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Quaternions came from Hamilton after his really good work had

been done; and, though beautifully ingenious, have been an un-

mixed evil to those who have touched them in any way, including

Maxwell. – Lord Kelvin, 1892.



We beg to differ.



Hamilton’s quaternions H

H = R⊕ Ri⊕ Rj ⊕ Rk, i2 = j2 = −1, ij = k = −ji

For x = a + bi + cj + dk, we let

Norm(x) = a2 + b2 + c2 + d2, Tr(x) = 2a.

This is a division algebra, x−1 = (Tr(x) − x)/Norm(x). In fact,

the normed division algebras over R are precisely

dim properties

R 1 assoc., comm., ordered
C 2 assoc., comm.
H 4 assoc.
O 8



Classical motivation:

• Physics

Generalization of the then new powerful complex numbers.

Couples of real numbers to be replaced by triples (can’t),

quadruples (can). Today, subsumed by Clifford algebras.

• Topology

{Quaternions of norm 1} ∼= S3, so S3 is a topological group.

The other div. alg. give top. groups S0, S1, S7(H−space).

No other spheres are top. groups ⇔

. no other normed division algebras over R.



• Euclidean geometry and engineering

{Trace zero, norm 1 quaternions} ∼= S2. The quaternions

of norm 1 act by x ∗ v = x−1vx. This gives a double cover

S3 = Spin(3) → SO3. This is an efficient way to describe

rotations. Used in spacecraft attitude control, etc.

• Arithmetic

Lagrange: Every natural number is a sum of 4 squares.

Norm(x) ·Norm(y) = Norm(xy) (Euler)

Apply to x, y ∈ Z ⊕ Zi ⊕ Zj ⊕ Zk to reduce the proof to the

case of prime numbers.



Bhargava-Conway-Schneeberger: a quadratic form represents all

natural numbers if and only if it represents 1,2, . . . ,15.



How often is a number a sum of squares?

A modular form of level Γ1(N) and weight k is a holomorphic

function

f : H → C, f(γτ) = (cτ + d)kf(τ),

∀γ =
(

a b
c d

)
∈ SL2(Z),≡

(
1 ∗
0 1

)
(mod N)

Since f(τ + 1) = f
((

1 1
1

)
τ
)

= f(τ), the modular form f has

q-expansion

f(τ) =
∑
n∈Z

anqn, q = exp(2πiτ).

In fact, such Fourier expansions can be carried at other“cusps”

and we require that in all of them an = 0 for n < 0. If also a0 = 0

we call f a cusp form.



Eisenstein series

E2k(τ) = c ·
∑

(n,m)∈Z2−{(0,0)}

1

(mτ + n)2k

= ζ(1− 2k) +
∞∑

n=1

σ2k−1(n)qn,

σr(n) =
∑

d|n dr. This is a modular form on SL2(Z) of weight 2k.

Theta series of a quadratic form

q(x1, . . . , xr) =
1

2
xtAx,

where A is integral symmetric positive definite with even entries

on the diagonal. The level N(A) of A is defined as the minimal

integer N such that NA−1 is integral.



Theorem. The theta series

∞∑
n=0

aq(n) · qn, aq(n) = ]{(x1, . . . , xr) ∈ Zn : q(x1, . . . , xr) = n}

is a modular form of weight r/2 and level N(A).

In particular, if

q(x1, x2, x3, x4) = x2
1 + x2

2 + x2
3 + x2

4 =
1

2
xt

(
2

2
2

2

)
x

we get a modular form of level 2. It is obviously not a cusp form.



Two options

• Particular quadratic form: identify the modular form (for fixed

level and weight this is a finite dimensional vector space). Find

explicit answer. One gets a(n) =

4
∑

d|n d n odd

24
∑

d|n,d odd d n even.

• General quadratic form: estimate coefficients.

1) Coeff. of “ basic” Eisenstein series of weight k grow like nk−1.

Show little cancelation in the Eisenstein part.

2) Deligne (Ramanujan’s conjecture): The coefficients of cusp

forms of weight k grow like σ0(n) · n(k−1)/2.

Using this we see that aq(n) = O(n) →∞ for 4 squares.



Deuring’s quaternions Bp,∞

K = field, char(K) 6= 2.

The quaternion algebra
(

a,b
K

)
is the central simple algebra

K ⊕Ki⊕Kj ⊕Kk, i2 = a, j2 = b, ij = −ji = k.

Example, K = R. Then H ∼=
(−1,−1

K

)
and M2(R) ∼=

(
1,1
K

)
. No

others!

Example, K = Qp . Then there are again only two quaternion

algebras, one of which is M2(Qp) and the other is a division

algebra.



Theorem. Let B be a quaternion algebra over Q. B is uniquely

determined by {B ⊗Q Qp : p ≤ ∞}. For a (finite) even number of

p ≤ ∞ we have B ⊗Q Qp ramified, i.e. B ⊗Q Qp 6∼= M2(Qp).

An order in a quaternion algebra over Q is a subring, of rank 4

over Z. Every order is contained in a maximal order.

Example: in the rational Hamilton quaternions
(−1,−1

Q
)

the order

Z⊕ Zi⊕ Zj ⊕ Zk is not maximal. A maximal order is obtained by

adding 1+i+j+k
2 .



Elliptic curves and Deuring’s quaternions

Elliptic curve: homogeneous non-singular cubic f(x, y, z) = 0 in

P2, with a chosen point.

An elliptic curve is a commutative algebraic group (addition given

by the secant method).

End(E) is a ring with no zero divisors and for any elliptic curve

E′, Hom(E, E′) is a right module.





