = H•(Er). Since the complex is concentrated in the
first quadrant, for any given (p, q) eventually the head or the tail of every “ar-
row” lies outside of the first quadrant, so that the process stabilizes pointwise:
limr→∞Ep,q

r = Ep,q
∞ exists. The convergence means that Ep,q

∞ = GpHp+q(K•),
the pth graded piece of the filtration.

Finally, we say the spectral sequence degenerates at the Er-term if all the
differentials dr+i, for all i ≥ 0, are zero. Then indeed Ep,q

r = Ep,q
∞ . One simply

says the spectral sequence degenerates if it degenerates at the E1-term (or at
the first term under consideration; in a slightly different context, many spectral
sequences start with the E2-term).1

3.2 The Hodge to DeRham spectral sequence

Let X/C be a complex manifold – not yet assumed to be compact or Kahler.
Dolbeault’s theory provides us with a double complex, namely Kp,q = Λp,q

X .
Our two differentials are just ∂ and ∂ – or, to adhere strictly with the sign
conventions of the previous section, take d′′ =(-1)q∂; we will not be so careful
about this – with total differential d. Notice that the asasociated total complex
is in degree n

⊕
p+q=n Λp,q with differential d – i.e, the C-valued DeRham com-

plex Λ•X . The associated spectral sequence is called the Hodge to DeRham
spectral sequence: let’s look at it. The E1 terms are E

(p,q)
1 = Hq((Λp,•, ∂)) =

Hp,q(X,C) = Hp,q(X) = Hq(X, Ωp), the Hodge groups. So we can write the
spectral sequence as

Hp,q(X,C) =⇒ Hp+q
DR (X,C).

So for any complex manifold, the Hodge groups are related to the DeRham co-
homology – somehow. The question is: does this spectral sequence degenerate
(immediately)?

Suppose now that X is compact; then by the finiteness theorem of Serre we
know that Hp,q(X,C) are all finite dimensional C-vector spaces; we may write
hp,q for their dimensions and bn := dim Hn

DR(X,C) for the Betti numbers. Now
if the spectral sequence degenerates, we can sum along the line x+ y = n to get
the nth Betti number: i.e., degeneration implies

∑
p+q=n hp,q = bn, the greater

part of the Hodge theorem. But in fact the converse is true: notice that since a
spectral sequence involves repeated passage to subquotients, the dimensions of
the C-vector spaces Ep,q

r are nonincreasing functions of r, and that a single dif-
ferential is nonzero is precisely the condition for some subquotient to be proper.

1To be sure: in contrast to most instances in mathematics (and in life), degeneration of a
spectral sequence is a joyous occasion: it means that two quantities which abstract nonsense
says are related, albeit in a very complicated way, are actually related in the simplest possible
way, aka the way in which you wanted them to be related.

26



In other words if the spectral sequence does not degenerate we must have for
some n that

∑
p+q=n hp,q > bn. In summary:

Proposition 23 Let X be any compact complex manifold. The Hodge to DeR-
ham spectral sequence degenerates at the E1-term iff for all n we have

∑
p+q=n hp,q =

bn.

So the following is an immediate consequence of the Hodge theorem:

Theorem 24 The Hodge to DeRham spectral sequence of a compact Kahler
manifold degenerates at the E1 term.

Remark: The part of the Hodge theorem that says that a compact Kahler
manifold has Hp,q(X,C) = Hq,p(X,C) is therefore not guaranteed by the de-
generation of this spectral sequence. Indeed, it turns out that if X/C is any
compact complex surface, the spectral sequence degenerates. Moreover X will
be Kahler iff b1 is even; otherwise it turns out that h1,0 = h0,1 +1 [BPV]. Notice
that, together with Serre duality, this computes the Hodge diamond of the Hopf
surfaces studied in Chapter 2.

3.3 Hypercohomology

Let us at long last return to the algebraic category: to help us do this, sup-
pose X/k is a smooth projective variety over an algebraically closed field of
positive characteristic p. We still have Hodge numbers, defined via coherent
cohomology: hp,q := dimk Hq(X, Ωp). However we do not have anything like
DeRham resolution of the constant sheaf C, because indeed constant sheaves
on Noetherian spaces are flasque and do not need to be resolved. Nor do we
have the Dolbeault double complex Λp,q

X . Nevertheless, we can still construct a
Hodge to DeRham spectral sequence whose E1 term is Hq(X, Ωp) by using
a construction of pure homological algebra: hypercohomology.

Namely, let S• be a bounded below (cohomological) complex of sheaves on
a topological space.2 Choose I• an injective resolution of the complex S•:
by definition, this means a morphism of complexes ϕ : S• → I• to a complex
of injective objects such that H•(ϕ) : H•(S•) → H•(I•) is an isomorphism (a
so-called quasi-isomorphism of complexes). Note well that this generalizes
the notion of an injective resolution of a single sheaf as soon as we identify the
sheaf S with the complex S → 0 → 0 → . . .. We need two facts about resolu-
tions of complexes of sheaves whose analogues in the case of a single sheaf are
familiar from [CK]: first, that injective resolutions exist, and second that they
are unique up to homotopy; for the proofs of these facts (which require no new
ideas), see e.g. [Iversen].

2It will be clear that we could work in more generality: in an arbitrary abelian category
with enough injectives and with some left-exact functor R.
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So, given S• our complex of sheaves, we define its hypercohomology groups
Hn(S•) := Hn(Γ(X, I•)); observe that this too generalizes the definition of co-
homology groups of a single sheaf, and are similarly independent of the choice
of injective resolution.

In our algebraic setting we have the DeRham complex

Ω•X : OX = Ω0
X → Ω1

X → . . . → Ωd
X → 0,

and we define the algebraic DeRham cohomology of X to be the hyperco-
homology of the DeRham complex:

Hn
DR(X/k) = Hn(Ω•X/k).

In the remainder of this section we explain the following two important facts:

• Why the algebraic DeRham cohomology coincides with the analytic DeR-
ham cohomology in the complex case.

• How to construct a purely algebraic Hodge to DeRham spectral sequence

Hq(X, Ωp
X) =⇒ Hp+q

DR (X). (3.1)

When k = C, the Poincaré Lemma holds for holomorphic differentials:

0 → C→ Ω0
X → Ω1

X → . . . → Ωn
X → 0

so that Ω•X is a resolution – not acyclic! – of the constant sheaf C. But con-
sider: to take the cohomology of C, we take any injective resolution of C. Since
Ω•X is itself a resolution of C, taking an injective resolution I• of the com-
plex Ω•X , the fact that Ω• → I• is a quasi-isomorphism precisely means that
ker(I0 → I1) ∼= ker(Ω0 → Ω1) ∼= C and that thereafter the complex I• is exact,
so that I• is itself an injective resolution of C and Hn(X,C) = Hn(Ω•X). So alge-
braic DeRham cohomology computes DeRham cohomology in the complex case.

Finally, any time we have a complex of sheaves S• we will get a hyperco-
homology spectral sequence

Hq(X,Sp) =⇒ Hp+q(X, S•) (3.2)

Indeed we take for each Sp an injective resolution Sp → Ip,•: these suc-
cessive injective resolutions form the columns of a double complex. More-
over, since we have a natural bijection in the homotopy category between
Hom(Sp, Sp+1) and Homcomplexes(Ip,•, Ip+1,•) we can choose essentially unique
horizontal maps from one injective resolution to the next. The associated to-
tal complex is a complex of injective sheaves quasi-isomorphic to S• – draw
a picture! – i.e., upon taking global sections and then cohomology we have
computed the hypercohomology of S•. It follows that if we take global sections
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of the entire complex, we get a double complex with Ep,q
1 =Ker(Γ(X, Ip,q) →

Γ(X, Ip,q+1))/ Im(Γ(X, Ip,q−1) → Γ(X, I(p, q)) = Hq(X, Sp). This shows that
in general, there is a hypercohomology spectral sequence as in (2) above. Ap-
plying it to Ω•X , we get a Hodge to DeRham spectral sequence, which, although
purely algebraic in nature, coincides in the complex case with the Hodge to
DeRham spectral sequence constructed using Dolbeault cohomology groups.

3.4 Relative Hodge theory of Kahler manifolds

In this section we will say a bit about the Hodge theory of a smooth family
π : X → S. This material belongs at the end of Chapter 2, but because we will
use the language of spectral sequences, we have chosen to put it here instead.
The source for most of the material in this section was Section 10 of [Demailly];
our remarks about smooth versus holomorphic families from Section 1.3 will be
helpful here.

A clue to the fact that one should be able to consider a much more general
Hodge theory can be found already in the fact that one has not merely sheaves
of differentials for varieties but sheaves of relative differentials ΩX/S associated
to an arbitrary morphism of schemes X → S. Moreover X → S is smooth of
dimension d if and only if ΩX/S is a vector bundle of rank d on X. We assume
for the remainder of the section that we have a proper smooth family of com-
plex manifolds over a connected base π : X → S. The first basic result is the
following

Theorem 25 (Kodaira-Spencer Semicontinuity Theorem)[Demailly] Let X →
S be a proper smooth C-analytic map and E → X a locally free sheaf on X; put
hq(t) := hq(Xt, Et). Then the hq(t) are upper-semicontinuous functions on S,
and more precisely, so is

hq(t)− hq−1(t) + . . . + (−1)qh0(t), 0 ≤ q ≤ n = dim Xt.

