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Topics Covered :

I will present some simple calculations about Zeta function of Grassmann Vari-
eties and Lagrangian Grassmann Varieties. The main topics covered are:

1. Introduction to Grassmann Varieties.

2. Zeta function of Grassmann Varieties.

3. Lagrangian Grassmannian and its Zeta function.

4. A bit of Schubert Calculus...

5. Understanding cohomology of Grassmannians in characteristic zero.

1 Grassmann Varieties

The Grassmannian G(d,n): Let V be a vector space of dimension n ≥ 2
over field k. Let 1 ≤ d ≤ n be any integer. Then the Grassmannian G(d,n) is
defined to be the set of all d-dimensional subspaces of V , i.e.

G(d,n) = { W | W subspace of V of dim d}.

Alternately, it is the set of all (d − 1)-dimensional linear subspaces of the pro-
jective space Pn−1(k). If we think of the grassmannian this way, we denote it
by GP(d−1,n−1). The simplest example of the grassmannian could be G(1,n)
which is the set of all 1 dimensional subspaces of the vector space V which is
nothing but the projective space on V .
Plücker map: We can embed G(d,n) in the projective space P(

∧d
V ) via

Plücker map P as follows: Let U be a d dimensional subspace of V having
basis {u1, .., ud}. Define P(U) as the point of P(

∧d
V ) which is determined by

u1 ∧ ... ∧ ud. It can be shown that P is a well defined injective map. Thus we
may consider G(d,n) as a subset of P(

∧d
V ) via P.

Plücker Coordinates: Let e1, .., en be a basis for V then the canonical basis
for ΛdV is given by :

{ei1 ∧ ... ∧ eid
|1 ≤ i1 < ... < id ≤ n}.
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Let U be a d-dimensional subspace of V having basis {u1, ..., ud}. Let uj =∑n
i=1 aijei. Then the coordinates of P(U) = u1 ∧ .. ∧ ud are called the Plücker

coordinates. These are nothing but the
(
n
d

)
maximal minors of the matrix

(aij)1≤i≤n, 1≤j≤d.
Grassmannian as an algebraic variety: It can be shown that G(d,n) is
a projective algebraic variety defined by quadratic polynomials called Plücker
relations. The grassmannian G(d,n) can be covered by open sets isomorphic to
the affine space Ad(n−d) and so we have

dim(G(d,n)) = d(n− d).

1.1 To find the number of points of G(d, n)(Fq).

In order to calculate the Zeta function of G(d,n) we first need to calculate the
number of points of G(d,n) over any finite field. To calculate this, we consider
the action of Gal(k/k) on G(d,n)(k). Let k be a perfect field. We see that the
Galois Group Γ = Gal(k/k) acts on Pn(k) as follows:
For σ ∈ Γ and (a0 : a1 : ... : an) ∈ Pn(k) we define

σ(a0 : ... : an) = (σ(a0) : ..... : σ(an)).

The action is well defined since ∀λ ∈ k∗ we have:

σ(λa0 : ... : λan) = (σ(λ(a0)) : ...... : σ(λ(an))) = σ(λ)(σ(a0) : .... : σ(an)) = σ(a0 : ... : an).

Moreover we have,

1. Id(a0 : .... : an) = (a0 : .... : an).

2. σ1σ2(a0 : ... : an) = σ1(σ2(a0 : ... : an)).

One can prove the following lemma:

Lemma 1.1.1 The Galois group Γ = Gal(k/k) acts on Pn(k) and the fixed
points are precisely the points in Pn(k) , i.e.

{u = (a0 : ... : an) ∈ Pn(k̄)| σ(u) = u∀ σ ∈ Γ} = Pn(k).

We will now consider the action of the Galois group Γ = Gal(k/k) on
the grassmannian G(d,n) and use that to calculate the number of points of
G(d,n)(Fq)

1.1.1 Action of the Galois group Γ = Gal(k/k) on G(d,n) :

Without loss of generality suppose that the n dimensional vector space V is
(k)n. G(d,n) is the collection of all d dimensional subspaces of (k̄)n and Γ acts
on it as follows:
For U ∈ G(d,n) and σ ∈ Γ , define:

σ(U) = {σ(x1, x2, . . . xn) | (x1, . . . , xn) ∈ U} where,
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σ(x1, x2, . . . , xn) = (σ(x1), . . . , σ(xn)).

