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in L. We consider the distance between two superspecial abelian
varieties with real multiplication in characteristic p, where by
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give upper and lower bounds on the distance between superspecial
abelian varieties with real multiplication by L in characteristic p in
terms of p and the degree and discriminant of L.
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1. Introduction

For distinct primes p and �, Pizer [Piz] considered the regular graph of supersingular elliptic curves
over a finite field of p2 elements, with edges corresponding to isogenies of degree �. These graphs
have good expansion properties and in fact are known to be Ramanujan. The diameter of these graphs
was considered by Mestre [Mes], and was shown to be bounded by c log p, where c is a constant
independent of �. Thus for example taking � = 2, it follows that there exists an isogeny between any
two supersingular elliptic curves in characteristic p of degree at most 2c log p . For a given prime p,
but independent of �, one can ask for a bound, N(p), such that there exists an isogeny between any
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two supersingular elliptic curves in characteristic p of degree at most N(p). We refer to the minimal
degree of an isogeny between two elliptic curves as the distance between them, in analogy with the
terminology for graphs associated to the choice of a specific prime �. In Section 5.4.1 below, we give
fairly sharp upper and lower bounds on N(p), both roughly of the form “a constant times

√
p.” These

bounds have applications to questions ranging from bounds on the index of a non-zero coefficient
of associated theta series, to bounds on the denominators required to express a basis for a maximal
order in B p,∞ , the quaternion algebra ramified only at p and infinity.

More generally, one can consider the same question for products of supersingular elliptic curves
with extra structure (superspecial abelian varieties with real multiplication). Graphs associated to
superspecial abelian varieties with real multiplication were studied in [CGL]. In this paper, we give
fairly sharp upper and lower bounds on the distance between superspecial abelian varieties with
real multiplication. Specifically, for a given prime p and a totally real field L of strict class number
one in which p is unramified, the degree, degL , of an isogeny between two superspecial abelian
varieties with real multiplication by L is a totally positive element of OL . We define a “norm” which
is twice the trace of degL , and let N(p) be the minimal integer such that there exists an OL -isogeny
of norm less than N(p) between any two superspecial abelian varieties with real multiplication by L.
Theorem 3.3 gives upper and lower bounds on N(p) in terms of p and the discriminant and degree
of L. The proof of the upper bound uses an extension of Minkowski’s bounds to totally real fields due
to Chalk [Cha], but Chalk’s variant is only essential in the applications. The lower bound is asymptotic
and holds for p large enough with respect to the discriminant and degree of L. The proof of the
lower bound uses estimates on the number of isogenies of a given norm coming from estimates of
coefficients of modular forms and class numbers. Applications of Theorem 3.3 are given in Section 4.

2. Background material and notation

2.1. Real multiplication

Let L be a totally real field of degree g over Q with ring of integers OL , whose totally positive
elements are denoted O+

L , and discriminant dL . Assume that L has strict (or narrow) class number
one. This is equivalent to L having class number one and every totally positive unit of OL being a
square. Let σ1, . . . , σg denote the real embeddings of L. Let p be a rational prime which is unramified
in L, pOL = p1 · · ·pa its factorization into prime ideals pi of OL .

Let B p,∞ be the quaternion algebra over Q ramified precisely at p and ∞. Let B p,L := B p,∞ ⊗Q L.
The algebra B p,L is a quaternion algebra over L ramified at all infinite places of L and at all primes
pi |p such that f (pi/p) is odd.

By a principally polarized abelian variety (ppav) with real multiplication (RM) over a base
scheme S we mean a triple A = (A, ιA, λA), where:

• (A, λA) is a principally polarized abelian scheme over S of relative dimension g;
• ι : OL ↪→ EndS (A) is a ring embedding (it induces a ring embedding on the dual abelian vari-

ety ιt : OL ↪→ EndS (At), ιt(a) := ι(a)t );
• the polarization λA is OL -equivariant;
• the relative tangent space TA/S,0 of A along its zero section 0, is a locally free O S ⊗Z OL -module

of rank 1. This is often called the Rapoport condition.

2.2. Superspecial varieties and the degree of isogenies

Let k = Fp . Our interest will be in superspecial ppav over k with RM.

Definition 2.1. A is a superspecial ppav with RM if A is a ppav with RM and A is isomorphic to a
product of supersingular elliptic curves as an abelian variety (though not necessarily as a polarized
abelian variety). To simplify terminology we shall say A is an L-superspecial variety, meaning A is a
principally polarized superspecial abelian variety with real multiplication by OL .
Please cite this article in press as: E.Z. Goren, K.E. Lauter, The distance between superspecial abelian varieties with real
multiplication, J. Number Theory (2008), doi:10.1016/j.jnt.2008.07.005
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Let A, B be two L-superspecial varieties. We consider

HomOL (A, B),

the OL -module of OL -equivariant homomorphisms f : A → B . We put no condition on f ∗λB , but it
follows from our assumptions that f ∗λB = c · λA , for some c ∈ O+

L . We define, following Nicole [Nic],

degL( f ) = degL,A,B( f ) = λ−1
A f tλB f ,

so that,

f ∗λB = degL( f ) · λA,

and we have a commutative diagram

A
degL ( f )λA

f

At

B
λB

Bt

f t

Nicole proves [Nic] that

degL(·) : HomOL (A, B) → OL

is a quadratic form in four variables taking values in O+
L . The associated bilinear form 〈·,·〉 = 〈·,·〉λA ,λB

is

〈 f , g〉 = λ−1
A f tλB g + λ−1

A gtλB f ,

and has discriminant p2 OL ; that is, choosing an OL -basis e1, . . . , e4 to HomOL (A, B) as an OL -
module, we get a matrix M(A, B) ∈ M2(OL) representing 〈·,·〉 and the determinant of M generates
the ideal p2 OL .