Corollary 26 Let X → S be a smooth, proper morphism of C-analytic spaces
whose fibres Xt are Kahler manifolds. Then the Hodge numbers hp,q(Xt) of the
fibres are constant. Moreover, in the Hodge decomposition

Hk(Xt,C) =
⊕

p+q=k

Hp,q(Xt,C),

the mappings t 7→ Hp,q(Xt,C) give C∞ (but in general not holomorphic) sub-
bundles of the bundle tHk(Xt,C).

Proof: By the Ehresmann Lemma, the Betti numbers bk = Hk(Xt,C) are
constant. Since hp,q(Xt,C) = hq(Xt,Ω

p
Xt

) is by the theorem an upper semicon-
tinuous function of t and

hp,q(t) = bk −
∑

r+s=k,(r,s) 6=(p,q)hr,s(Xt),

29



they are clearly lower-semicontinuous as well. So they are continuous, and hence
constant.

Theorem 27 (Kodaira)[Voisin I] For our smooth, proper holomorphic family
π : X → S, the Kahler locus – i.e., the subset of s ∈ S such that π−1(s) is
Kahler – is open. Indeed, if ω0 is a Kahler metric on the fiber π−1(s0), then
on a neighborhood of s0 one can endow the fibers with Kahler metrics ω(s) such
that s 7→ ω(s) is C∞.

More precise and more general results are available, using Grauert’s direct image
theorems. Recall that if f : X → Y and E is a sheaf on X, the higher direct im-
age sheaves Rkf∗E on Y are given as the sheafification of U 7→ Hk(f−1(U), E).
We have a hyperanalogue: if A• is a complex of sheaves, we have complexes
Rqf∗(A•),

U 7→ Hk(f−1(U), A•).

We have the following fundamental result:

Theorem 28 (Direct image theorem) Let σ : X → S be a proper morphism of
C-analytic spaces and A• a bounded complex of coherent sheaves of OX-modules.
Then:
a) Rkσ∗A• is a complex of ocherent sheaves on S.
b) Every point of S admits a neighborhood U ⊂ S on which there exists a
bounded complex W • of OS-modules whose sheafified cohomology Hk(W •) are
isomorphic to the complexes Rkσ∗A•).
c) If σ has equidimensional fibers, the hypercohomology of the fiber Xt with
values in A•t := Abullet ⊗OX OXt (OXt = OX/σ∗mS,t) is given by

Hk(Xt, A
•
t ) = Hk(W •

t ),

where W •
t is the finite-dimensional complex of sheaves W k

t := W k⊗OS ,tOs,t/mS,t.
d) Under the hypothesis of c), if the hypercohomology fibrations Hk(Xt, A

•
t ) have

constant dimension, the sheaves Rkσ∗A• are locally free on S.

From part b) and (the proof of) the Kodaira-Spencer theorem, one deduces:

Theorem 29 (Semicontinuity theorem) If X → S is a proper morphism of C-
analytic spaces with equidimensional fibers and E/X is a coherent sheaf, then,
putting hq(t) := Hq(Xt, Et), we find that

hq(t)− hq−1(t) + . . . + (−1)qh0(t)

are upper semicontinuous functions of t, (even) for the analytic Zariski topology
on S (i.e., where the closed sets are the zero sets of finitely many analytic
functions).

Now is the time to recall (Section 1.3) that the fiber cohomologies Hk(Xt,C)
are locally constant functions of t and are thus canonically endowed with a flat
connection, the Gauss-Manin connection. As we noted at the time, this implies
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that tHk(Xt,C) has the canonical structure of a holomorphic vector bundle.
The total cohomology

⊕
k Hk(Xt,C) is called the Hodge bundle of X → S.

Consider now the relative DeRham complex Ω•X/S , dX/S) of X → S. This
complex furnishes us with a resolution of σ−1(OS),

Rkσ∗Ω•X/S = Rkσ∗(σ−1(OS)) = Rkσ∗(σ−1OS) = (Rkσ∗CX)⊗C OS . (3.3)

The last – important! – equality comes from the OS(U)-linearity for the co-
homology caluclated on σ−1OS . In other words, Rkσ∗Ω•X/S is the locally free
OS-module associated to the locally constant sheaf t 7→ Hq(Xt,C).

We get a spectral sequence of hypercohomology

Ep,q
1 = Rqσ∗Ω

p
X/S =⇒ GpRp+qσ∗Ω•X/S = GpRp+qσ∗CX .

(This spectral sequence is obtained from the prior (general) hypercohomology
spectral sequence by sheafifying.) Since the cohomology of Ωp

X/S along the fibres
Xt is nothing but the constant rank guy Hq(Xt, Ω

p
Xt

), part d) of the direct
image theorem shows that the Rqσ∗Ω

p
X/S are locally free. Finally, the filtration

F pHk(Xt,C) ⊂ Hk(Xt,C) is obtained at the level of locally free OS-modules
by taking the image of the OS-linear map

Rkσ∗F pΩ•X/S → Rkσ∗Ω•X/S ,

a coherent subsheaf (in fact locally free, because of the constancy of rank of the
fibres). From this and equation (6) one gets:

Theorem 30 (Holomorphy of the Hodge filtration) The Hodge filtration F pHk(Xt,C) ⊂
Hk(Xt,C) is a holomorphic subbundle, with respect to the holomorphic structure
defined by the Gauss-Manin connection.

In general, Hp,q(Xt,C) = F pHk(Xt,C) ∩ F qHk(Xt,C) has no reason to be a
holomorphic subbundle of Hk(Xt,C), even though Hp,q(Xt,C) has a natural
structure of a holomorphic vector bundle, obtained either from the cohrent sheaf
Rqσ∗Ω

p
X/S or as a quotient of F pHk(Xt,C). Otherwise put, it is the Hodge

decomposition which need not be holomorphic.
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Chapter 4

Some characteristic p
algebraic geometry – not
finished yet!

4.1 Comparing topological invariants

Let us now try to compare our various numerical invariants in positive char-
acteristic: specifically, let X/k be a smooth proper, connected variety over an
algebraically closed field of characteristic p, of dimension d. For 0 ≤ n ≤ 2d,
we have three different kinds of Betti numbers: the Hodge Betti numbers
b′n :=

∑
p+q=n hp,q =

∑
p+q=n dim Hq(X, Ωp); the DeRham Betti numbers

b′′n := dim HDRn(X) = dimHn(Ω•X), and finally the `-adic Betti numbers
b := dim Hn(Xét,Q`).

(Actually, in the case when X comes from good reduction in characteristic
zero, we should introduce yet a fourth kind of Betti number, the “Betti” Betti
numbers, or those which come from basechanging the generic fibre to the com-
plex numbers and taking the literal Betti cohomology. But these agree with the
`-adic Betti numbers when the former are defined.)

Well, what can we say?

To summarize the discussion of the last subsection, we do know b′n ≥ b′′n, with
equality iff the Hodge to DeRham spectral sequence degenerates.

We do know hp,q = hn−p,n−q – this is Serre duality. But beware – we cer-
tainly do not know hp,q = hq,p, even if the spectral sequence degenerates.

Suppose that X lifts to characteristic zero, i.e., suppose there is a proper smooth
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variety X/W (k), the ring of Witt vectors of k whose special fibre is our X. On
the generic fibre all three of our Betti numbers are defined and are equal (Hodge
theorem + DeRham theorem). Because of the smoothness, the DeRham sheaves
Ωi

X/W (k) are still locally free sheaves over W (k) – in particular they are flat,
so the semicontinuity theorem applies, telling us that the dimensions of the
cohomology groups can only jump up in passage from the generic fibre to the
special fibre. Moreover the `-adic Betti numbers are continuous under these
hypotheses (`-adic cohomology is enviably well-behaved), so this says that the
existence of a smooth lifting implies b′n ≥ bn for all n, i.e., the Hodge Betti
numbers are largest of all.

Example: The Hodge to DeRham spectral sequence always degenerates for al-
gebraic curves: by Serre duality, this statement is equivalent to b′′1 = 2g. We
can see this directly: we certainly know all the Hodge numbers; there are only
four possibly nonzero ones, and they are h0,0 = h1,1 = 1, h1,0 = h0,1 = g (by
definition!). Starting with d2, the “geometry of vectors in the plane”1 implies
that all the differentials are zero, so we just have to worry about the horizontal
arrows d1. One of them is d1 : H0(OX) → H0(Ω1

X) and indeed the differ-
ential of a (necessarily constant) global function is zero. The second arrow
d1 : H1(OX) → H1(Ω1

X) is indeed the map functorially induced on H1 by the
last arrow. As King Lear wisely said, “Nothing can come of nothing,” so this
differential is zero as well. So all three Betti numbers agree.

Example: One also has b• = b′• = b′′• for abelian varieties (of any dimension).
We will see one reason why this must be the case at the end of the section.