Then it is easy to verify that if U is spanned by v1, v2, . . . , vd then, σ(U) is
again a d dimensional subspace of (k̄)n spanned by σ(v1), . . . , σ(vd). We can
also think of G(d,n) as embedded in the projective space PN = P(ΛdV ) via the
Plücker map P : G(d,n) → PN and we may consider the action of Γ on it as
induced by the action on the projective space. Note that the two actions of Γ
on G(d,n) are Γ equivalent.

We say that U ∈ G(d,n) is Γ invariant if σ(U) = U ∀σ ∈ Γ. And one has
the following lemma

Lemma 1.1.2 U ∈ G(d,n) is Γ invariant iff U has a basis {w1,w2, . . . ,wd}
with each wi ∈ kn.

Proof : Clearly, if U has a basis {v1, v2, . . . , vd} with each vi ∈ kn, then U is
Γ invariant. Now let U be a d dimensional subspace of V spanned by vectors
v1, v2, . . . , vd. Let σ(U) = U , ∀ σ ∈ Γ = Gal(k̄/k). We prove that ∃ a basis
{w1,w2, . . . ,wd} of U such that

∀σ ∈ Γ , σ(wi) = wi, i = 1, 2, . . . ,d.

As σ(U) = U , ∃A(σ) ∈ GL(d, k̄) such that

σ


v1

v2

.

.

.
vd

 = A(σ)


v1

v2

.

.

.
vd

 .

Then, A(σ τ) = σA(τ)A(σ). [A(στ)]−1 = (A(σ))−1 σ A(τ)−1.
So {(A(σ))−1} is a 1-cocycle and using the result that H1(GLn) is identity,

we get that the 1-cocycle {(A(σ))−1} splits i.e. ∃ B ∈ GL(d, k̄) such that
(A(σ))−1 = B−1 σ B , i.e. B = (σB) A(σ). Now let

w1

w2

.

.

.
wd

 = B


v1

v2

.

.

.
vd




w1

w2

.

.

.
wd

 = B


v1

v2

.

.

.
vd

 = (σB) A(σ)


v1

v2

.

.

.
vd

 = (σB) σ


v1

v2

.

.

.
vd

 = σ

B


v1

v2

.

.

.
vd



 = σ


w1

w2

.

.

.
wd

 .
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So, ∀σ ∈ Γ , σ(wi) = wi , i = 1, 2, . . . d which implies that U has a basis
{w1,w2, . . . wd} with wi ∈ kn ( As (k̄)Γ = k).

Now, let k = Fq. Then we have,

| G(d,n)(k) | = | [G(d,n)(k
n
)]

Γ
|

which is the number of d dimensional subspaces of (k)n which are Γ invariant.
Let J denote the collection of all bases {v1, v2, . . . , vd} with each vi ∈ kn. Then
J defines an open subset of (kn)d. So, the number of bases {v1, v2, . . . , vd} with
each vi ∈ kn equals the cardinality of J. We first find |J|.
The general linear group GL(n, k) = Aut(kn) acts naturally on J and the action
is transitive. The stabilizer of X = {e1, ..., ed} has the block matrix of the form:(

I ∗
0 GL(n− d)

)
|J| = |GL(n, k)|

|Stabilizer(X)|
=

|GL(n, k)|
|GL(n− d, k)|.qd.(n−d)

.

By the lemma it follows that computing the number of subspaces which are
Γ-invariant is same as computing elements of J, however, one has to be more
careful as one may have different bases giving rise to the same element of G(d,n).
The number of bases {v1, v2, . . . , vd} with each vi ∈ kn is same as

number of points of J
number of bases for each U

The number of bases for each U is |GL(d, k)|. So,

|G(d,n)(Fq)| =
|GL(n)(Fq)|

|GL(d)(Fq)|.|GL(n− d)(Fq)|.qd(n−d)
=

f(n)
f(d).f(n− d).qd(n−d)

.

where f(n) = (qn − 1)(qn − q)...(qn − qn−1).

1.2 Zeta function of Grassmannians

As seen before, the Grassmann variety G(d,n) can be embedded into projective
space P(ΛdV ) by Plücker map. Also G(d,n) can be covered by open affine
spaces of dimension d(n− d). So it is a smooth projective variety of dimension
d(n− d) which we may consider over any finite field Fq. We now calculate the
Zeta function of some grassmannians over Fq. We will also verify the rationality
of Zeta function and the functional equation. First of all recall the definition
of Zeta function of a smooth projective variety X over k = Fq. Then the Zeta
function is given by

Z(X, t) := exp

( ∞∑
r=1

Nr.
tr

r

)
∈ Q[[t]].
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where Nr is the number of points of X defined over Fqr .

