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In this lecture, we define the cohomology groups of a topological space X
with coefficients in a sheaf of abelian groups F on X in terms of the derived
functors of the global section functor Γ(X, · ). Then we introduce Čech coho-
mology with respect to an open covering of X, which permits to make explicit
calculations, and discuss under which conditions it can be used to compute sheaf
cohomology.

1 Derived functors

We first need to review some homological algebra in order to be able to define
sheaf cohomology using the derived functors of the global sections functor.

Let A be an abelian category, that is, roughly, an additive category in which
there exist well-behaved kernels and cokernels for each morphism, so that, for
example, the notion of an exact sequence in A makes sense.

If X is a fixed object in A and Ab denotes the category of abelian groups,
then we have a contravariant functor

Hom( · , X) : A −→ Ab.

It is readily seen to be left exact, that is, for any short exact sequence

0 −→ A
f−→ B

g−→ C −→ 0

in A , the sequence

0 −→ Hom(C, X)
g∗−→ Hom(B,X)

f∗−→ Hom(A,X)

is exact in Ab.

Definition 1.1. An object I of A is said to be injective if the functor Hom( · , I)
is exact.
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Since Hom( · , I) is always left exact, we see that an object I of A is injective
if and only if for each exact sequence 0 → A → B and morphism A → I, there
exists a morphism B → I making the following diagram commute.

0 // A //

²²

B

ÄÄ~
~

~
~

I

That is, morphisms to an injective defined on a sub-object A can always be
extended to the whole object B.

Definition 1.2. An abelian category A is said to have enough injectives if each
object of A can be embedded in an injective object.

This is equivalent to saying that each object A of A admits an injective
resolution, that is, a long exact sequence

0 −→ A −→ I0 −→ I1 −→ I2 −→ · · ·

where each Ii is injective. To see this, first embed A in an injective I0, then
embed the cokernel of the inclusion ε : A → I0 in an injective I1, and take for
I0 → I1 the composite I0 → Coker ε → I1, and so on.

Definition 1.3. A (cochain) complex A• in an abelian category A is a collection
of objects Ai of A , i ∈ Z, together with morphisms di : Ai → Ai+1 such that
di+1 ◦ di = 0 for all i. The maps di are called the differentials or coboundary
maps of the complex A.

To any complex A• in A one can associate a complex H•(A•) with zero
differential, called the cohomology of A•, by defining for each i ∈ Z

Hi(A•) := Ker di/Im di−1

(the condition that di ◦ di−1 = 0 ensures that this definition makes sense).
A morphism of complexes f : A• → B• is a collection of maps f i : Ai → Bi

which commute with the differentials, i.e. that make the following diagram
commutative.

· · · // Ai−1
di−1

//

fi−1

²²

Ai
di

//

fi

²²

Ai+1 //

fi+1

²²

· · ·

· · · // Bi−1

di−1
// Bi

di

// Bi+1 // · · ·
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Any such morphism induces a morphism

H•(f) : H•(A•) → H•(B•)

on the cohomology, defined on Hi(A•) by

Hi(f)(a + Im di) := f i(a) + Im di.

Thus, we may think of H• as a functor on the category of complexes in A . One
of the main properties of this functor is the following.

Proposition 1.4. Let A be an abelian category and

0 −→ A• −→ B• −→ C• −→ 0

a short exact sequence of complexes in A . Then we get a natural long exact
sequence

0 → H0(A•) → H0(B•) → H0(C•) → H1(A•) → H1(B•) → H1(C•) → . . .

in cohomology.

Proof. Use the “snake lemma” (e.g. [W, Th. 1.3.1]).

Definition 1.5. Two morphisms of complexes f, g : A• → B• are homotopic if
there exists a k : A• → B• of degree −1 such that f − g = dk + kd.

Note that k is simply a collection of morphisms from Ai → Bi−1 for each
integer i. It is direct to see that if f and g are homotopic, they induce the same
morphism on the cohomology, i.e. H•(f) = H•(g).

Now, let’s write an injective resolution

0 −→ A −→ I0 −→ I1 −→ I2 −→ · · ·
as 0 → A → I•, where we think of I• as a complex which is 0 in negative
degrees.

Let A be an abelian category with enough injectives and F : A → B an
(additive) covariant left exact functor.

Choose an injective resolution 0 → A → I• of each object A of A . Then
forget A itself to retain only the complex I•. If we apply F we still get a complex
F (I•), so that we can define

RiF (A) := Hi(F (I•)).

The key point which makes this definition work is the following lemma, which
relies on the property of being injective.
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Lemma 1.6. Let 0 → B → I• be an injective resolution of an object B and
0 → A → J• any resolution of A. Then any morphism f : A → B induces a
morphism of complexes f• : J• → I•, which is unique up to homotopy.