Igusa’s example: Igusa constructed a (liftable) surface X/k with h0,1 > dimPic(X).
This was distressing, since over C one can construct the Picard variety from the
cohomogy of

0 → Z ↪→ OX
2πiexp→ O×X → 0,

namely as the quotient of the C-vector space H1(X,OX) by the complete lat-
tice H1(X,Z), and hence we have h0,1 = dim Pic0(X) in characteristic zero. It
turns out that in characteristic p it is still true that dim Pic0(X) = h1,0 = g,
the number of global oneforms, so we must have h0,1 > h1,0 and hence b′′1 >
2 dim Pic0(X). But (as it turns out), 2 since X/W (k) is smooth, Pic0(X)/W (k)
is smooth, so the dimension of its special fibre is the same as the dimension of
the general fibre, and we have b′′1 > 2 dimPic0(Xη) = b1.

Serre’s example: It is similar but simpler than Igusa’s. He takes a surface in
1This is much funnier if you happen to be teaching Math 133.
2What we are sweeping under the rug is that, over an algebraically closed field of char-

acteristic zero, the Picard variety is the connected component at the identity of the Picard
scheme, which represents the functor of line bundles on X. However in positive characteristic
the connected component of the Picard scheme need not be reduced; by definition, the Picard
variety is obtained by extracting the reduced subvariety, and in fact the passage from Picard
scheme to Picard variety is the cause of the inequality!
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P3/W (k) with a fixed-point free group of automorphisms isomorphic to Z/pZ,
where p is the characteristic of k. Classically – i.e., in characteristic 0 using
analytic techniques – one knows that a hypersurface of dimension at least 2 is
simply connected (one of the Lefschetz theorems); in other words, we have a
map S̃ → S from the universal cover with covering group Z/pZ. In particular,
the fundamental group of Sη is Z/pZ, so b1 = 0. Arguing as in the above ex-
ample, we must have the Picard variety vanishing, so h1,0 = 0. Again we have
h0,1 > h1,0. For both surfaces we have b′′i = bi;, so the Hodge and DeRham
Betti numbers are both “too large” compared to the `-adic Betti numbers.

4.2 “New” geometry in characteristic p

Example (W. Lang’s thesis): Let k be an algebraically closed field of char-
acteristic p > 0. A quasi-elliptic surface is a nonsingular surface X/k which
admits a dominant morphism X → C (C a smooth curve) whose generic fibre is
a (geometrically integral) nonsmooth curve of genus one. (Compare with the
definition of an elliptic surface, which is the same except that the generic fibre
is nonsingular of genus one.)

The first thing to notice is that quasi-elliptic surfaces can only exist in posi-
tive characteristic. Indeed, in characteristic zero a morphism f : X → Y of
nonsingular varieties is generically smooth, i.e., there exists an open subset
U of X such that f |U is smooth (this is equivalent to the generic fibre being
smooth) – see [Hartshorne, 3.10.5 3.10.7], but indeed the result is immediate
once one remembers that if k(V )/k is a finitely generated field extension of
dimension d, then dimk Ωk(V )/k = d iff k(V )/k has a separable transcendence
basis of cardinality d – no worries about this in characteristic 0! In general, what
can be said is that the generic fibre is a nonsingular curve over the imperfect
field k(C), and – alas! – over an imperfect field nonsingularity (i.e., regularity
of the local rings) and smoothness (the Jacobian condition) are distinct notions.
We can see this explicitly [Hartshorne, Exercise III.10.1]: consider

y2 = xp − t,

which we may equally well view as giving (the affine model of) a hypersurface
in P3 or as a curve X over k(P1). This curve is geometrically singular: as soon
as we pass to the field extension k′ = k(t1/p), the equation becomes

y2 = (x− t(1/p))p,

and certainly (t1/p, 0) is a singular point. To see that over k it is not smooth,
consider the differential condition: Ω1

(X/k) is generated by dx and dy and sub-
ject only to the relation 0 = d(y2 − xp − t) = 2ydy – at the unique (scheme-
theoretic, not k-valued!) point P ∈ X with y(P ) = 0, this means that the
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module of differentials is free of rank 2 > 1. On the other hand, this strange
point P is not a singular point (over k). Indeed, I claim that mP = (y),
so that the local ring OP is a DVR and is hence nonsingular. And indeed,
OX/(y) = k[x, y]/(y2 − xp + t, y) = k[x]/(xp − t) which is a purely inseparable
field extension of k.

Taking p = 3 in the preceding discussion, we do indeed get a quasi-elliptic
surface X/P1 via y2 = x3− t. (In fact, quasi-elliptic surfaces exist only in char-
acteristics 2 and 3. The generic fibre, being nonsingular of arithmetic genus 1,
must be analytically irreducible – in other words, the preceding considerations
require us to have a cusp and not a regular double point. And it is intuitively
clear that cuspidal curves can behave in weird ways only when p = 2 or 3.) One
of the results in Lang’s thesis computes the Hodge and DeRham Betti numbers
of a quasi-elliptic surface π : X → C fibred over an elliptic curve C/k for which
there exists a section s : C → X such that s(C) is contained in the smooth
locus of X. Then, if the line bundle R1π∗OX on C has degree 1, one has

h0,0 = h2,2 = 1, h0,1 = h1,0 = 2, h1,1 = 4, h0,2 = h2,0 = 1, h1,2 = h2,1 = 2.

b′′0 = 1, b′′1 = 3, b′′2 = 4, b′′3 = 3, b′′4 = 1.

So we have strict inequality wherever possible: b′1 = 4 > 3 = b′′1 and b′2 = 6 >
4 = b′′2 = 4, b′3 = 4 > 3 = b′′3 (of course b′0 = b′′0 = b′4 = b′′4 = 1 for any surface).

Example (Enriques surfaces in characteristic 2): A recent book by Dolgachev
concerns the geometry of Enriques surfaces (recall that, over C, an Enriques
surface is a surface of Kodaira dimension 0 which admits an unramified double
cover which is a K3 surface). It turns out that the majority of the book deals
with characteristic 2, where Enriques surfaces have a “new” complexity (one
presumes) undreamt of by Enriques. We mention only the example of a super-
singular Enriques surface: namely H1(OX) ∼= k ∼= H2(OX), and Frobenius
induces the zero endomorphism on H1(OX) (which is why they are called su-
persingular). Since over C K3 surfaces are simply connected, Enriques surfaces
have π1 = Z/2Z and hence b1 = 1/2h0,1 = 1/2h1,0 = 0. Moreover, one has over
C that the canonical bundle KX = Ω2 is nontrivial, but its square K2

X is (so X
has Kodaira dimension 0). So supersingular Enriques surfaces are really weird,
and indeed exist only in characteristic 2. One finds for them that b′′1 = 1 but
b′1 = 2, so again we have a failure of the Hodge to DeRham spectral sequence
to degenerate.

4.3 The Deligne-Illusie Theorem

We have now examined a handful of examples of degeneration / nondegener-
ation of the Hodge to DeRham spectral sequence. The reader may well have
noticed that each case of nondegeneration occurred in the presence of some
weird geometric phenomenon which was only possible in positive characteristic.
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To make this precise, say a smooth projective variety X/k over an algebraically
closed field of characteristic p can be lifted to characteristic zero if there exists
a smooth scheme X/W (k) over the ring of Witt vectors of k whose special fibre
is X. There are various criteria for varieties to be liftable, e.g. a theorem of
Grothendieck [SGA1] says that varieties with both h0,2 = 0 and h2(X, TX) = 0
(TX = Ω∨X is the tangent bundle) are liftable, so in particular curves are liftable.
On the other hand, (say principally polarized) abelian varieties are liftable as
well, since the moduli space of principally polarized abelian varieties of dimen-
sion g is smooth over Z. It can be shown that (at least when dim X < p)
liftability implies degeneration of the spectral sequence. Since we know the
spectral sequence degenerates in characteristic zero, this sounds vaguely plausi-
ble. But Deligne and Illusie proved something much stronger:

Theorem 31 (Deligne-Illusie) Let X/k be a smooth projective variety over an
algebraically closed field of characteristic p > 0 and of dimension d < p. If X
lifts even to W2(k), then the Hodge to DeRham spectral sequence degenerates.

Of course liftability to W2(k) certainly does not imply liftability all the way
to W (k), so their proof cannot possibly use the Hodge theorem for Kahler
manifolds. So consider a variety X over a number field K: for all but finitely
many places v of K, X does extend to a smooth scheme over OK , and by
the previous theorem one knows that in characteristic p the spectral sequence
degenerates. Deligne and Illusie exploit this degeneration to show that the
spectral sequence of the generic fibre degenerates. In summary, they give a
purely algebraic proof of the (degeneration of the spectral sequence part of
the) Hodge theorem for algebraic C-manifolds by reducing to characteristic p,
where the degeneration of the spectral sequence is in general false! Those who
prefer to keep their distance from the “pathologies” of algebraic geometry in
positive characteristic would do well to remember this remarkable success story.