Example 1.2.1 Projective space Pn(Fq).
One has, |Pn(Fq)| = 1 + q + q2 + . . . + qn.
Nr = |Pn(Fqr )| = 1 + qr + q2r + .... + qnr.

Z(t) = exp

( ∞∑
r=1

(1 + qr + .... + qnr)
tr

r

)
.

Taking logarithm on both sides we get,

ln[Z(t)] =
∞∑

r=1

(1 + qr + .... + qnr)
tr

r
.

We use the formula : ln(1− t) = −t− t2/2− t3/3− . . . .

ln[Z(t)] = −ln(1− t)− ln(1− qt)− ...− ln(1− qnt).
= −ln[(1− t).........(1− qnt)].

ln[Z(t)(1− t).........(1− qnt)] = 0

Z(t) =
1

(1− t)(1− qt).........(1− qnt)
.

We see that Pi(t) = 1 for all odd i and P0(t) = 1 − t, P2i(t) = 1 − qit
for i = 1, 2, . . . , n. Degree of Pi(t) is zero for i odd and 1 for i even So, all odd
Betti numbers are zero and the even Betti numbers equal to 1.
E =

∑
bi = n + 1. We now verify the functional equation:

Z

(
1

qnt

)
=

1
(1− 1/qnt)(1− q/qnt) . . . (1− qn/qnt)

.

=
qnt.qn−1t . . . qt.t

(1− t)(1− qt) . . . (1− qnt)
.

= qn(n+1)/2.tn+1.

= qn.E/2.tE .Z(t).

So, the functional equation is verified. Also the numbers b0, b1, . . . bn match
with the Betti numbers of the complex projective space Pn(C) and the number
E = n + 1 matches with Euler characteristic of Pn(C).

Example 1.2.2 G(2, 4)
dim G(2, 4) = 2(4− 2) = 4. First calculate Nr. We have,

|G(2, 4)(Fq)| =
(q4 − 1)(q4 − q)(q4 − q2)(q4 − q3)

(q2 − 1)2(q2 − q)2q4
.

= (q2 + 1)(q2 + q + 1) = q4 + q3 + 2q2 + q + 1.
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Nr = q4r + q3r + 2q2r + qr + 1.

Z(t) = exp

( ∞∑
r=1

(1 + qr + 2q2r + q3r + q4r)
tr

r

)
.

ln[Z(t)] = −ln[(1− t)(1− qt)(1− q2t)2(1− q3t)(1− q4t).

Z(t) =
1

(1− t)(1− qt)(1− q2t)2(1− q3t)(1− q4t)
.

We see that Z(t) is a rational function in t. Pi(t) = 1 for all odd i. P0(t) =
1 − t, P2(t) = 1 − qt, P4(t) = (1 − q2t)2, P6(t) = 1 − q3t, P8(t) = 1 − q4t. The
Betti numbers bi are zero for all odd i and b0 = 1, b2 = 1, b4 = 2, b6 = 1, b8 = 1.
E =

∑
bi = 6.

We now verify the functional equation:

Z

(
1

q4t

)
=

1
(1− 1/q4t)(1− q/q4t)(1− q2/q4t)2(1− q3/q4t)(1− q4/q4t)

.

= q4t.q3t.(q2t)2.qt.t.Z(t).
= q12.t6.Z(t).
= q4.6/2.t6.Z(t).
= qnE/2tE .Z(t).

and the functional equation is verified.

Example 1.2.3 G(2, 5)(Fq)

|G(2, 5)(Fq)| =
(q5 − 1)(q5 − q)(q5 − q2)(q5 − q3)(q5 − q4)
(q2 − 1)(q2 − q)(q3 − 1)(q3 − q)(q3 − q2)q6

.

= 1 + q + 2q2 + 2q3 + 2q4 + q5 + q6.

Nr = 1 + qr + 2q2r + 2q3r + 2q4r + q5r + q6r.

Z(t) = exp

( ∞∑
r=1

(1 + qr + 2q2r + 2q3r + 2q4r + q5r + q6r)
tr

r

)
.

and by similar calculations we get,

Z(t) =
1

(1− t)(1− qt)(1− q2t)2(1− q3t)2(1− q4t)2(1− q5t)(1− q6t)
.

Example 1.2.4 G(3, 6)(Fq)

|G(3, 6)(Fq)| =
(q6 − 1)(q6 − q) . . . (q6 − q5)

(q3 − 1)2(q3 − q)2(q3 − q2)2q9
.