Classification:

• if char(K) = 0 then End(E)⊗Q ∼=

Q
Q(
√
−d)

• if char(K) = p then End(E)⊗Q ∼=


Q
Q(
√
−d)

Bp,∞

An elliptic curve with End(E)⊗Q ∼= Bp,∞ is called supersingular.

It is known that End(E) is a maximal order in Bp,∞. There are

finitely many such elliptic curves up to isomorphism. Fix one,

say E.



Deuring: there is a canonical bijection between supersingular

elliptic curves and right projective rank 1 modules for End(E).

One sends E′ to Hom(E, E′).

In this manner, quaternion algebras provide new information on

elliptic curves.



Singular moduli

Let Es (resp. E′
t) be the finitely many elliptic curves over C such

that End(Es) (resp. End(E′
t)) has endomorphism ring which is

the maximal order Rd (resp. Rd′) of Q(
√
−d) (resp. Q(

√
−d′)).

Each elliptic curve is isomorphic to C/Z+τZ, where τ ∈ SL2(Z)\H
is uniquely determined. There is a modular form of weight 0,

namely a modular function

j : SL2(Z)\H
∼=−→ C, j(q) =

1

q
+ 744 + 196884q + . . .

Gross-Zagier. There is an explicit formula for the integer∏
s,t

(j(Es)− j(E′
t)).



The numbers j(Ei), called singular moduli, are of central im-

portance in number theory, because they classify elliptic curves

and allow generation of abelian extensions of Q(
√
−d). (Hilbert’s

12th problem).

Relation to quaternion algebras: If p divides
∏

s,t(j(Es) − j(E′
t))

then it means that some Es and E′
t become isomorphic modulo

(a prime above) p. This implies that their reduction is a su-

persingular elliptic curve. The problem becomes algebraic: into

which maximal orders of Bp,∞ can one embed simultaneously Rd

and Rd′.



Supersingular graphs (Lubotzky-Philips-Sarnak, Pizer,

Mestre, Osterlé, Serre, . . . )

Pick a prime ` 6= p and construct the (directed) supersingular

graph G p(`).

• Vertices: supersingular elliptic curves.

• Edges: E is connected to E′ if there is an isogeny f : E → E′

of degree `. (But we really only care about the kernel of f).

This graph has degree ` + 1 and is essentially symmetric.



Ramanujan graphs

Expanders. Let G be a k-regular connected graph with n vertices

and with adjacency matrix A and combinatorial Laplacian

∆ = kIn −A,

whose eigenvalues are 0 < λ1 ≤ λ2 ≤ · · · ≤ λn−1 ≤ 2k.
1
k∆(f)(v) is f(v) minus the average of f on the neighbors of v.

The expansion coefficient is

h(G ) = min

{
|∂S|
|S|

: |S| ≤ n/2

}
≤ 1 or

n + 1

n− 1
.

One is interested in getting a large h(G ).



Tanner, Alon-Milman: 2λ1
k+2λ1

≤ h(G ) ≤
√

2kλ1.

To have a graph in which information spreads rapidly/ random

walk converges quickly, one looks for a graph with a large λ1.

Those have many technological and mathematical applications.

Alon-Boppana: lim inf µ1(G) ≥ 2
√

k − 1, where k−µ1 = λ1 is the

second largest eigenvalue of A, and where the limit is over all

k-regular graphs of size growing to infinity.

Thus, asymptotically, the best family of expanding graphs of a

fixed degree d will satisfy the Alon-Boppana bound.

A graph G is called a Ramanujan graph if µ1(G) ≤ 2
√

k − 1.
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(3-regular tree)

A k-regular infinite tree T is the ideal expander. One can show

that h(T ) = k − 1. The idea now is to find subgroups Γ of

the automorphism group of a tree that does not identify vertices

that are “very close” to each other. Arithmetic enters first in

finding such subgroups Γ.



• Two distinct primes p 6= `.

• An ` + 1 regular tree T could be viewed as the Bruhat-Tits

tree for the group GL2(Q`) and in particular, we have

PGL2(Q`) ⊆ Aut(T ).

• O = maximal order of Bp,∞. Then the group of units of norm 1

of O[`−1]× maps into Bp,∞ ⊗Q` = M2(Q`) and gives a subgroup

Γ of Aut(T ) of the kind we want. In fact,

Γ\T ∼= G p(`).



The Ramanujan property.

Γ\T = moduli space of super-
singular elliptic curves

Γ0(p)\H = moduli space for el-
liptic curves + additional data

quaternionic modular forms =
sections of line bundles =
functions

modular forms = sections of
line bundles

Hecke operators T` ∼ averag-
ing operators ∼ Adjacency ma-
trices G p(`)

Hecke operators T` ∼ averag-
ing operators

system of eignevalues of T`
acting on functions with inte-
gral zero

J.-L.
= system of eignevalues for T`

acting on cusp forms; given by
the coeff. a` in q-exp.

The bound on the eigenvalues of the adjacency matrix of G p(`)

is thus given by the Ramanujan bound on the `-th Fourier coef-

ficient of elliptic modular forms.



Generalization: Quaternion algebras over to-
tally real fields

• J. Cogdell - P. Sarnak - I. I. Piatetski-Shapiro. Bounds on

Eisenstein series and cusp forms, mostly of half-integral weight.

• M.-H. Nicole. (McGill thesis, 2005) Generalizes Deuring theory

for certain quaternion algebras over totally real fields.

• Bruinier - Yang. (2004) , G.-Lauter (2004, 2005). Certain

generalizations of Gross-Zagier to totally real fields.

• B. Jordan - R. Livne (2000) , D. Charles - G. - K. Lauter

(2005). Construction of Ramanujan graphs from quaternion al-

gebras over totally real fields and superspecial graphs.



A. Cayley compared the quaternions to a pocket map “... which

contained everything but had to be unfolded into another form

before it could be understood.”