4.4 Serre’s Mexico paper

Witt vector cohomology Let A be a ring of characteristic p; we have defined
Wn(A), the Witt vectors of length n with coefficients in A, and W (A) :=
lim
←−n

Wn(A). We have F and V : first a Frobenius (a0, . . . , an−1) 7→ (ap
0, . . . , a

p
n−1);

and second a Verschiebung (or décalage) V : Wn(A) → Wn+1(A), (a0, . . . , an−1) 7→
(0, a0, . . . , an−1). We also have restriction R : Wn+1(A) → Wn(A), (a0, . . . , an) →
(a0, . . . , an−1). Some identities satisfied are:

(V x) · y = V (x · FRy), RV F = FRV = RFV = p · .

Signalons que W1(A) = A. The constructions of Wn(A), W (A) and the F, V, R
are functorial in A and very nice: in fancy language, Wn is a functor repre-
sented by a ring scheme over SpecFp whose underlying scheme is isomorphic
to An/Fp, but with a “twisted” addition and multiplication given by the usual
universal polynomials. Similarly W is “represented by an ind-scheme” over
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SpecFp, but for our purposes the extra erudition in these statements comes
devoid of extra content.

The point is that if (X,OX) is a locally ringed space of characteristic p, then
we have a sheaf of rings Wn on X via U 7→ Wn(Γ(U,OX)) and W on X as the
inverse limit of the Wn. Notice that W1 = OX . For all n ≥ m we have a short
exact sequence of sheaves on X

0 →Wm
V n−m

→ Wn
Rm

→ Wn−m → 0. (4.1)

Taking m = 1, we get

0 → O V n−1

→ Wn
R→Wn−1 → 0. (4.2)

It follows that Wn is an n-fold (nontrivial!) extension of the structure sheaf OX .

Suppose now that X is a variety over an algebraically closed field k of character-
istic p. Then O is a sheaf of k-modules so Wn(O) is a sheaf of Wn(k)-modules.
Put Λ := W (k); we get that the cohomology groups Hq(X,Wn) are canonically
Λn = Λ/(pn)-modules. In fact more is true: they are Dn := Λn〈F, V 〉-modules,
where we mean the non-commutative polynomial ring over Λn generated by in-
determinates F and V and subject to the relations F (λv) = FλF (w), V (λw) =
F−1λV (w), R(λw) = λR(w), RFV = FRV = RFV = p. 3

The Wn are not OX -modules (Wn is a sheaf of rings of characteristic pn, while
OX = W1 is of characteristic p), they behave in much the same way (in sickness
and in health). We have:

Proposition 32 Let X be a scheme of characteristic p.
a) Hq(X,Wn) = 0 for q > dim X.
b) If X is affine, Wn is acyclic for sheaf cohomology.
c) If X is projective, Hq(X,Wn) is a finite-length Λn-module.

In all cases, the results follow immediately by induction and the long exact co-
homology sequence of (2).

The restriction maps Rn−m induce morphisms Hq(X,Wn) → Hq(X,Wn−m),
which form an inverse system of abelian groups. We denote Hq(X) := Hq(X,W) :=
lim
←−n

Hq(X,Wn), the Witt vector cohomology of X; they are canonically

Λ = W (k)-modules. Note well that the notation Hq(X,W) is truly abusive:
we have an inverse limit of cohomology groups, not a cohomology group of the
sheaf lim

←−
Wn (which would not be the same, just as in `-adic cohomology).

3D is for Dieudonné, of course.
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4.4.1 Torsion

Recall that we said in the introduction that if ` 6= p the Weil cohomology
theory Hq(X,Zl) loses information about the p-torsion phenomena in charac-
teristic p. In contrast, the Witt vector cohomology – which a priori is not Weil,
by Proposition 18a) – is very sensitive to p-torsion phenomena. So Witt vector
cohomology is interesting, even if it is not always well-behaved.

Consider the coboundary operators in the long exact cohomology sequence of
(1) above:

. . . → Hq(X,Wm) V n−m

→ Hq(X,Wn) Rm

→ Hq(X,Wn−m)
δq

n,m→ Hq+1(X,Wm) → . . .

δq
n,m : Hq(X,Wn−m) → Hq+1(X,Wm), n ≥ m.

These operators are Fn−m-semilinear.

When n ≥ 2m, the ideal V n−m(Wm) ≤ Wn has square zero, which allows
us to calculate the effect of δq

n,m on the cup product:

δq
n,m(x · y) = δr

n,m(x) · Fn−mRn−2my + (−1)rFn−mRn−2mx · δs
n,m(y),

where x ∈ Hr(X,Wn−m), y ∈ Hs(X,Wn−m) and r + s = q.

We say that X has no homological torsion in dimension q if the maps
δq
n,m = 0 for all n ≥ m. Clearly this is equivalent to Rm : Hq(X,Wn) →

Hq(X,Wn−m) is a surjection for all n ≥ m.

Examples: A variety of dimensin d has no cohomological torsion in dimension d.
Every variety has no cohomological torsion in dimension 0 (since Wn →Wn−1

is surjective as a morphism of presheaves – we have multiplicative representa-
tives). It follows that algebraic curves have no homological torsion, and this fact
should be viewed as serving to “explain” why algebraic curves in characteristic
p have no “pathologies.”

The morphisms βn: A variation on the above theme will give us endomorphisms
on the classical cohomology algebra H∗(X,O). Indeed, we define

βq
1 : Hq(X,O) → Hq+1(O)

as the δq
2,1 map associated to

0 → O →W2 → O → 0.

We have β2
1 = 0, so we may define new cohomology groups Hq(X,O)2 :=

ker(βq
1)/ Im(βq−1

1 ). In general, we define

Zq
n := Im(Hq(X,Wn) Rn−1

→ Hq(X,O)) = ker(Hq(X,O)
δq

n,n−1→ Hq+1(X,Wn−1)).
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Bq
n := ker(Hq(X,O) V n−1

→ Hq(X,Wn)) = Im(Hq−1(X,Wn−1)
δq−1

n,1→ Hq(X,O)).

The Zq
n give a decreasing filtration on Hq(X,O), the Bq

n give an increasing
filtration on Hq(X,O) and Bq

n < Zq
n for all n. For n = 1 we have Bq

1 = 0,
Zq

1 = Hq(X,O). In general, put Hq(X,O)n := Zq
n/Bq

n. If x ∈ Zq
n, choose a

y ∈ Hq(X,Wn) such that Rn−1y = x, and put z := δq
n+1,1(y) ∈ Hq+1(X,O).

By passage to the quotient we get a well-defined homomorphism

βq
n : Hq(X,O)n → Hq+1(X,O)n

such that ker(βq
n) = Zq

n+1/Bq
n, Im(βq−1

n ) = Bq
n+1/Bq

n. In order for X to have
no torsion, it is necessary and sufficient for the βq

n to all be zero.

Remark: Serre says in his paper that “there is every reason to think” that
H∗(X,O) admits reduced Steenrod powers and that the operation β1 coincides
with one of these powers. In the endnotes to his Oeuvres he adds that these
powers indeed have been defined (by Epstein). Malheureusement, I have no idea
what reduced Steenrod powers are.

Case of projective varieties: assuming that X/k is projective (or even com-
plete) much simplifies the preceding section: since then Hq(X,O) is a finite-
dimensional k-vector space, it follows that the filtrations Zq

n and Bq
n must sta-

bilize: we denote by Zq
∞, Bq

∞ their limiting values. In particular, the βq
n = 0

for all n À 0.

We return to the inverse limits of the cohomology groups, which we defined
earlier but said nothing about.

Lemma 33 The inverse limit of exact sequences of finite length modules is
exact.

Applying this lemma to the long exact sequence

. . .Hq(X,WN ) V N

→ Hq(X,WN+n) → Hq(X,Wn)

we get

. . . → Hq(X) V n

→ Hq(X) → Hq(X,Wn)
δq

n→ Hq+1(X) → . . . (4.3)

Take n = 1 in the above. The image of Hq(X) in Hq(X,O) is just Zq
∞ (this

uses the lemma). It follows that X has no torsion in dimension q if and only if
δq
1 = 0 – the other δq

n’s are then automatically zero. For arbitrary n, equation
(9) shows that the image of Hq(X) in Hq(X,Wn) is Hq(X)/V nHq(X). It fol-
lows that Hq(X) = lim

←−n
Hq(X)/V nHq(X); we gather that Hq(X) is complete

and separated for the filtration by powers of V .

Put now T q
n = ker(V n : Hq(X) → Hq(X)); by (9), T q

n is the image of δq
n−1 – so
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it is fair to think of it as torsion – and is a finite length Λ-submodule of Hq(X)
(indeed a Λn-submodule, hence a torsion Λ-module). Evidently T q

n ⊂ T q
n+1,

and a little diagram-chasing shows that T q
n+q/T q

n
∼= Zq−1

n+1/Z
q−1
∞ . In particular,

the T q
n stabilize, and we denote the limit (union) by T q. That T q be zero is

equivalent to X having no torsion in dimension q − 1. Moreover, the length of
T q is preicsely

l(T q) =
∞∑

n=1

l(Zq−1
n /Zq−1

∞ ) =
∞∑

n=1

n · l(Im(βq−1
n )). (4.4)

Proposition 34 Suppose that Hq(X) is a finite-type Λ-module. Then its tor-
sion submodule is T q, and Lq = Hq/T q is a free Λ-module of rank l(Lq/V Lq)+
l(Lq/FLq).