This implies, first of all, that any two injective resolutions 0 → A → I• and
0 → B → J• of the same object A are homotopy equivalent, thus it is also the
case for the complexes F (I•) and F (J•), which guarantees that

Hi(F (I•)) ∼= Hi(F (J•))

for all i. This means that RiF (A) is well defined (up to canonical isomorphism).
Second, any morphism f : A → B in A induces a morphism of complexes

f• : I• → J• between injective resolutions, so that we get a morphism

RiF (f) := Hi(F (f•)) : RiF (A) −→ RiF (B)

at the level of cohomology.

Proposition 1.7. If A has enough injectives and F : A → B is a left exact
functor, then for each i ≥ 0

RiF : A −→ B

as defined above is an additive functor, called the ith right derived functor of F.
Moreover, R0F ∼= F , and each short exact sequence

0 −→ A −→ B −→ C −→ 0

in A induces a natural long exact sequence

0 → F (A) → F (B) → F (C) → R1F (A) → R1F (B) → R1F (C) → · · ·

in B.

Proof. The fact that each RiF is an additive functor follows from Lemma 1.6.
To verify that R0F ∼= F , choose an injective resolution

0 −→ A
ε−→ I0 d0

−→ I1 −→ · · ·

of A. Since F is left exact, we know that

0 −→ F (A)
F (ε)−→ F (I0)

F (d0)−→ F (I1)

is still exact. Thus we find that

R0F (A) = Ker F (d0)/Im 0 = Ker F (d0) = Im F (ε) ∼= F (A).
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Similarly, if f is a morphism in A , it is easy to verify that R0F (f) corresponds
to F (f) via this isomorphism.

Now, let
0 −→ A −→ B −→ C −→ 0

be any short exact sequence in A . Choose injective resolutions 0 → A → I•

and 0 → C → K•. Then, the “horseshoe lemma” (see e.g. [W, Th. 2.2.8])
implies that there exists an injective resolution 0 → B → J• of B so that our
short exact sequence induces a short exact sequence of complexes

0 −→ I• −→ J• −→ K• −→ 0.

Applying F , this sequence remains exact (because the Ii’s are injective), and
the short exact sequence of complexes

0 −→ F (I•) −→ F (J•) −→ F (K•) −→ 0

induces in cohomology the appropriate long exact sequence using Proposition
1.4 and the fact that R0F ∼= F just proved.

Proposition 1.8. If F : A → B is any left exact functor and I is injective,
then RiF (I) = 0 for all i > 0.

Proof. Use the injective resolution 0 → I → I → 0 to compute RiF (I).

Remark 1.9. The collection of functors {RiF} forms what is called a δ-functor.
Let A and B be abelian categories. A (covariant) δ-functor from A to B is a
collection of (covariant) functors {F i} for each i ≥ 0 such that a short exact
sequences of objects (functorially) gives rise to a long exact sequence as in
Proposition 1.7. (The name δ-functor relates to the connecting homomorphisms
in the long exact sequence, which are often denoted by δ).

A δ-functor {F i} is universal if for any other δ-functor {Gi}, any morphism
F 0 → G0 can be uniquely completed to morphisms F i → Gi, commuting with
δ. Therefore, there is at most one universal δ-functor which in degree 0 is a
given functor.

If the covariant δ-functor {F i} has the property that for any object A of A
there is some monomorphism u : A → M such that F i(u) = 0 for all i > 0, then
{F i} is universal. This implies that the right derived functors of a left exact
covariant functor form a universal δ-functor (since one can take u to be the
injection of A in an injective object, as A has enough injectives). In particular,
if A has enough injectives, and {Gi} : A → B is a universal δ-functor such that
G0 is left exact, then we have Gi = RiG0.

5



Remark 1.10. If F is exact, then RiF (A) = 0 for any A and i > 0. Indeed,
if we choose an injective resolution 0 → A → I•, the complex F (I•) is exact in
degrees i > 0 since F is exact, thus RiF (A) = Hi(F (I•)) = 0 for i > 0.

Definition 1.11. An object A of A is F -acyclic if RiF (A) = 0 for all i > 0.

In particular, it implies that if 0 → A → B → C → 0 is exact and A is
F -acyclic, then 0 → F (A) → F (B) → F (C) → 0 is exact.

We’ve just seen that injectives are F -acyclic for any left exact functor F . We
know that we can compute the derived functors RiF using injective resolutions,
but it is sometimes useful to use resolutions which are more adapted to F .

Proposition 1.12. If 0 → A → J• is an F -acyclic resolution of A then there
exists a natural isomorphism RiF (A) ∼= Hi(F (J•)).