= (q3 + 1)(q2 + 1)(q4 + q3 + q2 + q + 1).
= q9 + q8 + 2q7 + 3q6 + 3q5 + 3q4 + 3q3 + 2q2 + q + 1.

Nr = q9r + q8r + 2q7r + 3q6r + 3q5r + 3q4r + 3q3r + 2q2r + qr + 1.
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Z(t) = exp

( ∞∑
r=1

(q9r + q8r + 2q7r + 3q6r + 3q5r + 3q4r + 3q3r + 2q2r + qr + 1)
tr

r

)
.

Taking logarithm on both sides and simplifying we get,

Z(t) =
1

(1− t)(1− qt)(1− q(2t)2(1− q3t)3(1− q4t)3(1− q5t)3(1− q6t)3(1− q7t)2(1− q8t)(1− q9t)
.

The functional eqation can be easily verified in a similar way as we did for
G(2, 4).

The general case G(d,n)(Fq) :
As seen before,

Nr = |G(d,n)(Fqr)| = (qnr − 1)(qnr − qr) . . . (qnr − q(n−1)r)
(qdr − 1) . . . (qdr − q(d−1)r).(q(n−d)r − 1) . . . (q(n−d)r − q(n−d−1)r).qrd(n−d)

.

For simplicity set qr = l. So we have

Nr =
(ln − 1)(ln − l) . . . (ln − ln−1)

(ld − 1) . . . (ld − ld−1).(ln−d − 1) . . . (ln−d − ln−d−1).ld(n−d)
.

Multiplying and dividing by ld(n−d) and simplifying we get,

Nr =
(ln − 1)(ln−1 − 1) . . . (ln−d+1 − 1)

(ld − 1)(ld−1 − 1) . . . (l − 1)
.

This is the usual Gaussian Binomial coefficient
(
n
d

)
l

and it can be interpreted
as a polynomial in l. To be more precise,(

n

d

)
l

=
d(n−d)∑

i=0

bil
i.

where the coefficient bk of lk in this polynomial is the number of distinct parti-
tions of k elements that fit inside a rectangle of size d × (n− d). We illustrate
this with examples.

Example 1.2.5 Find the Gaussian binomial coefficient
(
4
2

)
l
.

Suppose
(
4
2

)
l
= b0 + b1l + b2l

2 + b3l
3 + b4l

4.
We summarize the number of partitions of k for k = 0, 1, 2, 3, 4 in the following
table:

k Partitions of k bk = number of allowed partitions
0 {} 1
1 {1} 1
2 {{2}, {1, 1}} 2
3 {{3}, {2, 1}, {1, 1, 1}} 1
4 {{4}, {3, 1}, {2, 2}, {2, 1, 1}, {1, 1, 1, 1}} 1
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Hence we see that: (
4
2

)
l

= 1 + l + 2l2 + l3 + l4.

i.e. Nr = 1 + qr + 2q2r + q3r + q4r. Note that this calculation matches with the
calculation done before while calculating Zeta function for G(2, 4)(Fq).

Example 1.2.6 Find the Gaussian binomial coefficient
(
5
2

)
l
.

Suppose
(
5
2

)
l
= b0 + b1l + b2l

2 + b3l
3 + b4l

4 + b5l
5.

We summarize the number of allowed partitions of k for k = 0, 1, 2, 3, 4, 5, 6 in
the following table:

k Allowed partitions of k bk = number of allowed partitions
0 {} 1
1 {1} 1
2 {{2}, {1, 1}} 2
3 {{2, 1}, {1, 1, 1}} 1
4 {{2, 2}, {2, 1, 1}} 1
5 {{2, 2, 1}} 1
6 {{2, 2, 2}} 1

Hence we see that: (
5
2

)
l

= 1 + l + 2l2 + 2l3 + 2l4 + l5 + l6.

i.e. Nr = 1 + qr + 2q2r + 2q3r + 2q4r + q5r + q6r. Again this calculation matches
with the calculation done before while calculating Zeta function for G(2, 5)(Fq).

Example 1.2.7 Find the Gaussian binomial coefficient
(
6
3

)
l
.

Here d(n − d) = 3.3 = 9. Suppose
(
6
3

)
l

= b0 + b1l + b2l
2 + b3l

3 + b4l
4 + b5l

5 +
b6l

6 + b7l
7 + b8l

8 + b9l
9.