Proof (Does it feel like Iwasawa theory yet?): Let n be such that T q = T q
n . Then

V n = 0 on T q; since FV = p, we conclude that T q is pn-torsion, so that at least
T q is contained in the torsion submodule T ′ of Hq. (We already observed this
above.) Consider now the endomorphism V ′ : T ′/T q → T ′/T q that V induces
on the quotient; by definition of T q, V ′ is injective. But, since Hq is a finite-
type module over the PID Λ, its torsion submodule T ′ is finite-length, and an
injective monomorphism is bijective. So T ′ = V T ′ + T q. Applying V n,

V nT ′ = V n+1T ′ = . . . .

Since ∩V nHq = 0, we get V nT ′ = 0, so T ′ < T q and T q = T ′, proving the
first part of the proposition. For the second, Lq = Hq/T q is obviously free, of
rank equal to the k-dimension of Lq/pLq = Lq/FV Lq. Since V is a semi-linear
isomorphism from Lq to V Lq, we have

dimk(Lq/FV Lq) = l(Lq/V Lq) + l(V Lq/FV Lq) = l(Lq/V Lq) + l(Lq/FLq).

Proposition 35 If Hq/FHq has finite length, Hq has finite type.

Corollary 36 The following are equivalent:
a) Every Hq(X) is a finite-type Λ-module.
b) For all q, Sq = lim

←−n
Hq(X,Wn/FWn) has finite length.

Proof: Passing to the limit over the exact sequence

. . . Hq(X,Wn) F→ Hq(X,Wn) → Hq(X,Wn/FWn) → Hq+1(X,Wn→ . . .

we get the exact sequence

. . .Hq F→ Hq → Sq → Hq+1 → . . . .

If the Hq are finite-type, then Proposition 20 implies that the cokernel of F
has finite length, hence so does its kernel, so Sq has finite length. Conversely,
if Sq has finite length, so does the cokernel of F and we apply the previous
Proposition.
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Corollary 37 If X has neither q − 1 nor q-torsion and

F : Hq(X,O) → Hq(X,O)

is surjective, then Hq is a free Λ-module of rank equal to hq(X,O).

Proof: Since X has no q-torsion, Zq
∞ = Hq(X,O), and the hypothesis on F

implies that F : Hq/V Hq → Hq/V Hq is surjective. By an induction on n,
the same is true for F : Hq/V nHq → Hq/V nHq, and (using our lemma about
inverse limits of finite length modules), we get FHq = Hq. Since X has no
torsion in dimension q − 1 we have T q = 0 and Hq = Lq. By applying the last
two propositions the result follows.

At this point, the reader should suspect that it is not easy to show that the
Hq are, in general, finite-type Λ-modules. Indeed, it’s impossible. Serre first
gave as a counterexample a cuspidal (singular!) curve. Later he gave the more
distressing counterexample of a supersingular abelian surface, which we shall be
discussing presently.

4.4.2 H1 of a normal projective variety

Let A be a perfectly arbitrary commutative ring (not necessarily of characteristic
p) and consider an element α = (a0, . . . , an−1) of Wn(A). To α we associate the
one-form

Dn(α) = dan−1 + ap−1
n−2dan−2 + . . . + apn−1−1

0 da0.

If A has characteristic 0, the components a(0), a(1), . . . a(n−1) are defined, and
we have

Dn(α) =
1

pn−1
da(n−1).

From this we deduce

Dn(α + β) = Dn(α) + Dn(β)

and
Dn(αβ) ≡ Dn(α)bpn−1

0 + apn−1

0 Dn(β) mod p.

By “prolongation of algebraic identities,” we deduce that these equations remain
true in characteristic p, the latter simplifying to

Dn(αβ) = Dn(α) · Fn−1Rn−1β + Fn1Rn−1α ·Dn(β).

In particular, let X be a normal variety and A = Ox be the local ring at some
point x; we get a homomorphism Dn : Wn(Ox) → Ω1

x. If α ∈ FWn(Ox) – i.e.,
if the components of α are pth powers, then evidently Dn(α) = 0. Conversely,
one knows that the relation da = 0 implies that a is a pth power in k(X); more
generally, Dn(α) = 0 implies that each component ai of α is of the form bp

i ,
bi ∈ k(X); but bp

i = a implies bi is integral over Ox, hence itself belongs to
Ox (this is precisely what the assumption of normality is made to ensure). It
follows that the kernel of Dn is FWn(Ox). Sheafifying, we get:
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Lemma 38 The map Dn defines, by passage to the quotient, a monomorphism
of sheaves Wn/FWn ↪→ Ω1

x.

Suppose now that X is projective normal. By the Lemma, H0(X,Wn/FWn) is
a subvector space of the finite-dimensional k-space H0(X, Ω1); we deduce that
dimk H0(X,Wn/FWn) is bounded as n → ∞. Let ν be the maximum value,
and put g = dim Z1

∞ = dim(Im H1 → H1(X,O)).

Proposition 39 The Λ-module H1 = H1(X,W) is a free module of rank at
most g + ν, with equality holding if X has no torsion in dimension 1.

Proof: The H0(X,Wn/FWn) form an increasing sequence of subspaces of H0(X, Ω1),
so there is an integer n0 such that h0(X,Wn/FWn) = ν for all n ≥ n0. From
the exact sequence of sheaves

0 →Wn
F→Wn →Wn/FWn → 0,

we deduce the exact sequence

0 → H0(X,Wn/FWn) → H1(X,Wn) F→ H1(X,Wn).

Since H1(X,Wn) is a finite-length Λ-module, we gather that

`(H1(X,W)n)/FH1(X,Wn)) = ν, n ≥ n0.

Since H1/FH1 = lim
←−

H1(X,Wn)/FH1(X,Wn), one also has `(H1/FH1) ≤ ν,

so that by Proposition 21, H1 is a finite-type Λ-module. Moreover, since there
is no 0-torsion, we have T 1 = 0, whence L1 = H1 and H1/V H1 = Z1

∞; applying
Proposition 20, we get that H1 is Λ-free of rank dim Z1

∞ + `(H1/FH1) ≤ g +
ν, giving the first part of the Proposition. Suppose now that X has no one-
dimensional torsion, so the homomorphisms R : H1(X,Wn+1) → H1(X,Wn)
are surjetive, hence also the quotient maps

R : H1(X,Wn+1)/FH1(X,Wn+1) → H1(X,Wn)/FH1(X,Wn).

But if n ≥ n0 both of sides have length ν, meaning that the map is a bi-
jection. Passing to the limit, one can say the same for the homomorphism
H1/FH1 → H1(X,Wn)/FH1(X,Wn), so`(H1/FH1) = ν. Applying again
Proposition 20 one concludes that the rank of H1 equals g + ν.

Remark: Even when X has one-dimensional torsion, one can calculate the rank
of H1: it is g + ν − `(T 2/FT 2).

4.4.3 Case of algebraic curves

Here X/k will denote a complete, irreducible nonsingular curve over an alge-
braically closed field k of characteristic p > 0. Let K = k(X). We view K as a
constant sheaf on X with O as a subsheaf, getting the Cartier exact sequence

0 → O → K → K/O → 0.
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Since K is constant and X is irreducible, it is flasque, and H1(X,K) = 0; thus
a piece of the long exact cohomology sequence gives

K → H0(X/K/O) → H1(X,O) → 0.

Let R be the algebra of repartitions of X, so that an element r ∈ R is a family
{rx}x∈X(k) with rx ∈ K such that for almost every x, rx ∈ Ox.4 The repartitions
with rx ∈ Ox for all x form a subring R(0), and R/R(0) = H0(X, K/O). We
then regard the above exact sequence as giving an isomorphism

R/(R(0) + K) ∼= H1(X,O). (4.5)

We get now the elegant formulation of Serre duality via residues: the pairing
〈 , 〉 : R×H0(X, Ω1) given by

〈r, ω〉 −
∑

x∈X(k)

resx(rxω)

induces a duality modulo R(0) + K, i.e., exhibits H1(X,O) and H0(X, Ω1 as
dual k-vector spaces.

4.4.4 The Hasse-Witt matrix

The goal is to find the matrix of the semilinear endomorphism F : H1(X,O) →
H1(X,O) with respect to some suitable basis of the (g-dimensional!) vector
space H1(X,O). The first remark is that under the isomorphism of (11), F
corresponds to taking the pth-power in R. On the other hand, using the duality
between R/(R(0) + K) and H0(X, Ω1), there are g points P1, . . . , Pg ∈ X(k)
with corresponding uniformizing parameters t1, . . . , tg, such that the reparti-
tions ri = {ri,x}, ri,x = 0, x 6= Pi, ri,Pi = 1/ti give a basis for R/(R(0) + K).
(One needs only to choose them such that the divisor P1 + . . .+Pg is nonspecial,
i.e. has vanishing H1 in the Riemann-Roch theorem.)