Proof. The case i = 0 follows from the left exactness of F . For i > 0 this can
be proved by induction using a “dimension shifting” argument. The long exact
sequence of the resolution 0 → A → J• can be decomposed into a short exact
sequence 0 → A → J0 → B → 0, and a resolution 0 → B → J1 → J2 → ...
which we denote by 0 → B → K•. Writing the corresponding long exact
sequence for the first short exact sequence, and using the F -acyclicity of each Ji

we get natural isomorphisms Ri−1F (B) ∼= RiF (A) for all i ≥ 1. By induction
hypothesis

RiF (A) ∼= Ri−1F (B) ∼= Hi−1(F (K•)) ∼= Hi(F (J•)).

Now assume i = 1. From the above short exact sequence we get an exact
sequence 0 → F (A) → F (J0) → F (B) → R1F (A). On the other hand, by
left exactness of F we know ker(F (J1) → F (J2)) = F (B). Therefore we have
natural isomorphisms

H1(J•) ∼= ker(F (J1) → F (J2))/Im (F (J0) → F (J1))
∼= F (B)/Im (F (J0) → F (B))
∼= R1F (A).

This completes the proof.

2 Sheaf cohomology as derived functor

We want to define the cohomology groups of a sheaf by taking the derived
functors of the global sections functor. In order to be able to do this, we must
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first ensure that the global sections functor Γ is left exact and that the category
Ab(X) has enough injectives. we will do so more generally for any ringed space.

Let (X,OX) be a ringed space (that is, OX is a sheaf of rings on the topo-
logical space X), and consider the abelian category Mod(X) of OX -modules on
X.

Remark 2.1. Note that if we take OX to be the constant sheaf Z, then Mod(X)
becomes just the category Ab(X) of sheaves of abelian groups on X.

Let R denote Γ(X,OX).

Proposition 2.2. The functor of global sections Γ(X, · ) : Mod(X) −→ ModR

is left exact.

Proof. Recall that in the category Mod(X) of sheaves, kernels are defined as
ordinary kernels in the category of presheaves, but images are defined as the
sheafification of images as presheaves.

Let 0 −→ F f−→ G g−→ H −→ 0 be a short exact sequence of OX -modules.
We prove that

0 −→ F(X)
fX−→ G(X)

gX−→ H(X)

is exact. At the first place we have Ker fX = (Ker f)(X) = 0 since Ker f = 0.
In the middle, it is clear that Im (fX) ⊂ Ker (gX). Any section s in G(X) which
maps to 0 in H(X) is by definition locally a section of F on X. But F is a sheaf
on X and hence s is a section in F(X).

Remark 2.3. On the category of presheaves, the global sections functor is
exact, thus it cannot yield any interesting derived functor.

Recall that if f : X → Y is a continuous map of ringed spaces, then we get
two functors

f∗ : Mod(X) −→ Mod(Y ) and f∗ : Mod(Y ) −→ Mod(X).

If F ∈ Mod(X), its direct image f∗(F), defined by

f∗(F)(U) := F(f−1(U)),

has a natural OY -module structure.
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On the other hand, if G is an OY -module, then we define its inverse image

f∗(G) := f−1(G)⊗f−1(OY ) OX ,

where f−1 is the inverse image functor at the level of sheaves of abelian groups,
defined by

f−1(H)(U) := lim←−
V⊇f(U)

H(V ).

One of the main properties of these functors is that they form an adjoint
pair, that is, for each OX -module F and OY -module G, there is a natural
isomorphism

HomOX
(f∗G,F) = HomOY

(G, f∗F).

In particular, corresponding to the identity maps

f∗G −→ f∗G and f∗F −→ f∗F ,

there exists natural maps

G −→ f∗f∗G and f∗f∗F −→ F .

Remark 2.4. We can give an alternate proof of Proposition 2.2 using the fact
that if f : X → {∗} is the unique map from X to a space consisting of a single
point, by identifying Mod({∗}) with ModR, we see that f∗ = Γ(X, · ) and that
f∗ is the constant sheaf functor.

The result then follows using the general fact that a right adjoint functor is
always left exact (see [W, Th. 2.6.1]).

Proposition 2.5. If R is a commutative ring with identity, then the category
ModR of R-modules has enough injectives.

For a proof, see e.g. [G, Theorem 1.2.2].

Proposition 2.6. If (X,OX) is a ringed space, then the category Mod(X) of
OX-modules has enough injectives.

Proof. Let F be an OX -module. For any point x ∈ X we let Fx denote the stalk
of F at x, and fix an inclusion Fx ↪→ Ix of Fx in an injective OX,x-module. The
idea is to construct a sheaf of discontinuous sections whose stalks are Fx. Let
I be the sheaf defined by I(U) = Πx∈UIx. Then there is clearly an injection of
F into I via the above fixed inclusions. We need to show that I is injective.
To give a morphism from a sheaf A to I is equivalent to giving a collection
of morphisms from Ax to Ix for every x ∈ X. Let A ↪→ B be an inclusion

8



of sheaves, and f : A → I a morphism. Then every fx : Ax → Ix can be
extended to a morphism gx : Bx → Ix, since Ix is injective. The collection of
the morphisms gx then give a morphism g : B → I which extends f . This proves
the injectivity of I.