Lemma 2.2. Let [·,·] = [·,·]A,B be defined by

[ f , g] = TrL/Q〈 f , g〉, f , g ∈ HomOL (A, B).

This is a positive definite Z-valued bilinear form on HomOL (A, B) in 4g variables. Its discriminant is equal
to p2gd4

L .

Proof. Nicole proved that all the OL -valued quadratic forms 〈·,·〉λA ,λB belong to the same genus.
It is therefore enough to prove the statement for one particular quadratic form. Let E be a super-
singular elliptic curve over k and let A = E ⊗Z OL . The abelian variety A is of dimension g and
is endowed with canonical RM; it has an OL -equivariant principal polarization λA and Endk(A) =
Endk(E) ⊗Z OL , with the quadratic form degL being the OL -linear extension of the usual degree
form deg : Endk(E) → Z.

Let e1, . . . , e4 be a basis over Z for Endk(E). Let M1 be the matrix representing the quadratic
form associated to deg, i.e. 〈 f , g〉 = f t g + gt f , with respect to the basis {ei}. Then det(M1) = p2.
Please cite this article in press as: E.Z. Goren, K.E. Lauter, The distance between superspecial abelian varieties with real
multiplication, J. Number Theory (2008), doi:10.1016/j.jnt.2008.07.005



ARTICLE IN PRESS YJNTH:3715

JID:YJNTH AID:3715 /FLA [m1G; v 1.64; Prn:29/09/2008; 14:58] P.4 (1-17)

4 E.Z. Goren, K.E. Lauter / Journal of Number Theory ••• (••••) •••–•••
Let h1, . . . ,hg be a Z-basis for OL and M2 the matrix representing the bilinear form on OL given
by TrL/Q(r · s), r, s ∈ OL , with respect to this basis. Then det(M2) = dL .

By definition,

[ea ⊗ hc, eb ⊗ hd] = TrL/Q

(〈ea, eb〉 · hchd
) = 〈ea, eb〉 · TrL/Q(hchd)

= (M1)a,b(M2)c,d.

We conclude that the matrix representing the quadratic form [·,·] is the Kronecker product of the
matrices M1 and M2. Thus, its determinant is det(M1)

g det(M2)
4 = p2gd4

L . �
2.3. Traces and norms

Let N be a positive real number. Let

U (N) :=
{

x ∈ O+
L :

1

g
TrL/Q(x) < N

}
,

and

W (N) := {
x ∈ O+

L : NormL/Q(x)1/g < N
}
.

As we shall presently see, the sets U (N) are finite. Various finiteness results obtained below are
phrased in terms of the sets U (N) and so it is of interest to compare them to the sets W (N). In what
follows, f (N) ∼ g(N) means f (N)/g(N) tends to 1 as N tends to infinity.

Lemma 2.3. The sets U (N) and W (N) have the following properties:

(1) Each set U (N) is finite and

∣∣U (N)
∣∣ ∼ eg√

2π gdL
· N g .

Moreover, O+
L is the increasing union

⋃
N�1 U (N).

(2) The positive units O×+
L act on W (N) by multiplication. The set W (N)/O×+

L is finite and

∣∣W (N)/O×+
L

∣∣ � N g log2(2g)

log2(2g)
.

Moreover, O+
L is the increasing union

⋃
N�1 W (N).

(3) Let ε1, . . . , εg−1 be a basis for O×+
L . Let C = max{|σi(ε j)

r |: 1 � i � g, 1 � j � g − 1, r ∈ {±1}}. Then,

W (N) ⊇ U (N) · O×+
L ⊇ W

(
C−(g−1)2/2N

)
.

Proof. We consider the map L → Rg , x �→ (σ1(x), . . . , σg(x)), where {σ1, . . . , σg} = Hom(L,R). The
set U (N) is the intersection of the image of OL with the convex body

Δ(gN) :=
{

(x1, . . . , xg): xi > 0,

g∑
xi < gN

}
.

Please cite this article in press as: E.Z. Goren, K.E. Lauter, The distance between superspecial abelian varieties with real
multiplication, J. Number Theory (2008), doi:10.1016/j.jnt.2008.07.005
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The volume of Δ(1) is 1/g! and so the volume of Δ(gN) is (gN)g/g! ∼ (eN)g/
√

2π g , by Stirling’s for-
mula. On the other hand, OL is now a lattice in Rg whose fundamental parallelotope has volume d1/2

L .
Since the number of lattice points is approximated by the volume of the convex body divided by the
volume of the fundamental parallelotope, (1) follows.

Consider now claim (2). We note that because the narrow class number is 1, W (N)/O×+
L is in

bijection with integral ideals of norm less than N g . Consider first the case of ideals of norm p A for
some rational prime p and positive integer A. If p = p

e1
1 · · ·pea

a in OL , with residue degrees f1, . . . , fa ,

then an ideal of norm p A has the form p
d1
1 · · ·pda

a with
∑a

i=1 di f i = A. It is clear that the number
of such ideals, which is equal to the cardinality of the set {(d1, . . . ,da) : ∑

di f i = A,di ∈ Z�0}, is
maximized when all f i = 1 and a = g . Furthermore, in that case the cardinality is equal to the number
of monomials of degree A in the variables x1, x2, . . . , xg , which is

( A+g−1
g−1

)
.