Let A = (aij) be the matrix of F with respect to this basis {ri}g
i=1. By defini-

tion, we have

rp
i
∼=

g∑

j=1

aijrj mod (R(0) + K), 1 ≤ i ≤ g.

So there are global functions gi ∈ K such that

gi ≡ rp
i −

g∑

j=1

aijrj mod R(0).

In other words, each gi is regular away from the Pi and at Pj has principal part
δij/tpj − aij/tj . This recovers the classical definition of the Hasse-Witt matrix

4This construction is due to Chevalley, i.e., the same person who introduced adeles.
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of X.

We will now have use for the notion of a “semilinear Jordan decomposition”;
this goes as follows. Let F be a p-linear endomorphism of a finite dimensional
k-vector space V . There is a canonical direct sum decomposition

V = Vs ⊕ Vn

into F -stable subspaces, such that F is nilpotent on Vn and bijective on Vs.
This is to be thought of as analogous to the linear algebra fact that one can
decompose a linear transformation on a finite-dimensional vector space into a
nilpotent part (corresponding to the zero eigenspace) together with an invert-
ible part (corresponding to everything else). We denote the dimensions of Vs

and Vn by σ(V ), v(V ) respectively. One shows first that Vs possesses a basis
e1, . . . , eσ such that F (ei) = ei for all i; the v ∈ V such that F (v) = v are then
the Z/pZ-span of e1, . . . , eσ; clearly then we get a (finite)elementary p-group
V F of order pσ. From the existence of such a basis, we see that the map 1− F
on V is surjective.

Let V ′ be the dual vector space to V . Then we have F ′, a p−1-linear endo-
morphism of V ′ defined by adjunction:

〈Fv, v′〉 = 〈v, F ′v′〉p, v ∈ V, v′ ∈ V ′.

We get a similar decomposition of the dual space

V ′ = V ′
s ⊕ V ′

n,

such that if {e′i} is the dual basis to {ei}, we have F ′(e′i) = e′i and similarly
V ′F = 〈e′i〉Z/pZ; the groups V F and V ′F are in Pontrjagin duality.

These considerations apply to V = H1(X,O), V ′ = H0(X, Ω1). We write
simply σ, v for σ(V ), v(V ); clearly g = σ + v. In fact the integer σ is just the
rank of the matrix AAp · · ·Apg−1

(so in the elliptic curve case it is just the rank
of A).

Proposition 40 (Cartier) For all m, the image of

Dm : H0(X,Wm/FWm) → H0(X, Ω1)

is equal to the kernel of F ′m.

It follows that, for m À 0, the image of Dm is equal to the nilpotent component
H0(X, Ω1)n, hence has dimension v. It follows that this v coincides with the
ν = max h0(X,Wm/FWm) defined above. Using Proposition 25 (which applies
because curves have no torsion), we conclude:

Theorem 41 The Λ-module H1(X,W) is free of rank g + v = 2g − σ. In
particular, it depends only on the Hasse-Witt matrix of X.
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Example: Let X/k be a genus one curve – i.e., an elliptic curve, since k is
algebraically closed. Then the Hasse-Witt matrix is a scalar, so (for a fixed
elliptic curve; apologies to the mod p modular forms posse) the only basis-
invariant piece of information we can extract is whether or not it is zero. Of
course, the Hasse invariant is zero iff the curve is supersingular, although to
see this involves5 an identification of H1(A,W) with the formal part (i.e., the
nonétale part) of the Dieudonné module. In particular, E/k is supersingular iff
h1(X,W) = 2; ordinarily (pun intended), h1(X,W) = 1.

4.4.5 The case of abelian varieties

This subsection briefly summarizes some results from Serre’s later paper Quelque
propriétés des variétés abéliennes en caractéristique p. As many of these results
are much better known (indeed there is substantial intersection between this pa-
per and the final chapter of Serre’s book Groupes algébriques et corps de classes,
and the complement is now part of the Cartier-Dieudonné theory of p-divisible
groups of abelian varieties).

Let A/k be an abelian variety of dimension d over an algebraically closed field of
characteristic p. The key point is the complete determination of the cohomology
algebra H∗(A) =

∑
n Hn(A,OA), namely it is what you want it to be:

Theorem 42 H∗(A) is the exterior algebra on the k-vector space H1(A,OA),
which is of dimension d.

Concerning the proof we say only this: the hard part is the h1(A,OA) = dim A
part (which is part of the basic work on commutative algebraic groups done by
Rosenlicht in the 1950’s).6 Knowing this, the rest of the theorem is purely alge-
braic, coming down to the fact that H∗(A) has the natural structure of Hopf
algebra.

Another important theorem which is an essentially formal consequence of this
is:

Theorem 43 Abelian varieties have no homological torsion – i.e. the groups
T q = 0, or equivalently the maps R on Witt vector cohomology are all surjective.

Accordingly the formula H1(A,W) = d + ν of the previous section holds. The
quantity ν can be interpreted as promised in the last section: form the “aug-
mented Tate module” Tp(A) = H1(A,W)⊕ Tp,ét(A), where the second term is
the Tate module in the naive sense: i.e., really the inverse limit of the p-power
torsion in A(k). Notice that Tp(A), unlikely-looking agglomeration of dissimilar
objects though it is, is at least a finite free Λ = W (k)-module.

Theorem 44 The rank of Tp(A) is 2d.

5At least, it does for me; there must be more elementary ways to proceed.
6The title of his paper is indeed Some basic theorems on algebraic groups, Am. J. Math.

78 (1956), pp. 401-443.
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Write a for the rank of the étale part of the Tate module – so that e.g. A(k)[p] ∼=
(Z/pZ)a. One knows that – in grave contrast to characteristic zero! – a ≤ d;
when equality holds A is said to be ordinary. We conclude that ν = 2d−a−d =
d− a. In particular, this justifies the claim made in the last section that ν > 0
means that our elliptic curve is supersingular. (But beware: starting in dimen-
sion 2 there is “room” between ordinary varieties and supersingular varieties.)

Serre’s example: Let X = E × E be the square of a supersingular elliptic
curve. It follows from the above discussion that F acts as zero on H1(X,O) =
H1(E,OE)×H1(E,OE) (Kunneth formula!).

Lemma 45 For all n, F acts as zero on H2(X,Wn).

Proof: We shall use the abbreviation Hq
n := Hq(X,Wn); especially, Hq

1 =
Hq(X,OX). Due to the absence of homological torsion, we have a short exact
sequence

0 → Hq(X,Wn−1)
V→ Hq(X,Wn) R→ Hq(X,O) → 0.

We go by induction on n, n = 0 being trivial. Since F and V commute, by
induction F is zero on V H2

n−1. We know that H2
1 has dimension 1, with a

basis being given by cup-product of two elements x, x′ ∈ H1
1 . Choose elements

y, y′ ∈ H1
n such that Rn−1y = x, Rn−1y′ = x′. Since Wn is a sheaf of rings, can

compose with the natural map Wn⊕Wn →Wn (given by the product) to view
the cup product as a law of composition on H∗

n. In particular, we have y.y′ ∈ H2
n

whose image under Rn−1 is x.x′. The Λ-module H2
n is therefore generated by

V H2
n−1 and by y.y′, so it is enough to show that F (y.y′) = 0.

Because of the supersingularity of X, we have Fy = Fy′ = 0 ∈ H1
1 . Using

the exact sequence, there are z, z′ ∈ H1
n−1 such that Fy = V z, Fy′ = V z′.

Since F (y.y′) = Fy.Fy′, we have F (y.y′) = V z.V z′. Using the identity V a.b =
V (a.FRb), we get that

V z.V z′ = V (z · FRV z′);

since FRV = p, we get

F (y.y′) = V z.V z′ = V (pz.z′).

Since z.z′ ∈ H2n−1, it is, by induction, killed by F , and a fortiori by p = RV F ,
so indeed F (y.y′) = 0, completing the proof.

Corollary 46 The Λ-module H2(X,W) is a p-torsion Λ-module which is not
of finite-type.

Proof: Passing to the limit on the above claim, F is zero on H2(X,W). Since
p = FV it follows that H2(X,W) = H2(X,W)[p]. So everything in sight is thus
a k-vector space. But since dimk H2(X,W1) = 1, by induction using the above
exact sequence we have dimk H2(X,Wn) = n. This means that dimk H2(X,W)
is infinite!
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4.5 The Cartier operator on differential forms

The proof of Proposition 26 involves a fundamental operator on differential
forms due to Cartier, valid for varieties of arbitrary dimension. In the case of
curves – which we limit ourselves to at present – it was already anticipated by
Tate.

Let x ∈ X(k) and t ∈ Ox such that dt is nonvanishing at x. The functions
1, t, . . . , tp−1 therefore form a basis for Ox considered as a module over Op

x (a
p-basis – this certainly uses that Ox has dimension one). In other words, every
function f ∈ Ox can be written uniquely as

f = fp
0 + fp

1 t + . . . + fp
p−1t

p−1, fi ∈ Ox. (4.6)

The coefficients fp
i can be written down; they are linear combinations of the suc-

cessive derivatives dkf/dtk, 0 ≤ k ≤ p− 1; in particular fp
p−1 = −dp−1f/dtp−1.