Remark 2.7. This proof can be reformulated in a purely formal way using
the formalism of the functors f∗, f∗. If x ∈ X, let jx : {x} → X denote the
inclusion. Then the sheaf I constructed above is just

∏
x∈X(jx)∗Ix, so that for

any OX -module G, we have, using the adjointness property,

Hom(G, I) =
∏

x∈X

Hom(G, (jx)∗Ix) =
∏

x∈X

Hom((jx)∗G, Ix) =
∏

x∈X

Hom(Gx, Ix).

This implies that I is injective, since the functor Hom( · , I) is a composition
of exact functors, and that F embeds in I.

Corollary 2.8. The category Ab(X) has enough injectives.

Now we define the derived-functor sheaf cohomology.

Definition 2.9. Let Γ = Γ(X, · ) : Ab(X) → Ab be the global sections functor.
Let F be a sheaf of abelian groups on X. Then for each i ≥ 0, the i-th derived
functor cohomology group of F is defined as Hi(X,F) = RiΓ(F).

Remark 2.10. By Remark 1.9 the collection of functors Hi(X, · ) forms a uni-
versal δ-functor on Ab(X). This can be used, for instance, to prove equivalence
of cohomology theories. If Hi(X, · ) is another cohomology theory such that
{Hi} form a universal δ-functor, and such that H0 = Γ, then we have the
equality Hi(X,F) = Hi(X,F) for all sheaves F . Variations of this argument
are quite useful in proving theoretical results about sheaf cohomology.

As an immediate result of the above definition, if I is an injective object in
Ab(X), then Hi(X, I) = 0 for all i > 0.

If (X,OX) is a ringed space, a similar definition of cohomology functors
could be given for Mod(X). In what follows we will show that this gives the
same cohomology groups as above (by forgetting the OX -module structure),
though it endows the cohomology groups with extra structure.

Definition 2.11. A sheaf of abelian groups F on a topological space X is called
flasque (or flabby) if for any inclusion of open sets U ⊆ V , the restriction map
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F(V ) → F(U) is surjective.

Equivalently, a sheaf F is flasque if and only if for all open sets U of X, the
restriction map F(X) → F(U) is surjective. That means that any local section
of F can be extended to a global section. First we show that that flasque sheaves
have no cohomology except in dimension 0. First a couple of lemmas.

Lemma 2.12. If 0 → F ′ → F → F ′′ → 0 is an exact sequence of sheaves and
F ′ is flasque, then for each open U of X, the sequence 0 → F ′(U) → F(U) →
F ′′(U) → 0 is exact.

Proof. We can assume U = X. Let s′′ ∈ F ′′(X). We need to show that it can
be represented by a section of F on X. Consider all pairs (V, s) such that s is a
section of F on an open V which represents s′′, with the natural ordering. Let
(V0, s0) be a maximal element. If V0 is not X, we can find a nonempty open
V1 which doesn’t lie inside V0 and a section s1 in F(V1) which represents s′′.
On V1 ∩ V0, the section s1 differs from s0 by an element of F ′(V1 ∩ V0) which
by flasqueness of F ′ can be extended to V1. So we can modify s1 (using this
extended section) to agree with s0 on U0 ∩U1. This contradicts the maximality
of (V0, s0) and proves our claim.

Lemma 2.13. If 0 → F ′ → F → F ′′ → 0 is an exact sequence of sheaves and
F ′ and F are flasque sheaves, then so is F ′′. In other words, the quotient of a
flasque sheaf by a flasque subsheaf is a flasque sheaf.

Proof. Let U be an open subset of X. By the above lemma, any section s′′

in F ′′(U) is represented by a section s in F(U) which can be extended to the
whole space X.

Lemma 2.14. Let (X,OX) is a ringed space. Any injective OX-module is
flasque.

Proof. Let I be an injective OX -module. For any open U , let OU denote the
subsheaf of OX ,which is the extension by zero of OX outside U . Any section
s in I(U) gives a morphism from OU to I, which by injectivity of I can be
extended to a morphism from OX to I. This morphism gives a section of I(X)
extending s.

10



Proposition 2.15. If F is a flasque sheaf, then Hi(X,F) = 0 for all i > 0,
i.e. flasque sheaves are acyclic for the global sections functor Γ(X, · ).

Proof. We embed F in an injective object I ∈ Ab(X) and let G be the quotient.
This gives a short exact sequence

0 → F → I → G → 0.