Now, we will use this estimate for A = 1, since it is clear that to estimate from above the number
of ideals of norm M , we may assume M is square free (roughly speaking, if p2 is the same size as q1q2
then, by the discussion above, p2 gives us at most g(g + 1)/2 ideals, while q1q2 may contribute g2

ideals). The number of prime factors of M is at most log2(M) and so, all together, the number of
ideals of norm M is surely bounded from above by glog2(M) = M log2(g) , and the number of ideals of
norm less than N g is bounded by

∑N g−1
M=1 M log2(g) �

∫ N g

x=1 xlog2(g) � N g log2(2g)/ log2(2g).
Alternatively, note that since the Dedekind zeta function, ζL(s) = ∑

a�OL
Norm(a)−s = ∑

ann−s ,

has, in our case, a simple pole at s = 1 with residue ρ = 2g−1 RLd−1/2
L , we have |W (N)/O×+

L | =∑
n<N g an ∼ 2g−1 RLd−1/2

L N g . This asymptotic estimate follows from Tauberian theorems, cf. [dSG,
Theorem 4.20], and gives a better estimate (asymptotically only) than the estimate |W (N)/O×+

L | �
N g log2(2g)

log2(2g)
.

We now prove the third part of the lemma. The inclusion W (N) ⊇ U (N) · O×+
L is just the inequality

for arithmetic and geometric means. We show the other inclusion. For x ∈ L×+ , let

σ(x) = (
logσ1(x), . . . , logσg−1(x)

)
.

Let ε1, . . . , εg−1 be a basis for the free abelian group O×+
L . The vectors σ(ε1), . . . , σ (εg−1), generate

a (full) lattice in Rg−1. Suppose that x ∈ O+
L , Norm(x) = K g . Choose αi ∈ R such that

σ(x) +
g−1∑
i=1

αiσ(εi) = (log K , . . . , log K ).

Choose ai ∈ Z such that |ai − αi | � 1/2. Let

y = x
g−1∏
i=1

ε
ai
i .

We note that Norm(y) = Norm(x) and y ∈ O+
L . We have

σ(y) = σ(x) +
g−1∑
j=1

a jσ(ε j) = (log K , . . . , log K ) +
g−1∑
j=1

(a j − α j)σ (ε j),

whence,

∣∣logσi(y) − log K
∣∣ � 1

2

g−1∑
j=1

∣∣logσi(ε j)
∣∣, i = 1, . . . , g − 1.
Please cite this article in press as: E.Z. Goren, K.E. Lauter, The distance between superspecial abelian varieties with real
multiplication, J. Number Theory (2008), doi:10.1016/j.jnt.2008.07.005
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Because Norm(y) = K g , we have σg(y) = K g/
∏g−1

i=1 σi(y) and so logσg(y) = log K + ∑g−1
i=1 (log K −

logσi(y)). This gives the estimate

logσg(y) � log K + 1

2

g−1∑
i, j=1

∣∣logσi(ε j)
∣∣.

Let C = max{|σi(ε j)
r |: 1 � i � g, 1 � j � g − 1, r ∈ {±1}}. We find that σi(y) � K · C (g−1)/2 for i =

1, . . . , g − 1 and σg(y) � K · C (g−1)2/2. Therefore, 1
g Tr(y) � K · C (g−1)2/2. It thus follows that

W (K ) ⊆ U
(
C (g−1)2/2 K

) · O×+
L . �

3. Statement of the theorem

Let L be a totally real field of degree g over Q and of strict class number one. Let p be a rational
prime which is unramified in L.

Definition 3.1. Let N(p) be the minimal integer such that for any two L-superspecial abelian vari-
eties A, B in characteristic p there is an OL -isogeny f : A → B with ‖ f ‖A,B � N(p), where

‖ f ‖A,B = [ f , f ]A,B = 2 TrL/Q degL,A,B( f ),

in the notation of Lemma 2.2.

Remark 3.2. Note that if A, B are supersingular elliptic curves, L = Q and ‖ f ‖A,B is twice the usual
degree of the isogeny f .

Let f , g be two real valued functions defined on an unbounded subset of R+ (such as the prime
numbers). We use the notation

f (x) � g(x),

if lim supx→∞ f (x)/g(x) � 1.

Theorem 3.3. The following hold:

(1) One has

(
(2g)!)1/(2g)

π−1 · √p � N(p) � 22d2/g
L · ((2g)!)1/(2g)

π−1 · √p,

where for the lower bound on N(p) we assume p is large enough; for example, that p >

22d2/g
L ((2g)!)1/(2g)π−1 p1/2 . In particular, any two L-superspecial abelian varieties A, B, in characteris-

tic p are isogenous by an isogeny f of degree less or equal to d2
L pg/2 , where by the degree of f we mean

the rank of the finite group scheme Ker( f ) (it is equal to NormL/Q degL( f )).
(2) Let A be an L-superspecial abelian variety in characteristic p. Let μ2 be the second successive minima

(in the sense defined below) of the gauge function EndOL (A) → R given by f �→ ‖ f ‖1/2
A . Then μ2

2 �
28/3d8/3g

L ((2g)!)2/3gπ−4/3 p2/3 . In fact, there exists an element f of EndOL (A), which is not in OL , such
that

‖ f ‖A � 28/3d8/3g
L

(
(2g)!)2/3g

π−4/3 p2/3.
Please cite this article in press as: E.Z. Goren, K.E. Lauter, The distance between superspecial abelian varieties with real
multiplication, J. Number Theory (2008), doi:10.1016/j.jnt.2008.07.005
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Remark 3.4. Stirling’s formula says that there is a continuous function η : (0,∞) → R such that 0 <

η(x) < 1
12x and

�(x) = √
2π · xx−1/2e−xeη(x).