We summarize the number of allowed partitions of k for k = 0, 1, . . . , 9 in the
following table:
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k Allowed partitions of k bk = number of allowed partitions
0 {} 1
1 {1} 1
2 {{2}, {1, 1}} 2
3 {{3}, {2, 1}, {1, 1, 1}} 3
4 {{3, 1}, {2, 2}, {2, 1, 1}} 3
5 {{2, 2, 1}, {3, 2}, {3, 1, 1}} 3
6 {{2, 2, 2}, {3, 2, 1}, {3, 3}} 3
7 {{3, 2, 2}, {3, 3, 1}} 2
8 {{3, 3, 2}} 1
9 {{3, 3, 3}} 1

Hence we see that:(
6
3

)
l

= 1 + l + 2l2 + 3l3 + 3l4 + 3l5 + 3l6 + 2l7 + l8 + l9.

i.e. Nr = 1 + qr + 2q2r + 3q3r + 3q4r + 3q5r + 3q6r + 2q7r + q8r + q9r.

We now consider the general case. Regarding l as a formal variable, it is
possible to express the coefficient Nr for any grassmannian G(d,n)(Fq) as

Nr =
d(n−d)∑

i=0

bil
i

where bi can be found as explained before and the Zeta function of the grass-
mannian G(d,n) then comes out to be :

Z(t) =
1

(1− t)b0(1− qt)b1 . . . (1− qd(n−d)t)bd(n−d)
.

From this we see that all the odd Betti mubers of of the grassmannians are zero.
The numbers bi here are the even topological Betti numbers of the complex
Grassmannian X(C) = G(d,n)(C) i.e. bi = dim H2i(X(C), Z)( The odd Betti
numbers of X(C) are zero).

2 Lagrangian Grassmannian

Let V be a vector space over field k of dimension 2n, n ≥ 1. Consider the
set of all n dimensional subspaces of V i.e. the grassmannian G(n, 2n). We
are interested in a subvariety of G(n, 2n). We define a pairing on V . For
x, y ∈ V, x = (x1, x2, ...., x2n), y = (y1, y2, ......, y2n) define:

< x, y >=
n∑

i=1

[(xi.y2n+1−i)− (x2n+1−i.yi)].
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This is a non-degenerate alternating pairing on V . We say that U ∈ G(n, 2n)
is isotropic iff < x, y >= 0 ∀x, y ∈ U .

Definition 2.0.8 In the above notations, the Lagrangian Grassmannian L(n, 2n)
is defined by : L(n, 2n) = {U ∈ G(n, 2n)|U is isotropic}.

It can be shown that L(n, 2n) is a projective subvariety of G(n, 2n) of dimension
n(n+1)

2 .

2.1 To calculate the number of points of L(n, 2n)(Fq).

The symplectic group Sp(2n)(Fq) acts transitively on the set of all isotropic
subspaces of G(n, 2n)(Fq), i.e. on the Lagrangian grassmannian. So we have,

|L(n, 2n)(Fq)| =
|Sp(2n)(Fq)|
|Stabilizer of X|

,X ∈ L(n, 2n).

To find |Sp(2n)(Fq)| we use the following result from the linear algebra.

Lemma 2.1.1 If f is a non-degenerate alternating paring on a 2n dimensional
vector space V over a field of q elements then the number of pairs {u, v} s.t.
f(u, v) =< u, v >= 1 is (q2n − 1)q2n−1.

Now, given f -non degenerate, alternating pairing on vector space V of di-
mension 2n by standard results, there exists a symplectic basis

{v1, v2, ..., v2n} for V such that

< vi, vi+n >= 1, i = 1, ..., n;< vi, vj >= 0, |i− j| 6= n.

If {vi} is a symplectic basis of V then, θ ∈ Sp(2n) iff θ.vi is also a symplectic
basis for V . i.e.

< θvi, θvi+n >= 1, i = 1, ..., n;< θvi, θvj >= 0, |i− j| 6= n.

The number of pairs such that < θv1, θv1+n >= 1 is (q2n − 1)q2n−1. Once
we choose {θv1, θv1+n} for {θvi} to be a symplectic basis the number of pairs
{θv2, θv2+n} such that < θv2, θv2+n >= 1 is q(2n−2)−1(q2n−2 − 1); and so on
. . . Finally, the number of pairs {θvn, θv2n} such that < θvn, θv2n >= 1 is q(q2−
1). And so,

|Sp(2n)(Fq)| =
n∏

i=1

(q2i − 1)q2i−1 = qn2
n∏

i=1

(q2i − 1) = qn2
n∏

i=1

(qi − 1)(qi + 1).