By the last Lemma above, I is injective and hence flasque. By the second
Lemma, since both F and I are flasque so is G. By the first Lemma

0 → F(X) → I(X) → G(X) → 0

is exact. Since I is injective in Ab(X), we know Hi(X, I) = 0 for all i > 0.
Putting these facts together, and writing the long exact sequence of cohomology,
we get that H1(X,F) = 0 and Hi(X,F) ∼= Hi−1(X,G) for all i ≥ 2. Since G is
also flasque, we get the result by induction on i.

Remark 2.16. Since every sheaf has an injective resolution, and any injective
sheaf is flasque, we know there are flasque resolutions for any sheaf. But more
explicitly, one can use an argument as in Proposition 2.6 to embed F in the
sheaf of discontinuous sections of F . This is the sheaf whose sections on U are
given by Πx∈UFx. It is easy to see that this is a flasque sheaf which contains F
as a subsheaf. Using this one gets a canonical flasque resolution for any sheaf
F . Godement [G] used this flasque resolution to define cohomology groups of
F .

Let (X,OX) be a ringed space, and F be an OX -module. Now we can show
that if one calculates the images of F under the derived functors of the global
section functor on the category Mod(X), one will get the same groups as the
cohomology groups of F (considered as a sheaf of abelian groups on X).

Proposition 2.17. Let (X,OX) be a ringed space. Then the derived functors
of the functor Γ(X, · ) from Mod(X) to Ab(X) coincide with the cohomology
functors Hi(X, · ).

Proof. To calculate the derived functors of Γ(X, · ) on Mod(X), we use a reso-
lution by injective OX -modules which we proved are flasque sheaves, and hence
acyclic (for the functor Γ(X, · ) : Ab(X) → Ab). By Proposition 2.15 this reso-
lution will give us the usual cohomology functors. In other words, the following
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diagram commutes.

Mod(X) RiΓ //

forget

²²

Mod(X)

forget

²²
Ab(X)

RiΓ

// Ab(X)

where forget is the forgetful functor.

Note that when F is an OX -module, the cohomology groups will inherit a
Γ(X,OX)-module structure.

Remark 2.18. The above Proposition can be proved by an argument as in
Remark 2.10. If one denotes by Hi the cohomology functors on Mod(X) cal-
culated by injective resolutions in Mod(X), then one gets a universal δ-functor
which in degree 0 is Γ. Using the above results one can verify the universality
of the δ-functor {Hi} (calculated by injective resolutions in Ab(X), but re-
stricted to Mod(X)). Indeed for every F in Mod(X), there is an embedding
u : F → M, where M is a flasque OX -module. The flasqueness of M implies
that Hi(X,M) = 0 for all i > 0 and hence Hi(u) = 0 for all i > 0. This
shows that {Hi} is a universal δ-functor which in degree 0 is just Γ. Therefore
Hi = Hi.

We close this section by mentioning two vanishing theorems. Proofs can be
found in [H].

Theorem 2.19 (Grothendieck). If X is a noetherian topological space of
dimension n, then Hi(X,F) = 0 for all i > n and any sheaf of abelian groups
F .

Theorem 2.20 (Serre). Let X be a noetherian scheme. Then X is affine if
and only if for every quasi-coherent sheaf F on X, we have Hi(X,F) = 0 for
all i > 0.

3 Čech cohomology

Let X be a topological space and U = (Uj)j∈J an open covering of X. If σ is
a finite subset of the index set J , put Uσ :=

⋂
j∈σ Uj . We then define

Ci(U ,F) :=
∏

|σ|=i+1

F(Uσ).
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For α ∈ Ci(U ,F) and |σ| = i + 1, write α(σ) for the σth component of α.
Now, fix arbitrarily a well-ordering ≤ of the index set J . If σ is a finite

subset of J of i + 1 elements, order its elements as j0 < j1 < . . . < ji and define
σk := σ \{jk} for k = 0, . . . , i. Now we can define a differential di : Ci(U ,F) →
Ci+1(U ,F) by

(diα)(σ) :=
i+1∑

k=0

(−1)kα(σk)|Uσ

Lemma 3.1. di+1 ◦ di = 0.

Proof. Let α ∈ Ci(U ,F). We wish to prove that d2α = 0 ∈ Ci+2(U ,F), so let
σ be a finite subset of J of i + 2 elements. Using the definition of d, we get

(d2α)(σ) =
i+2∑

k=0

(−1)k

( i+1∑

l=0

(−1)lα(σk,l)|Uσk

)∣∣∣∣
Uσ

=
i+2∑

k=0

i+1∑

l=0

(−1)k+lα(σk,l)|Uσ .