Using the formula for x = n and that n! = n · �(n), we find that n! �
√

2π · nn+1/2e−ne1/(12n) and so
that

(2g)! � 22g+1π1/2 g2g+1/2e−2ge1/24. (3.1)

Therefore, 22d2/g
L ((2g)!)1/(2g)π−1 � 27/2π−3/4e−47/48d2/g

L g1+1/(4g) � 27/2π−3/4e1/(4e)−47/48d2/g
L g . One

then concludes that

22d2/g
L

(
(2g)!)1/(2g)

π−1 < 2d2/g
L g.

Thus, the assumption p > 22d2/g
L ((2g)!)1/(2g)π−1 p1/2, appearing in part (1) of the theorem, follows

from the simpler inequality

p � 4 · d4/g
L g2.

Similar arguments allow one to get in part (1) that

N(p) � 2d2/g
L g

√
p,

and in part (2) that μ2
2 � (2d2

L g
√

p )4/3 and so the existence of an isogeny f with

‖ f ‖A �
(
2d2

L g
√

p
)4/3

.

4. Applications

Before proving the theorem we provide some applications.

4.1. CM lifting

Let A be an L-superspecial abelian variety. For example, when L = Q, this means that A is a
supersingular elliptic curve. It is a question of some interest to examine the CM lifts of A.

Nicole proved that for p unramified in L, EndOL (A) is an Eichler order of discriminant p in the
quaternion algebra EndOL (A) ⊗OL L ∼= B p,L and, conversely, any such order arises this way. He called
such orders “superspecial.”

Let α ∈ EndOL (A) be an endomorphism not in OL . Then the order OL[α] is a relatively quadratic
imaginary order, i.e., OL[α] ⊗Z Q is a CM field whose totally real maximal subfield is L. The discrim-
inant of this order relative to OL is the OL -ideal generated by Tr(α)2 − 4 Norm(α), a totally negative
element of OL . We therefore begin by examining orders in quadratic extensions of L.
Please cite this article in press as: E.Z. Goren, K.E. Lauter, The distance between superspecial abelian varieties with real
multiplication, J. Number Theory (2008), doi:10.1016/j.jnt.2008.07.005
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4.1.1. Relative quadratic orders
We consider orders O in quadratic extensions K/L that contain OL ; those shall be called OL -

orders. As before, OL is assumed to have strict class number one.

Lemma 4.1. Quadratic orders enjoy the following properties:

(1) Let K/L be a quadratic field extension; O K = OL[α] = OL ⊕ OLα for some α ∈ K . Any OL -order of K is
of the form OL[mα] for some m ∈ OL,m �= 0. This element m is unique up to units of OL . The conductor
of the order OL[mα] is the principal O K -ideal mO K .

(2) The map associating to a quadratic OL -order (in some quadratic extension K/L) its discriminant, an
element of OL/O×,2

L , is a well defined injection from the set of quadratic OL -orders into OL/O×,2
L .

(3) Let β ∈ O K , β /∈ L. Then OL[β] is an order of discriminant −Norm f ′
β(β) and conductor m, where fβ is

the minimal polynomial of β over L and where m2 = Norm f ′
β(β)/Norm f ′

α(α).

Proof. One can prove that the conductor of a quadratic order is always an ideal of OL , augmented
to O K . That is, an ideal of the form mO K for some m ∈ OL . Clearly, OL[mα] = OL + mO K is the
minimal OL -order of conductor mO K . It is also the unique OL -order of that conductor because if R is
an OL -order of conductor mO K then R/mO K ⊂ O K /mO K = OL/mOL + OL/mOLα. It is not hard to
see that R/mO K must have the form OL/mOL +nOL/mOLα, where n|m is an element of OL . Thus, R
is of the form OL + nOLα = OL[nα]. Since the conductor of R is mO K we must have n ∼ m. Clearly
m is unique up to units.

To prove the second part, we note that the discriminant of the order OL[mα] is D =
−m2 Norm f ′(α) where f is the minimal polynomial of α; it is well defined up to O×,2

L . In particu-
lar, K = L(

√
D ). This shows that the discriminant determines the order: it is the order of conductor

equal to a square root of D/Norm f ′(α) where α is chosen so that O K = OL[α] and f is the minimal
polynomial of α over L.

The third part is clear. �
Corollary 4.2. The quadratic OL -orders in CM fields are classified by their discriminants that are totally nega-
tive elements of OL/O×,2

L = OL/O×+
L .

The next proposition deals with CM lifts of L-superspecial varieties, the key being the existence of
lifts with bounded discriminant.

Proposition 4.3. Let A be an L-superspecial abelian variety over Fp , p unramified in L. Then A can be CM
lifted, namely there exists an OL -principally polarized abelian variety A over a dvr (R,mR), R a finite ex-
tension of W (Fp), reducing to A and having CM. Moreover, End(A ) contains a quadratic CM order with

discriminant −m, where m lies in U (211/3d8/3g
L ((2g)!)2/3gπ−4/3 g−1 p2/3) ⊆ U ((27 gd8

L p2)
1
3 ).