To find the stabilizer of X ∈ L(n, 2n):
Notation : We denote the transpose of a matrix A by At. Let

J =
(

0 I
−I 0

)
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Sp(2n) = {A ∈ GL(2n)|AtJA = J}

Let
(

A B
0 C

)
∈ StabX. If it has to be in Sp(2n) we must have,

(
A B
0 C

)t( 0 I
−I 0

)(
A B
0 C

)
=

(
0 I
−I 0

)
(

At 0
Bt Ct

)(
0 I
−I 0

)(
A B
0 C

)
=

(
0 I
−I 0

)
(

At 0
Bt Ct

)(
0 C
−A −B

)
=

(
0 I
−I 0

)
(

0 AtC
−CtA BtC− ctB

)
=

(
0 I
−I 0

)
C = (A−1)t and BtC = CtB i.e. CtB is a symmetric matrix. So, if

M =
(

A B
0 C

)
∈ StabilizerX

Then it is of the form :

M =
(

A (Ct)−1S
0 (A−1)t

)
=
(

A AS
0 (A−1)t

)
for some symmetric n× n matrix S. One can see that the StabilizerX is the

semidirect product of GL(n) the general linear n×n group and S(n); the group
of symmetric n× n matrices.

|Stab (X)(Fq)| = |S(n)(Fq)|.|GL(n)(Fq)|.

= q
n(n+1)

2

n−1∏
i=0

(qn − qi).

= q
n(n+1)

2 q
n(n−1)

2

n∏
i=1

(qi − 1)

|L(n, 2n)(Fq)| =
|Sp(2n)(Fq)|

|GL(n)(Fq)|.|S(n)(Fq)|

=
qn2 ∏n

i=1(q
i − 1)(qi + 1)

q
n(n+1)

2 q
n(n−1)

2
∏n

i=1(qi − 1)
.

=
n∏

i=1

(1 + qi).
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2.2 Zeta function for Lagrangian Grassmannians:

The Lagrangian Grassmannian L(n, 2n) is a smooth projective subvariety of the
grassmannian G(n, 2n) and we may consider it over any finite field Fq. The
number of points in L(n, 2n)(Fq) is given by:

|L(n, 2n)(Fq)| =
n∏

i=1

(1 + qi).

As there are no terms in the denominator, Nr is a polynomial in powers of
qr and the Zeta function of such grassmannians are easy to calculate.

Example 2.2.1 L(2, 4)(Fq)

|L(2, 4)(Fq)| = (1 + q)(1 + q2).
= 1 + q + q2 + q3 = 1 + q + q2 + q3.

Nr = 1 + qr + q2r + q3r = 1 + qr + q2r + q3r.

Z(t) =
1

(1− t)(1− qt)(1− q2t)(1− q3t)
.

Example 2.2.2 L(3, 6)(Fq)

|L(3, 6)(Fq)| = (1 + q)(1 + q2)(1 + q3).
= 1 + q + q2 + 2q3 + q4 + q5 + q6.

Nr = 1 + qr + q2r + 2q3r + q4r + q5r + q6r.

Z(t) =
1

(1− t)(1− qt)(1− q2t)(1− q3t)2(1− q4t)(1− q5t)(1− q6t)
.

Example 2.2.3 L(4, 8)(Fq)

Nr = (1 + qr)(1 + q2r)(1 + q3r)(1 + q4r).
= 1 + qr + q2r + 2q3r + 2q4r + 2q5r + 2q6r + 2q7r + q8r + q9r + q10r.

Z(t) =
1

(1− t)(1− qt)(1− q2t)(1− q3t)2(1− q4t)2(1− q5t)2(1− q6t)2(1− q7t)2(1− q8t)(1− q9t)(1− q10t)
.

General Case: We have:

∣∣L(n, 2n)(Fr
q)
∣∣ = n∏

i=1

(1 + qir).
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For simplicity set qr = l.

Nr =
∣∣L(n, 2n)(Fr

q)
∣∣ = n∏

i=1

(1+li) = (1+l)(1+l2) . . . (1+ln) = 1+b1l+b2l
2+. . .+bmlm.

where the coefficient bi is equal to the number of strict partitions of i whose
parts do not exceed n, m = n(n+1)/2. So, the coeficcients bi can be calculated
precisely and one observes that the Zeta function in general case is

Z(t) =
1

(1− t)(1− qt)b1(1− q2t)b2 . . . (1− qmt)bm
.

where, bi and m are described as above.