If σ = {j0, . . . , ji+2} with j0 < . . . < ji+2 and we fix jk < jl, then, putting
τ := σ \ {jk, jl}, we see that α(τ)|Uk

appears exactly two times in the last sum,
with τ = σk,l−1 and τ = σl,k, with opposed signs, so that they cancel each
other, giving

(d2α)(σ) = 0.

So, for any sheaf F on X and any open cover U , we get a complex C•(U ,F).
We define

Ȟi(U ,F) := Hi(C•(U ,F)),

the ith Čech cohomology group of F with respect to the covering U .
This construction is functorial in F , because a morphism F → G between

sheaves on X induces a morphism C•(U ,F) → C•(U ,G) for each i, which is
easily seen to commute with the differential. Thus we get a morphism

Ȟ•(U ,F) −→ Ȟ•(U ,G).

Remark 3.2. It is important to mention that Čech cohomology does not take
short exact sequences of sheaves to long exact sequences of cohomology groups
in general. For instance, If we take on X the open covering U containing only
the open set X, then we easily see that

Ȟi(U ,F) =

{
Γ(X,F) if i = 0,

0 if i > 0.

Thus the existence of long exact sequence in Čech cohomology would imply that
the global sections functor Γ(X, · ) is exact, which is certainly not always the
case.
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4 Čech vs. derived functor cohomology

We will now compare the Čech cohomology and derived functor cohomology of
a sheaf F on a topological space X. We will see that in some cases we are able
to conclude that these two cohomologies coincide.

We will begin by establishing that they always coincide in degree 0.

Lemma 4.1. For any sheaf F on X and open covering U of X, there is a
natural isomorphism Ȟ0(U ,F) ∼= Γ(X,F).

Proof. Remark that Ȟ0(U ,F) = Ker d0 where d0 is the coboundary map
C0(U ,F) → C1(U ,F). For any α = (αj)j∈J ∈ C0(U ,F), we find that

(d0α)jj′ = αj |Uj∩Uj′ − αj′ |Uj∩Uj′ ,

so that d0α = 0 if and only if αj and αj′ coincide on Uj ∩ Uj′ for all pair of
indices j, j′ ∈ J .

The fact that F is a sheaf implies that the map

Γ(X,F) −→ Ker d0

sending a global section α of F to (α|Uj )j∈J is bijective.

In order to compare Čech cohomology with derived functor cohomology, we
will need to consider first a sheafified version of the Čech complex.

For every open set U of X, let ιU : U ↪→ X denote the inclusion of U in X.
Define

Ci(U ,F) :=
∏

|σ|=i+1

(ιUσ )∗(F|Uσ ) (1)

which is a sheaf on X, together with differentials di just as above. Then, by
definition, we have

Γ(X, C•(U ,F)) = C•(U ,F).

Let ε : F → C0(U ,F) be the product over j ∈ J of the canonical maps

F −→ (ιUj )∗(ιUj )
∗(F) = (ιUj )∗(F|Uj ).

Proposition 4.2. 0 → F ε→ C•(U ,F) is a resolution of F .

Proof. The facts that ε is injective and that Im f = Ker d0 follow directly from
F being a sheaf.

It remains to be shown that the proposed sequence is exact in degrees i > 0.
For this, it suffices to work at the level of stalks.

14



Let us consider

Ci(U ,F)x
di

x−→ Ci+1(U ,F)x
di+1

x−→ Ci+2(U ,F)x

and prove that Ker di+1
x ⊆ Im di

x (we already know that the reverse inclusion
holds).

So take a germ αx ∈ Ker di+1
x . It can be represented by an element α ∈

Ci+1(U ,F)(V ), where V is an open set which can be chosen to lie entirely
inside one of the open sets Uj of the covering U .

If σ is any finite subset of J , since V ⊆ Uj , we remark that

V ∩ Uσ = V ∩ Uσ∪{j}.

Thus, we may define an element β ∈ Ci(U ,F)(V ) by the formula

β(σ) := α(σ ∪ {j})
(where we understand that α(σ ∪ {j}) = 0 if j is already contained in σ).

Then we can check, using the fact that di+1
x (αx) = 0, that di

x(βx) = αx, thus
concluding the proof.

If follows from Lemma 1.6 that if 0 → F → I• is any injective resolution of
F , then the identity map on F lifts to a unique (up to homotopy) morphism of
complexes

C•(U ,F) → I•
which in turn induces a canonical morphism

Ȟ•(U ,F) −→ H•(X,F)

from Čech cohomology to sheaf cohomology, which enables us to compare the
two cohomologies.

When we will now state some results stating sufficient conditions for these
canonical morphisms to actually be isomorphisms, thus enabling us to calculate
sheaf cohomology via Čech cohomology.