Proof. Results about CM lifting proven in [GL,Yu] allow us to reduce the considerations to find-
ing such an order in EndOL (A). We appeal therefore to the second part of our theorem that
says that there exists an element β of EndOL (A), which is not in OL , such that TrL/Q degL(β) �
25/3d8/3g

L ((2g)!)2/3gπ−4/3 p2/3. Since B p,L is ramified at all infinite places, the order OL[β] is an or-
der of a CM field; its discriminant is −m, where m = Norm f ′

β(β), in the notation of Lemma 4.1. The

element m is totally positive and, writing f (x) = x2 − (β + β̄)x + degL(β), we have m = 4 degL(β) −
(β + β̄)2. Thus, m � 4 degL(β) in any real embedding. It follows that 1

g TrL/Q(m) � 4
g TrL/Q degL(β) �

211/3d8/3g
L ((2g)!)2/3gπ−4/3 g−1 p2/3. For the inclusion U (211/3d8/3g

L ((2g)!)2/3gπ−4/3 g−1 p2/3) ⊆
U ((27 gd8

L p2)
1
3 ), cf. Remark 3.4. �
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4.2. Coefficients of certain theta series

Let A, B , be two L-superspecial abelian varieties. To the quadratic OL -module (HomOL (A, B),

degL,A,B(·)) one can associate a theta series:

ΘA,B(q) =
∑

ν∈O+
L ∪{0}

a(ν) · qν,

which is a Hilbert modular form of weight 2 for the group

�0(p) =
{(

a b
c d

)
∈ SL2(L): a,d ∈ OL, b ∈ D−1

L , c ∈ pDL

}
.

Here a(ν) = aA,B(ν) are the representation numbers of degL,A,B(·)) (see [Eic, Theorem 1], cf.

[Nic, §2.6]). It is easy to see that a(ν) = a(εν) for any ε ∈ O×+
L = O×,2

L and so that ΘA,B is in-
dependent of the choice of OL -polarizations on A, B . We remark that the group �0(p) as defined
here is the one appearing naturally in the theory and corresponds to classifying principally polar-
ized abelian varieties with RM (see, e.g., [Gor, Corollary 2.19]). It is conjugate to that subgroup of
matrices

( a b
c d

) ∈ SL2(OL) such that c ∈ pOL .
One would like to know when we first get a nonzero coefficient in ΘA,B(q). The use of the

sets U (N) makes that precise and we deduce the following:

Corollary 4.4. For any A, B the following holds: For some ν ∈ U (d2/g
L

√
p ) we have aA,B(ν) �= 0.

Proof. By the first part of the theorem, we have a non-zero element f ∈ HomOL (A, B) such that

2 TrL/Q degL,A,B( f ) � 22d2/g
L (2g!)1/2gπ−1√p. Let ν = degL,A,B( f ). Then, making use of Eq. (3.1) and

simple estimates such as g1/4g � e(1/4e) etc., one finds that 1
g TrL/Q(ν) � d2/g

L
√

p. �
4.3. Denominators required for writing superspecial orders

One knows that B p,L has only finitely many conjugacy classes of orders of bounded discriminant.
In particular, finitely many conjugacy classes of maximal orders and finitely many conjugacy classes of
superspecial orders. For certain applications one wishes to write a representative for each conjugacy
class explicitly (and, more generally, for the ideal classes of each order). For example, this is useful for
generating modular forms by theta series and constructing certain Ramanujan graphs whose vertex
set is the set of L-superspecial points (cf. [CGL]).

There are well-known examples of maximal orders in B p,∞ specified by a Z-basis. For instance,
let p ≡ 3 (mod 4) then B = (

−1,−p
Q

) is the quaternion algebra B p,∞ over Q ramified only at p and ∞.

It has a basis {1, i, j,k} with relations i2 = −1, j2 = −p, i j = k = − ji. Let O ⊂ B be the Z-span
of {1, i, i+ j

2 , 1+k
2 }; it is a maximal order (cf. [Vig, p. 98] for this and other cases).

When we have a Z-basis for a maximal order R of B p,∞ we also get an OL -basis for the superspe-
cial order R ⊗Z OL in B p,L . It is natural then to write other maximal (or superspecial) orders of B p,L

relative to this basis. One wants to know how big the denominators might get.

Corollary 4.5. Let R be a superspecial order with an OL -basis e1, . . . , e4 . Let R ′′ be any other superspecial
order. There is superspecial order R ′ conjugate to R ′′ and an OL -basis e′

1, . . . , e′
4 of R ′ such that the ma-

trix M = (mij) expressing the basis e′
1, . . . , e′

4 in terms of the basis e1, . . . , e4 satisfies the following integrality

condition: For some a ∈ U (d2/g
L

√
p ) we have a · mij ∈ OL,∀i, j.
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Proof. We view R and R ′′ as the endomorphisms rings of L-superspecial abelian varieties A and B;
say R = EndOL (A), R ′′ = EndOL (B). Let f ∈ HomOL (A, B) be an isogeny, supplied by our theorem,

such that ‖ f ‖A,B � 22d2/g
L ((2g)!)1/(2g)π−1 p1/2. Let a = degL( f ) (recall that f ∗λB = a · λA ). Via f we

may embed R ′′ in R ⊗OL L = B p,L by

ψ : R ′′ → B p,L, g �→ ψ(g) := f −1 g f ,

where by f −1 we mean 1
degL( f ) λ

−1
A f tλB . Clearly a · ψ(g) is an endomorphism of A commuting

with OL and hence lies in R .
Let R ′ denote the image of ψ . Then a · R ′ ⊆ R and that means that a · e′

i can be written as an OL -
linear combination of the basis e1, . . . , e4. It remains to estimate a. We have 1

g TrL/Q(a) = 1
2g ‖ f ‖A,B �

2 · d2/g
L ((2g)!)1/(2g)π−1 g−1 p1/2. Exactly the same estimate made in the proof of Corollary 4.4 gives