Let ω = fdt be an element of Ω1
x, and put

C(ω) = fp−1dt; (4.7)

the operation C : Ω1
x → Ω1

x just defined is the Cartier-Tate operator. One
shows that it does not depend on the choice of t. Moreover, taking f ∈ K and
not necessarily in Ox, one extends C to an operator defined on all (meromor-
phic) differentials on X.

Proposition 47 (Cartier) a) C(ω1 + ω2) = C(ω1) + C(ω2).
b) C(fpω) = fC(ω).
c) C(df) = 0.
d) C(fp−1df) = df .
e) The sequence 0 →Wm/FWm

Dm→ Ω1
Cm→ Ω1 → 0 is exact for all m ≥ 1.

Proof: The first three parts are immediate from the (well-)definition of C. For
d) see [Tate, Lemma 1]. Now for e): because of b) and d) it is clear that C is
surjective, so we need to show only that ker(Cm) = Im(Dm). For m = 1 this
means that C(ω) = 0 implies that ω = df , which is clear from (12) and (13), as
we can integrate both perfect pth powers – d(gpt) = d(gp)t + gpdt = gpdt – and
powers of t up to tp−2 (but not tp−1!) Then we can reason by induction on m,
using the formula

CDmα = Dm−1Rα, α ∈ Wm. (4.8)

Because of (14), Im(Dm) ⊂ Ker(Cm). Conversely, if ω ∈ Ω1
x is such that

Cm(ω) = 0, then by the induction hypothesis there exists β ∈ Wm−1(Ox) such
that Dm−1β = C(ω). Choose α ∈ Wm(Ox) such that Rα = β, (14) gives
C(ω − Dmα) = 0, so ω − Dmα = df ; putting α′ = α + V m−1f , we have
ω = Dmα + df = Dm(α′−V m−1f) + df = Dmα′− df + df = Dmα′, completing
the proof.

Proposition 48 The homomorphism C : H0(X, Ω1) → H0(X, Ω1) coincides
with the transpose F ′ of F .
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Proof: We must show that if ω is a differential form and r is a repartition, that
we have

〈rp, ω〉 = 〈r, Cω〉p.
Using the residue characterization of the duality pairing, this becomes:

∑

x∈X(k)

resx(rp
xω) =

∑

x∈X(k)

resx(rxCω)p,

which in turn is a consequence of the following (easy) formula:

resx(π) = resx(Cπ)p

valid for any differential π.

Notice that Proposition XX is an immediate consequence of Proposition 33e)
and Proposition 34.

Remark: The proper generalization of the Cartier operator to varieties of
arbitrary dimension involves closed differential forms, a condition which we do
not see in dimension 1.

4.5.1 Divisor classes of order p

Let Pic X denote the group of divisor classes on X (i.e., divisors modulo lin-
ear equivalence); let J(X) denote the image of the degree zero divisors, and
J(X)[p] = (Pic X)[p] < J(X) the p-torsion subgroup.

Proposition 49 The group J(X)[p] is canonically isomorphic to the additive
group of global differentials ω ∈ H0(X, Ω1) satisfying C(ω) = ω. In particular,
J(X)[p] is a finite group of order pσ, σ the “invertible dimension of F ′ on
H0(X, Ω1).

Proof: First we define a mapping θ : J(X)[p] → H0(X, Ω1). For d ∈ J(X)[p],
let D be a representative divisor; since pd = 0, there is a function f 6= 0 such
that pD = (f). Put ω := df/f , the “logarithmic differential” of f . A miracle
occurs: if we change D to an equivalent divisor D + (g), this multiplies f by
gp, hence does not change df/f (don’t try this in characteristic zero!); hence
df/f is actually an invariant of d, say θ(d). It remains to be checked that df/f
is globally regular (as they used to say, a differential of the first kind). Take
x ∈ X(k); the equation pD = (f) shows that we can write f = tpu, where
u ∈ O×x (think of a divisor as a Cartier(!) divisor), so df/f = du/u which is
regular at x. Therefore we have indeed defined a map θ : J(X)[p] → H0(X, Ω1),
which is immediately checked to be a monomorphism of groups (if d 6= 0, f is
not itself a pth power, so df/f 6= 0). Using the formulas of Proposition 33, we
have

C(df/f) = C(fp−1df/fp) = C(fp−1/df)/f = df/f.

Convesely, a differential form such that C(ω) = ω is of the form df/f by a
theorem of Jacobson; if ω is regular, the order of f at any point of X is divisible
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by p, so that (f) = pD, so that ω = θ(d), completing the proof.

Remarks: Since logp #J(X)[p] = a, the a-number of the Jacobian variety X
discussed above, this recovers the numerology ν +a = d (following Theorem 30)
in the case of Jacobian varieties.

This last proposition extends to varieties of arbitrary dimension.

4.5.2 Cyclic-pn-coverings of algebraic varieties

4.5.3 Basic facts about the quotient of a variety by a finite
group of automorphisms

Let Y/k be an algebraic variety (we do not need to assume that k is alge-
braically closed) and G ≤ Aut(Y/k) a group of automorphisms. In general,
trying to construct the quotient Y/G is quite a delicate matter belonging to the
realm of geometric invariant theory. When G is finite, this is supposed to be
easy. Let’s briefly review the construction (cf. [GACC]).

We make the technical assumption (A) that every orbit of G is contained in
an affine open of Y . This is automatically true if Y is quasiprojective – it
is a basic fact that every finite set is contained in an affine subset. Write
π : Y → Y/G = X the projection map. We define OX = π∗(OY ). The basic
fact is that (X,OX) is an algebraic variety and Y → X is a morphism. One sees
this by glueing, reducing to the case of an affine variety, where one sees things
contravariantly: if Y = SpecB, then X = Spec A, where A = BG. One needs
only check that the invariants of a finite-type reduced k-algebra under a finite
group are finite-type reduced.

One has (as one wants) that Y/G is complete (resp. affine) iff Y is complete
(resp. affine). (No such luck for arbitrary quotients; think of modding out GLn

by a Borel subgroup.)

One says that π : Y → X is a covering if G acts without fixed points. (Equiv-
alently, π is a finite étale map!) We do not recopy the general facts about
coverings, which can be found discussed at more length in [GACC].

4.5.4 G = Z/pZ
Let π : Y → X be an unramified Galois covering with group G = Z/pZ = Fp.
There is a natural embedding ϕ : G ↪→ (the additive group of k). We may
view π as a principal G-bundle on X – a priori in the flat topology, but (by
descent!), H1

fl(X, ) = H1
ét(X, ) = H1

Zar(X, ) = H1(X,OX). It follows that, via
ϕ each G-covering of X gives an element of H1(X,OX). Writing π1(X,G) for
the set of all G-coverings, we get a map f1 : π1(X,G) → H1(X,OX).
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Proposition 50 The map f1 is an isomorphism onto the Frobenius-invariant
subspace H1(X,OX)F .

Proof (not quite the one given by Serre): Take the cohomology of the Artin-
Schreier sequence of étale sheaves on X:

0 → G →F−1→ → 0.

We use that H1(X,G) = π1(X,G).

Corollary 51 The dimension σ of the semisimple component H1(X,O)s of
H1(X,O) is such that π1(X,Z/pZ) is a finite group of order pa.

Corollary 52 A variety of dimension at least 2 which is a complete intersection
does not admit a (connected!) cyclic p-covering.

Proof: In characteristic zero, we “already know this,” since by the Lefschetz
hyperplane theorem any d-dimensional complete intersection V ⊂ PN has ho-
motopy groups π1(V (C)) = π1(Pn(C)), . . . , πd−1(V (C)) = πd−1(C), so in partic-
ular is simply-connected in dimension at least 2. Notice in this case that Hodge
theory entails 0 = b1(V ) = 1/2h1,0 = 1/2h0,1, so that we have H1(X,O) = 0.
Serre showed [FAC, SS78] in arbitrary characteristic (i.e., purely algebraically)
that complete intersections in dimension at least 2 have H1(X,O) = 0 (and the
higher-dimensional analogues implied in the complex case by the vanishing of
the higher Betti numbers in the appropriate range, as above). Variant: Serre
gives a different proof of Proposition 36 that seems closer to our purposes. It is
based on the following

Lemma 53 Let X/k be a variety over an algebraically closed field k, G a finite
group, Y → X a G-covering, and x ∈ X(k). Let O′x ⊂ K(Y ) be the ring of
germs of functions regular at all points y ∈ π−1(x) of the fibre over x. This is
a semilocal ring and

H0(G,O′x) = 0, Hi(G,O′x) = 0, (i > 0).

Proof: It is clear from the quotient construction that the G-invariant functions
on O′y are just Ox. O′x is visibly semilocal, with localizations Oy, the local
rings at y ∈ π−1(x). It follows that the completion Ô′x ∼= ∏

y Ôy. Since G

acts without fixed points on the fibre over x, it follows that as G-module Ô′x is
induced from the e-module Ôx. So Ô′x is acyclic for G-cohomology by Shapiro’s
Lemma. On the other hand, since O′x is a finite-type Ox-module, we have

Ô′x = O′x ⊗ Ôx.