Lemma 4.3. If a sheaf F on X is flasque, then Ȟi(U ,F) = 0 for i > 0 (thus
in this case, using the preceding lemma, Čech and derived functor cohomology
coincide).

Proof. If F is flasque, then each sheaf Ci(U ,F) is flasque according to 1, since
“flasqueness” is preserved under restriction, applying ι∗ and taking products
(this is easy to check).

But then it means that 0 → F → C•(U ,F) is a flasque resolution of F , so
it can used to compute derived functor cohomology by Proposition 2.15. Thus,
we get

Ȟi(U ,F) ∼= Hi(X,F) = 0

15



for i > 0 since F is flasque (Proposition 2.15).

Theorem 4.4 (Leray). Let X be a topological space, F a sheaf of abelian
groups on X, and U an open cover of X. Assume that for any finite intersec-
tion V := Ui0 ∩ · · · ∩ Uip of open sets in the covering U and i > 0, we have
Hi(V,F|V ) = 0. Then the natural maps

Ȟi(U ,F) −→ Hi(X,F)

are isomorphisms for all i.

Proof. We proceed by induction on the degree i. For i = 0 we already know
that the result is true thanks to Lemma 4.1.

Now, embed F in a flasque sheaf G and let H be the quotient of F by G, so
that we have an exact sequence

0 −→ F −→ G −→ H −→ 0.

For each finite set σ ⊂ J , the sequence

0 −→ F(Uσ) −→ G(Uσ) −→ H(Uσ) −→ 0 (2)

is exact, using the long exact sequence for H•(Uσ, · ) and the hypothesis that
H1(Uσ,F) = 0.

Taking products, we find that the corresponding short sequence of Čech
complexes

0 −→ C•(U ,F) −→ C•(U ,G) −→ C•(U ,H) −→ 0

is exact, so that we get a long exact sequence in Čech cohomology. The fragment

. . . → Ȟi(U ,G) → Ȟi(U ,H) → Ȟi+1(U ,F) → Ȟi+1(U ,G) → . . .

of this long exact sequence, together with the fact that Ȟi(U ,G) = 0 for all
i > 0 (G is flasque), tells us that

Ȟi(U ,H) ∼= Ȟi+1(U ,F)

for each i > 0.
Writing the long exact sequence of the derived functor cohomology corre-

sponding to the above short exact sequence, and using the hypothesis, we get
Hi(Uσ,H) = 0 for each finite intersection Uσ and i > 0. Thus, the induction
hypothesis applies to H, so that the following commutative diagram tells us that
the natural maps for F are isomorphisms for 2 ≤ i ≤ n.

Ȟi(U ,H)
∼= //

∼=
²²

Ȟi+1(U ,F)

²²
Hi(X,H)

∼= // Hi+1(X,F)
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It remains to be shown that the natural map is an isomorphism for i = 1. But
this follows easily by chasing in the following diagram obtained by comparing
the two long exact sequences (or by the Five Lemma, if you wish).

0 // Γ(X,F) //

=

²²

Γ(X,G) //

=

²²

Γ(X,H) //

=

²²

Ȟ1(X,F) //

²²

0

0 // Γ(X,F) // Γ(X,G) // Γ(X,H) // H1(X,F) // 0

Corollary 4.5. Let X be a noetherian separated scheme, U an open affine
cover of X and F a quasi-coherent sheaf on X. Then for all i > 0, the natural
maps

Ȟi(U ,F) −→ Hi(X,F)

are isomorphisms.

Proof. Since X is a noetherian separated scheme, finite intersection of open sets
in the covering U are affine, so F , being quasi-coherent, has no cohomology
along them (Theorem 2.20). Thus the previous theorem applies.

If V is a refinement of U , we get a refinement map

C•(U ,F) −→ C•(V ,F)

which induces a map
Ȟ•(U ,F) −→ Ȟ•(V ,F)

on Čech cohomology.
The coverings of X form a partially ordered set under refinement, so we can

define
Ȟ•(X,F) := lim−→

U

Ȟ•(U ,F).

The refinement maps are compatible with the canonical maps to derived
functor sheaf cohomology, so that, by the universal property of the direct limit,
we get a canonical map

Ȟ•(X,F) −→ H•(X,F).

The following two comparison theorems may be found in [G].

Theorem 4.6 (Cartan). Let X be a topological space, F a sheaf of abelian
groups on X and U an open covering of X closed under the operation of taking
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finite intersections and containing arbitrarily small open sets. Suppose further-
more that we have Ȟi(U,F) = 0 for all U ∈ U and i > 0. Then the natural
morphisms

Ȟi(X,F) −→ Hi(X,F)

are isomorphisms for all i.

Theorem 4.7. If X is a topological space and F a sheaf on X, then the canon-
ical morphism

Ȟi(X,F) −→ Hi(X,F)

is bijective if i = 0 or 1 and injective if i = 2.