1
g TrL/Q(a) � d2/g

L
√

p. �
5. Proof of the theorem

5.1. The upper bounds

We shall apply a result of Chalk [Cha]: Let G be a gauge function on Rmg , that is, a func-
tion G : Rmg → R satisfying:

(1) G(x) � 0, x ∈ Rmg and G(x) = 0 implies x = 0;
(2) G(tx) = |t| · G(x), x ∈ Rmg, t ∈ R;
(3) G(x + x′) � G(x) + G(x′), x, x′ ∈ Rmg .

(In modern terminology, G is simply a norm. In fact, our definition here is slightly more restrictive
than Chalk’s. His definition of a gauge function is what is called today a semi-norm.) Let Λ ⊂ Rmg be
the lattice φ(Om

L ), where φ is induced from the diagonal embedding L → Rg, � �→ (σ1(�), . . . , σg(�)).

We may identify Rmg with (L ⊗Q R)m via this embedding. The discriminant of Λ is dm/2
L . Let K be

the unit ball of G , K := {v ∈ Rmg : G(v) � 1}.
The successive minima μ1, . . . ,μm of G relative to Λ are defined as follows: Let μ1 be the min-

imum of G over non-zero elements of Λ. Say G(λ1) = μ1 for some λ1 ∈ Λ. We define the other
successive minima by the following recursive procedure. Suppose that μ1, . . . ,μr were already de-
fined and we have G(λi) = μi for some λi then μr+1 is the minimum of G taken over all lattice
vectors in Λ not lying in the L-linear span of λ1, . . . , λr . Chalk proves a generalization of Minkowski’s
theorem (similar generalizations were given previously by H. Weyl):

(μ1μ2 · · ·μm)g � 2mgdm/2
L vol(K )−1. (5.1)

Given two L-superspecial abelian varieties A, B , the quadratic OL -module HomOL (A, B) is a
torsion-free OL -module and hence, since OL has class number one, free of rank 4. Choose a ba-
sis for HomOL (A, B) over OL so that we can identify HomOL (A, B) with O4

L . The bilinear form we
consider is given by the R-linear extension of [·,·]A,B and the gauge function G is

G( f ) =
√

‖ f ‖A,B .

We remark that G is indeed a gauge function because it is associated with the positive definite
quadratic form ‖ f ‖A,B —see Lemma 2.2. It follows that the volume of the unit ball of G is 1

pgd2
L

· π2g

(2g)!
(recall that the volume of the unit ball in R4g is π2g

(2g)! ). Applying inequality (5.1) for m = 4, we get
Please cite this article in press as: E.Z. Goren, K.E. Lauter, The distance between superspecial abelian varieties with real
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μ1μ2μ3μ4 � 24d4/g
L

(
(2g)!)1/g

π−2 · p. (5.2)

We conclude that μ2
1 � 22d2/g

L ((2g)!)1/(2g)π−1 p1/2. That means that for every pair of L-superspecial

abelian varieties A, B , there is some non-zero f ∈ HomOL (A, B) with ‖ f ‖A,B � 22d2/g
L ((2g)!)1/(2g) ·

π−1 p1/2. This proves the first upper bound. We remark that the use of Chalk’s result is not essential
here but is made to streamline the presentation. Using Minkowski’s theorem gives the same inequality
in this case, however, in the applications we make use of Chalk’s result to estimate μ2.

Consider now the degree of such f as an isogeny, namely, consider the rank of the finite group
scheme Ker( f ). This degree is equal to NormL/Q degL( f ). Making use also of Remark 3.4, we find

NormL/Q degL( f ) = NormL/Q

(
λ−1

A f tλB f
)

�
[

1

g
TrL/Q

(
λ−1

A f tλB f
)]g

=
[

1

2g
‖ f ‖A,B

]g

� (2g)−g N(p)g

� (2g)−g(2gd2/g
L

√
p

)g

= d2
L pg/2.

We now consider the upper bound in the second part of the theorem. In the case A = B and
the lattice EndOL (A), we use the trivial inequality μ1 � 1. It follows from inequality (5.2) that μ3

2 �
24d4/g

L ((2g)!)1/gπ−2 p and so that

μ2
2 � 28/3d8/3g

L

(
(2g)!)2/3g

π−4/3 p2/3.

Note also that μ2
1 � ‖ IdA ‖ = 2g . If μ1 is achieved for an element f /∈ OL then certainly we have for

an element f /∈ OL that ‖ f ‖A � 28/3d8/3g
L ((2g)!)2/3gπ−4/3 p2/3, because 2g � 28/3d8/3g

L ((2g)!)2/3g ·
π−4/3 p2/3. If μ1 is achieved for an element in OL , then for the element f realizing μ2 we have the
required bound.

This finishes the proof of the upper bounds in the theorem. After developing some tools, we shall
prove the lower bound in Section 5.3.

5.2. Subgroup schemes

In this section we estimate the number of subgroups schemes H of given rank of an L-superspecial
variety A, such that A/H is also an L-superspecial variety and such that the isogeny πH : A → A/H
is of polarized abelian varieties with RM. Clearly H has to be OL -invariant. First remark that if λ is
an OL -polarization of A/H then π∗

Hλ is an OL -linear polarization of A and is thus OL -proportional
to λA . Thus, the condition about polarizations amounts to the existence of an OL -principal polariza-
tion λ. Using Mumford’s theory [Mum, Proposition 1], this is the case if and only if H is OL -invariant
and maximal isotropic in Ker(a) for some a ∈ OL .