3 Schubert Calculus

Schubert Calculus provides us the machinery necessary to describe the coho-
mology ring of GP(d,n) with integer coefficients when the base field is C. We
now define some important notions in schubert calculus.
(1) Schubert conditions and Schubert varieties : We are interested in
finding a necessary and sufficient condition for a d-plane in Pn to intersect a given
sequence of linear spaces in Pn in a prescribed way. Let A : A0 ⊂ A1 ⊂ . . . ⊂ Ad

be a strictly increasing sequence of d + 1 linear spaces of Pn. Such a sequence
is called a flag. A d-plane L in Pn is said to satisfy the Schubert condition
defined by a flag A if, dim(Ai

⋂
L) ≥ i ∀i = 0, 1, . . . ,d. i.e. A d-plane satis-

fying the Schubert conditions with respect to a flag A intersects A0 at least in
a point, A1 at least in a line,. . . etc and it lies in Ad. One can show that the
condition dim(Ai

⋂
L) ≥ i for i = 0, . . . , d is satisfied iff the Plücker coordinates

of d-plane L satisfy certain linear relations in addition to the quadratic plücker
relations. Hence, the collection of all such d-planes in GP(d,n) satisfying the
Schubert condition with respect to a given flag A defines a projective variety.
It is known as Schubert variety Ω(A) corresponding to the flag A. In fact,
this variety is the intersection of a linear subspace of Pn with GP(d,n). The
dimension of Schubert variety Ω(A) with A as above is

∑d
i=0(ai − i).

(2)Schubert cycle : The Schubert variety Ω(A) defines a cohomology class
in the cohomology ring H∗(GP(d,n); Z). The cohomology class of Ω(A) in
H∗(GP(d,n); Z) is called a Scubert cycle. Although the variety Ω(A) depends
on the choice of the flag A, the cohomology class of Ω(A) depends only on the
integers ai = dimAi. So, we denote the class of Ω(A) by Ω(a) where, a is defined
by integers ai = dimAi, 0 ≤ a0 < a1 < . . . < ad ≤ n.

We now state the fundamental theorem of Schubert Calculus which asserts
that the Schubert cycles completely determine the cohomology of GP(d,n).

Theorem 3.0.4 The Basis Theorem :Considered additively, H∗(GP(d,n); Z) is
a free abelian group and the Schubert cycles Ω(a0 . . . ad) form a basis. Each inte-
gral cohomology group H2p(GP(d,n); Z) is a free abelian group and the Schubert
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cycles Ω(a) with [(d + 1)(n − d) −
∑d

i=0(ai − i)] = p form a basis. Each coho-
mology group Hr(GP(d,n); Z), with r odd, is zero.

This theorem determines the additive structure of the cohomology ring
H∗(GP(d,n); Z). Since each odd cohomology group is zero we observe that
the cup product is commutative and the ring H∗(GP(d,n); Z) is a commutative
ring.

We now calculate the cohomology groups of some grassmannians and find
their dimensions.

Example 3.0.5 Projective space Pn=G(1,n+1)= GP(0,n). dim (Pn) = n.
Using the basis theorem, for p = 0, 1, . . . , n, H2p(Pn; Z) is one dimensional
generated by the cycle Ω(a0) with n− a0 = p. Hr(Pn; Z) is 0 for r odd. So all
odd Betti numbers are zero and the even Betti numbers are equal to 1.

Example 3.0.6 G(2, 4) = GP(1, 3).
dim(G(2, 4)) = 2.2 = 4. For 0 ≤ p ≤ 4, H2p(GP(1, 3); Z)is generated by cycles
Ω(a0.a1) with 4 − [a0 + (a1 − 1)] = p. i.e. a0 + a1 = 5 − p. For p = 0, the
only integer solution to a0 + a1 = 5 with a0 and a1 as in Schubert conditions is
a0 = 2 and a1 = 3. Hence, H0(GP(1, 3); Z) is generated by the cycle Ω(2.3) and
has dimension 1. We do similar calculations and form the following table:

p dim(H2p(GP(1, 3); Z)) Generators
0 1 Ω(2.3)
1 1 Ω(1.3)
2 2 Ω(0.3), Ω(1.2)
3 1 Ω(0.2)
4 1 Ω(0.1)