Moreover, since completion is flat, we deduce that

Hq(G, Ô′x) = Hq(G,O′x)⊗ Ôx,
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and we conclude that therefore Ox is itself acyclic for G-cohomology.

We return now to the case of G = Z/pZ, and we will give a “Hilbert 90”
treatment of Artin-Schreier theory. Namely, the function 1 ∈ O′x has trace zero,
so H1(G,O′x) = 0 implies (by the computation of H1 of a finite cyclic group
as the kernel of the “norm” map modulo the image of the augmentation ideal)
that there is θ ∈ O′x such that

θσ = θ + 1,

where G = 〈σ〉. If Y → X is irreducible, θ gives a generator of k(Y )/k(X). Now
the construction of the associated cohomology class presents no more difficulties:
take an open cover {Ui} of X and functions θi regular on each Vi = π−1(Ui),
and put fij := θi−θj on Vi∩Vj . Then the fij are G-invariant, so give a cocycle
with values in OX . To see that this coycle is F -invariant, we need only remark
that the gi = θp

i − θi are G-invariant, hence form a 0-cochain on Ui with values
in O, whose coboundary is fp

ij − fij .

4.5.5 G = Z/pnZ
Take now G = Z/pnZ; we may identify G with the group Wn(Fp). Since Fp ↪→ k,
by functoriality we have G ↪→ Wn(k). The latter is an algebraic group; indeed
it is a commutative unipotent group – repeated extension of – which is not
isomorphic to n. This can only happen in characteristic p and conversely any
commutative unipotent group over k is isomorphic to a product of Wn(k)’s. In
this case, we need to know that the descent argument performed earlier for
continues to hold for any commutative solvable linear group (Namely, that flat
morphisms with fibres isomorphic to G are in fact Zariski-locally trivial. This is
rather delicate: it holds for GLn as well – so that vector bundles can be defined
Zariski locally – but most definitely not for PGLn, so that the Brauer group
must be defined in terms of flat (= étale, here) cohomology.) Having said this,
we get a homomorphism

f1 : π1(X,Z/pnZ) → H1(X,Wn),

for which we have the following analogue of Proposition 26:

Proposition 54 If X is projective, f1 gives an isomorphism onto H1(X,Wn)F .

The proof equally well uses the short exact sequence of étale sheaves

0 → G →Wn
F−1→ Wn → 0.

Now wriete Gk = Z/pkZ. For n ≥ m, we have the canonical homomorphism
Gn → Gm, whence a homomorphism π1(X,Gn) → π1(X, Gm), and we want to
know the image of this homomorphism.

Proposition 55 Let α be an element of π1(X, Gm) with corresponding coho-
mology class ξ = f1(α). Then α lies in the image of π1(X,Gn) iff the connecting
map δ1

n,n−m = 0.
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We need the following lemma:

Lemma 56 Let H be a finite-length Λ-module, and F a p-linear endomorphism
of H. The map ρ = F − 1 : H → H is surjective.

Proof: There is some n such that pnH = 0. We go by induction on this n. If
n = 1, H is a k-vector space of finite dimension, and we have already seen that
in this situation the map ρ is surjective. The general case follows by induction
(dévissage) applied to pH and H/pH.

Now we can give the proof of the proposition: if α is the image of an ele-
ment β ∈ π1(X, Gn) corresponding to a cohomology class η ∈ H1(X,Wn)F ,
and one sees immediately that ξ = Rn−mη, so that δ1

n,n−m(ξ) = 0. Conversely,
if ξ ∈ H1(X,Wn)F satisfies δ1

n,n−m(ξ) = 0, then by definition of the Bockstein
operator we may write ξ = Rn−m(η′) with η′ ∈ H1(X,Wn). Moreover, the
relation Fξ = ξ implies that Rn−m(Fη′ − η′) = 0, i.e., Fη′ − η′ = V mθ with
θ ∈ H1(X,Wn−m). Applying the preceding lemma to H1(X,Wn−m), we may
write θ = Fθ′ − θ′, and putting η := η′ − V mθ′, we get a Frobenius-invariant
element restricting to ξ.

Corollary 57 If X has no torsion in dimension one, the group π1(X, Gn) is
the direct sum of σ isomorphic copies of Gn = Z/pnZ.

Proof: Write Hn for π1(X, Gn) viewed as a subgroup of H1(X,Wn); the previ-
ous proposition together with the lack of one-dimensional torsion ensures that
Rn−1 : Hn → H1 is surjective. Its kernel is clearly V Hn−1. By induction on n,
we deduce from this that Hn is a finite group of order pnσ; since it is embedded
in H1(X,Wn) we have pnHn = 0. Moreover the composite

Hn
R→ Hn−1

V→ Hn

is multiplication by p; since R is surjective, Hn−1 = pHn and hence Hn/pHn =
H1 has pσ elements. This shows that Hn is the direct sum of σ cyclic groups of
order pn.

Remark: Even when X does have one-dimensional torsion, one can still give
an explicit formula for π1(X, Gn), albeit a more complicated one. The result is:
let Z1

m be the vector subspaces of H1(X,O) defined above. Let σm be the di-
mension of the semisimple component of Z1

m/Z1
m+1, and let τ be the dimension

of the semisimple component of Z1. Define a finitely generated abelian group
H as follows:

H =
∑

m = 1∞(Z/pmZ)σm + Zr.

Then π1(X,Z/pnZ) ∼= Hom(H,Z/pnZ).
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4.5.6 Curves and Jacobians

Let φ : X → J(X) be “the” “canonical” map from a curve into its Jacobian7.
By a result of Rosenlicht, the homomorphism

φ∗ : H1(J,OJ) → H1(X,OX)

is bijective. It follows therefore that

φ1 : π1(J,Z/pZ) → π1(X,Z/pZ)

is also bijective – every unramified Z/pZ-cover comes from the Jacobian.

4.5.7 Serre’s Example

We have the following “classical” construction:

Theorem 58 Let G be a finite group, r a positive integer and k an(y) alge-
braically closed field. There exists an algebraic variety Y/k of dimension r,
which is a nonsingular complete intersection, and such that G acts upon Y
without fixed points. If r = 2 and G = Z/pZ with p ≥ 5, one can take Y to be
a (hyper)surface in P3.

We omit the proof for now, but note the following interesting consequence:

Corollary 59 Let k be any algebraically closed field. Then every finite group
occurs as the algebraic fundamental group of a nonsingular projective variety of
every dimension at least 2. In particular, taking k = C, every finite group is the
(’etale = classical) fundamental group of a compact Kahler surface.

Proof: As mentioned above, a complete intersection of dimension at least 2 is
simply connected, so π1(Y/G) = G.

Finally, Serre gives an example of a surface with h1,0 + h0,1 > b1:

Theorem 60 Let G = Z/pZ with p ≥ 5, and let k be an algebraically closed field
of characteristic p. Let Y/k be the surface in P3 whose existence is guaranteed
by the previous theorem; take X := Y/G. Then X/k is a nonsingular surface
with h1,0 = 0, h0,1 > 0, b1 = 0.

Proof: The covering Y → X gives a nontrivial element of π1(X, G) = H1(X,O)F ,
so indeed h0,1(X) > 0. On the other hand by Serre duality, h1,0(Y ) = h2,1(Y ) =
dim H1(Y, ωY ), and since ωY = O(n) is some multiple of the hyperplane section
(precisely n = d − 4, where d is the degree), it follows from [Hartshorne, Ex.

7There are quotation maps because: one needs to choose a point of X to send to 0 in
order to define the map; because of this, if k is not algebraically closed, there may well be
no nontrivial morphism X → J(X) (e.g. a genus one curve without a rational point). The
map which is canonical (hence rationally defined) is Div0(X) → J(X); from this perspective,
the map X → J(X) involves a choice of trivialization of the principal homogeneous space
Div1(X) of Div0(X), which is possible if and only if X has a degree one k-rational divisor.
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3.5.5] that this dimension is zero, i.e., H0(Y, ΩY ) = 0. It is a standard fact –
e.g., use [Hartshorne, Prop. 2.8.11] – that since Y → X is a surjective map, the
pullback on differentials is injective, so a fortiori H0(X, ΩX) = h1,0(X) = 0. (In
this case, Y → X is a finite étale map, so indeed ΩY/X = 0 and the pullback is a
prori an isomorphism.) Finally, since as discussed above Y is simply connected,
π1(X) = Z/pZ so b1(X) = 0, where b1(X) = h1(Xét,Ql) for any l 6= p. (One
knows that

b1(X) = dimQ((π1(X)/[π1(X), π1(X)])⊗Z Q),

just as in the topological case.) So we have the inequality h1,0 + h0,1 > b1. One
can check that h0,1 = 1. In summary, despite the vanishing of the Albanese and
Picard varieties (which “comes from characteristic zero”), we have nontrivial
H1(X,OX), whereas in characteristic 0 the canonical map H1(A(X),OA(X)) →
H1(X,OX) is always an isomorphism – indeed over C the Picard variety is just
the complex torus H1(X,OX)/H1(X,Z) arising from the cohomology of the
exponential sequence

0 → Z exp→ OX → O×X → 0!
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