Definition 5.1. Suppose that (�H, p) = 1. Then H is étale and has a composition series as an OL -
subgroup scheme H = H0 ⊃ H1 ⊃ · · · ⊃ Ht = {0}, where each Hi−1/Hi is (over an algebraic closure)
an OL -module of the form OL/ai with ai a prime ideal of OL not dividing p. Define the degree of H ,
deg(H), to be the ideal of OL equal to a1a2 · · ·at .
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Lemma 5.2. Let H ⊂ A be an OL -invariant group scheme such that (�H, p) = 1. Then A/H has a princi-
pal OL -polarization λ, unique up to O×+

L , such that πH : A → A/H satisfies π∗
Hλ = a · λA for some a ∈ OL .

Proof. Suppose that (�H, p) = 1. Then, since A is principally polarized it satisfies the Rapoport con-
dition (see, for example, [Gor, §5, proof of Lemma 5.5]) and since the isogeny A → A/H induces an
isomorphism on tangent spaces (with the OL -structure) it follows that A/H also satisfies the Rapoport
condition. Since the strict class number of OL is one, it follows that A/H has a principal OL -linear
polarization as well.

Another proof can be given by induction on the composition series length for Ker(πH ). One then
easily reduces to the case where Ker(πH ) is a simple OL -module killed by a prime ideal l � OL . It is
easy to check then that Ker(πH ) is a maximal isotropic subgroup of A[l]. Since OL has class number
one, l = (a) for some a ∈ OL and we are done, by the remarks above. �
Lemma 5.3. We have deg(H) = (degL(πH )), the principal OL -ideal generated by degL(πH ). In particular,
NormL/Q deg(H) is the ideal of Z generated by the usual degree of the isogeny πH : A → A/H, namely, the
rank of the group scheme Ker(πH ).

Proof. Let λ be a principal OL -polarization on A/H making πH a map of OL -polarized abelian va-
rieties. Such a polarization exists by Lemma 5.2. Then deg(H) is the square root of deg(Ker(π∗

Hλ)),
because H is maximal isotropic in Ker(π∗

Hλ) and so H ∼= [Ker(π∗
Hλ)/H]t as OL -group schemes—the

duality is with respect to the Mumford pairing and we use (−)t to denote the dual group scheme.
On the other hand, by definition, degL(πH ) = λ−1

A π t
HλπH = λ−1

A π∗
Hλ = a, where Ker(π∗

Hλ) = A[a].
So, deg(Ker(π∗

Hλ)) = a2. �
Definition 5.4. For an ideal a of OL , relatively prime to p, let φ(a) be the number of OL -subgroup
schemes H of A such that deg(H) = a.

Lemma 5.5. The function φ(a) is a multiplicative function. Let l be a prime ideal of OL of residue degree f (l),
then

φ
(
lk

) = 1 + Norm(l) + · · · + Norm(l)k = �(k+1) f (l) − 1

� f (l) − 1
.

Proof. We argue by induction on k. The case k = 0 is clear. We use that A[lk] ∼= (OL/l
k)2 as OL -

modules, over an algebraic closure. Since the number of OL -group schemes of degL = l is the number
of lines in the Fl := OL/l vector space A[l] ∼= F2

l
which is equal to �P1(Fl) = Norm(l)+ 1, we see that

the case k = 1 holds as well.
Suppose the result for k − 2 � 0. Note that φ(lk) − φ(lk−2) is exactly the number of OL -subgroup

schemes H of A such that degL(H) = lk and H � A[l]. Passing to the Tate module Tl(A)/(lk), we
see that this is the number of OL modules of (OL/l

k)2 that are cyclic of order lk . This number is
just the number of elements (a,b) of (OL/l

k)2 such that at least one of a,b is not divisible by l,
taken modulo (OL/l

k)× , a group of order (� f (l) − 1)�(k−1) f (l) . On the other hand the number of

such generators (a,b) is clearly �2kf (l) − �2(k−1) f (l) . We conclude that there are �2kf (l)−�2(k−1) f (l)

(� f (l)−1)�(k−1) f (l) =
�kf (l) + �(k−1) f (l) such OL -modules and we are done, using the induction hypothesis for k − 2. �

Two multiplicative functions agreeing on powers of prime ideals are equal; this gives the following
Corollary.

Corollary 5.6. The function φ on ideals prime to p is the function σ1,L , where σ1,L(a) = ∑
b|a Norm(b).

5.3. Lower bound

We now come to the proof of the lower bound in Theorem 3.3(1).
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5.3.1. Counting isomorphism classes
Fix an L-superspecial variety A = (A, ιA, λA). Let us denote the isomorphism class of an L-

superspecial variety B by [B], where an isomorphism f : B → C is an isomorphism of abelian varieties
that is OL -equivariant and satisfies f ∗λC = ε · λB for some ε ∈ O×+

L . One gets the same isomorphism
classes (since we assume L has strict class number one) by taking ε = 1.