Example 3.0.7 G(2, 5) = GP(1, 4).
dim(G(2, 5)) = 2.3 = 6. For 0 ≤ p ≤ 6, H2p(GP(1, 4); Z) is generated by the
cycles Ω(a0.a1) with 6− [a0 + (a1− 1)] = p. i.e. a0 + a1 = 7− p. For p = 0, the
only integer solution to a0 + a1 = 7 with a0 and a1 as in Schubert conditions is
a0 = 3 and a1 = 4. We summarize the calculation for other cohomology groups
in the following table:

p dim(H2p(GP(1, 4); Z)) Generators
0 1 Ω(3.4)
1 1 Ω(2.4)
2 2 Ω(1.4), Ω(2.3)
3 2 Ω(0.4), Ω(1.3)
4 2 Ω(0.3), Ω(1.2)
5 1 Ω(0.2)
6 1 Ω(0.1)
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Connections to the cohomology in characteristic
zero:

If X → Spec Z(p) is a smooth and proper morphism of schemes then, the co-
homology of X ⊗ Q with the Galois action gives the information about the
cohomology of X ⊗ Fp with its Galois action. Let O be the ring of integers of
Q. Suppose p is a prime and µ is a maximal ideal containing p. Then Oµ is a
local ring with unique maximal ideal µOµ. The residue field k = Oµ/µOµ

∼= Fp.

Let X̃ = X ⊗Oµ. If X ⊗Oµ → Spec Oµ is a smooth and proper morphism of
schemes then the cohomology of X̃⊗Q̄ with Galois action gives the cohomology
of X̃ ⊗ k with its Galois action. Now let X = G be the grassmannn variety
G(d,n). Let m = dimG = d(n − d). The equations defining G i.e. the Plücker
relations are relations with integer coefficients. So, we can consider G over fields
of characteristic zero namely Q, over C and also over finite field Fq. Let G⊗Oµ

Q
denote the grassmann variety G(d,n) over Q and let G ⊗Oµ

k denote the grass-
mann variety G(d,n) over Fp. Since over any algebraically closed field L, G is
smooth and proper, the morphism G → Spec(Oµ) is smooth and proper. Let l
be a prime other than p. We have an isomorphism

f : Hi
et(G ⊗Q; Ql) → Hi

et(G ⊗ k; Ql)

( see Milne Lecture notes 20.4 ) which is Galois equivariant. The Galois group
Gal(Q / Q) contains the decomposition group Dµ and the inertia group Iµ as
its subgroups. We have Iµ ⊂ Dµ ⊂ Gal(Q / Q). To say f is Galois equivariant
means that, if τ ∈ Dµ then, τ ∈ Gal(Fp / Fp) and for a class c ∈ H2i

et (G ⊗Q; Ql)
one has

f(τc) = τ .f(c).

This implies that the inertia group Iµ acts trivially on Hi
et(G ⊗ Q; Ql). The

Frobenius morphism F : G⊗Fp → G ⊗ Fp induces linear map F∗ on cohomology.
Let α ∈ Gal(Fp / Fp) be the geometric Frobenius x 7→ x1/p. Let us denote by
α also the induced linear map on cohomology. Then α = F∗. Also there exists
β ∈ Dµ such that β = α. We now use all this to simplify the expression of Zeta
function of G. We have Z(G, t) as (see Hartshorne appendix C)

Z(G, t) =
2m∏
i=0

det[1− tF∗ | Hi
et(G ⊗ Fp; Ql)](−1)i+1

.

=
2m∏
i=0

det[1− tα | Hi
et(G ⊗ Fp; Ql)](−1)i+1

.

=
2m∏
i=0

det[1− tβ | Hi
et(G ⊗Q; Ql)](−1)i+1

.

We use 3.6 and 3.7 of Hartshorne appendix C and get,

Hi
et(G ⊗Q; Ql) ∼= Hi

et(G ⊗ C; Ql) ∼= Hi
betti(G ⊗ C; Ql) ∼= Hi

betti(G ⊗ C; Z)⊗Z Ql.
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As seen by the basis theorem in Schubert Calculus, we see that the Schubert
cycles generate H∗(G ⊗ C; Z). Now, if Y is a subvariety of G of codimension i,
it gives a class [Y ] ∈ H2i

et (G ⊗Q; Ql) on which β acts by β[Y ] = pi[β(Y )]. So,
we have a simpler formula for the Zeta function for G(d,n) as :

Z(G, t) =
1∏m

i=0(1− pit)b2i
.

where b2i denotes the rank of H2i(G; Z) over Z. So the Zeta function for grass-
mann variety G(d,n) of dimension m is given by :

Z(G, t) =
1

(1− t)(1− pt)b2(1− p2t)b4 . . . (1− pmt)b2m
.

which matches with the calculation done before. One observes that knowing the
cohomology in characteristic p, we can know the cohomology in characteristic
zero and vice versa.
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