5 Examples

Example 5.1. In this example we compute explicitly H•(P1,Ω), where Ω is
the sheaf of differentials on P1. For this, by Leray’s Theorem, we can use Čech
cohomology with respect to the open covering U of P1 consisting of the two
affine open sets U := {x1 6= 0} and V := {x0 6= 0} where x0 and x1 are the two
homogeneous coordinates on P1. Use the affine coordinate x := x0/x1 on U and
y := x1/x0 on V , so that we have y = 1/x on U ∩ V .

The Čech complex is

0 −→ C0(U ,Ω) d−→ C1(U , Ω) −→ 0

where

C0(U , Ω) = Γ(U,Ω)× Γ(V, Ω) = k[x]dx× k[y]dy,

C1(U ,Ω) = Γ(U ∩ V, Ω) = k[x, x−1]dx,

and the differential d is given by

d(f(x)dx, g(y)dy) =
(

f(x) +
1
x2

g

(
1
x

))
dx.

This allows one to compute explicitly that H0(P1, Ω) = 0 and that H1(P1, Ω)
is a one-dimensional vector space over k spanned by the image of x−1dx.

Example 5.2. Let X be a non-singular complex algebraic variety. Thus, X
may be regarded as a complex manifold if endowed with the usual complex
topology. With respect to this topology, we have

H•
sing(X,C) ∼= H•(X,C) ∼= H•

DR(X,C).

The first isomorphism can be shown by identifying H•
sing(X,C) with the sim-

plicial cohomology of X with respect to a triangulation of X. Any triangulation
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of X gives rise to an open covering of X in which for every vertex v, there is
a corresponding open St(v), the star of v, which is the interior of the union
of all simplices which have v as a vertex. It is a rather formal consequence of
the definition of Čech cohomology that the simplicial cohomology of X with
respect to the given traingulation (and with C-coefficients) is the same as the
Čech cohomology of C with respect to the corresponding open covering. (We
have an isomorphism even on the level of cochains, see [GH]). By refining the
triangulation if necessary, and incorporating Proposition 4.4, we then see that
these Čech cohomology groups calculate H•(X,C).

For the second isomorphism, let A i be the sheaf of smooth complex-valued
i-forms on X. Then the complex

0 → C→ A 0 → A 1 → A 2 → . . .

can be shown to be an acyclic resolution of C. Assuming this, we may compute
H•(X,C) by finding the homology of the cochain complex formed by taking the
global sections of A •, which is nothing but the usual de Rham complex on X.
This proves the first isomorphism.

To show that the above complex is a resolution we use the Poincaré Lemma
which states that the higher de Rham cohomology groups of the open unit disc
in Cn all vanish. This will show that the above complex is exact on the level of
stalks and hence is exact.

To prove the acyclicity of the sheaves A i, we have to use the notion of
soft sheaves. These are the exact analogues of flasque sheaves, except that we
replace open subsets by closed subsets in the definition. In the same exact way
as in Proposition 2.15, we can show that soft sheaves are acyclic for the functor
of global sections. Now it is enough to show that each A i is soft. Let K be a
closed subset of X, and s a section of A i on K. There is a locally finite cover
of X, say {Uj}, and for each j, a section sj of Ai on Uj such that sj coincides
with s on K ∩Uj . Let {fj} be a partition of unity with respect to this covering
(which is a collection of global smooth functions fj , such that the support of fj

lies in Uj , and that
∑

fj = 1). Then for each j, the section fjsj extends to X,
and

∑
fjsj is a global section of A i which extends s. (Sheaves for which there

exists a similar notion of partition of unity are called fine; we’ve just essentially
shown that fine sheaves are soft, thus acyclic).

We see that using the complex topology of X, the sheaf cohomology of the
constant sheaf C contains a lot of interesting topological information about X.

However, if we wish to calculate the cohomology of C on X with respect to
the Zariski topology of X, we get

Hi
Zar(X,C) =

{
C if i = 0,

0 if i > 0.

This is because the constant sheaf is flasque for the Zariski topology on X
(by the irreducibility of X).
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We see that the Zariski topology on an algebraic variety is too coarse a
topology in the above example. In the coming weeks we will discuss other
topologies, still “algebraic” in nature, such as the étale topology, which are fine
enough to produce interesting cohomology theories.
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Paris, 1964.

[GH] P. Griffiths and J. Harris, Principles of algebraic geometry, Wiley, New
York, 1978.

[H] R. Hartshorne, Algebraic geometry, Graduate Texts in Mathematics 52,
Springer-Verlag, New York, 1977.

[W] C. A. Weibel, An introduction to homological algebra, Cambridge studies in
advanced mathematics 38, Cambridge University Press, Cambridge, 1994.

20