We want to calculate the cardinality C(M) of the set

{
[B]: ∃ f : A → B,

1

2
‖ f ‖A,B � M

}
,

at least for M < p. In general, when we write f : A → B we mean that f is an isogeny of abelian
varieties with RM. It follows that f ∗λB = degL( f ) · λA . The lower bound on N(p) will come from
the fact that we must have C( 1

2 N(p)) � h̄, where h̄ is the number of isomorphism classes of L-
superspecial varieties in characteristic p.

Let us fix now representatives for the isomorphism classes of L-superspecial varieties, say,

B j = (B j, ι j, λ j), j = 1, . . . , h̄.

where B1 = A. Then C(M) is also the cardinality of the set

S =
{

B j: ∃ f : A → B j,
1

2
‖ f ‖A,B � M

}
.

(This is just the statement that such an f exists for one member of [B j] if and only if it exists for
every member of [B j].)

Now, Bi
∼= B j if and only if (Bi, ιi) ∼= (B j, ι j) as abelian varieties with RM. Indeed, the “forgetful

direction” is clear; for the other direction use that any OL -polarization on Bi is of the form aλi for
some a ∈ O+

L .

Lemma 5.7. Assuming M < p, C(M) = #S ′ , where

S ′ = {
(B j, ι j): ∃ f : (A, ι) → (B j, ι j), ∃α ∈ O+

L such that deg
(
Ker( f )

) = (α), TrL/Q(α) � M
}
.

Proof. Given an object B j ∈ S we have f : A → B j corresponding to it. We take α = degL,A,B j
( f ), and

it follows from Lemma 5.3 that deg(Ker( f )) = (α). Conversely, given (B j, ι j) in S ′ and f : (A, ι) →
(B j, ι j), we have for some ε ∈ O×

L that degL,A,B j
(ε f ) = α. Then ε f : A → B j and 1

2 ‖ε f ‖ � M . �
Corollary 5.8. Assume M < p, then

C(M) �
∑

α∈O+
L , TrL/Q(α)�M

σ1,L
(
(α)

)
.

Proof. Indeed, since the isomorphism class of (B j, ι j), appearing as an element of S ′ and so as the
target of f : (A, ιA) → (B j, ι j), is completely determined by the kernel of f , we get

C(M) � �
{

H < A: OL-invariant, ∃α ∈ O+
L s.t. deg(H) = (α), TrL/Q(α) � M

}
=

∑
α∈O+

L ,TrL/Q(α)�M

φ
(
(α)

)

=
∑

α∈O+,TrL/Q(α)�M

σ1,L
(
(α)

)
. � (5.3)
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We remark that the inequality results from the fact we may have H1 �= H2, yet A/H1 ∼= A/H2 as
principally polarized abelian varieties with RM.

5.3.2. Eisenstein series
There is an Eisenstein series E2,L of weight 2 on SL2(OL), whose Fourier expansion is given by

E2,L(z) = 2−gζL(−1) +
∑

ν∈D−1,+
L

σ1,L(νDL)q
ν = 2−gζL(−1) +

∑
ν∈O+

L

σ1,L(νOL)q
δ−1ν, z ∈ Hg,

where qν = exp(2π i · Tr(νz)), H = {z ∈ C: Im(z) > 0} and δ is a totally positive generator of the
different ideal DL . See, e.g., [vdG, §6]. Consider then the diagonal embedding H → Hg ; via this em-
bedding E2,L pulls back to a modular form BL on SL2(Z) of weight 2g and Fourier expansion

BL(q) = 2−gζL(−1) +
∞∑

n=1

( ∑
{ν∈O+

L : Tr(ν)=n}
σ1,L(νOL)

)
qn =

∞∑
n=0

a(n)qn.

(If L = Q we define BL(q) this way as a formal power series; the series is not convergent.) In general,
we are not aware of a closed formula expressing B L in terms of generators for the modular forms of
weight 2g . We therefore make coarser estimates (but see our discussion in Sections 5.4.1, 5.4.2 below
for g � 3 and see also [Coh].) We have

BL(q) = 21−g · ζL(−1)

ζQ(1 − 2g)
E2g(q) + h(q),

where h(q) = ∑∞
n=1 a′

nqn is a cusp form of weight 2g and E2g is the Eisenstein series for SL2(Z) of
weight 2g , normalized as

E2g(q) = 2−1ζQ(1 − 2g) +
∞∑

n=1

σ2g−1(n)qn.

The Fourier coefficients a′
n of h(q) satisfy the bound

M∑
n=1

∣∣a′
n

∣∣ � M g+ 1
2 ,

where the notation α(n) � β(n) for functions N → R�0 means α(n)/β(n) → 0 as n → ∞. (This esti-
mate follows, of course, from Deligne’s bound, but one needs less. See [Iwa, Corollary 5.2].) Combining
Equation 5.3 with the above gives

C(M) �
M∑

n=1

an = 21−g · ζL(−1)

ζQ(1 − 2g)

(
M∑

n=1

σ2g−1(n)

)
+

M∑
n=1

∣∣a′
n

∣∣.

Estimates for
∑M

n=1 σk(n), k � 1, are classical, see e.g. [Apo, Theorems 3.4, 3.5]:

M∑
σk(n) = ζQ(1 + k)

1 + k
Mk+1 +

{
O (M log M), k = 1,

O (Mk), k > 1,
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which, using the functional equation ζQ(1 − s) = 2(2π)−s�(s) cos(π s/2)ζQ(s) (see [Apo, Theo-
rem 12.7]), gives us

M∑
n=1

σ2g−1(n) = (−1)g 22g−1π2g

(2g)! · ζQ(1 − 2g) · M2g +
{

O (M log M), g = 1,

O (M2g−1), g > 1.

All together, we have proven the following proposition.

Proposition 5.9. Let C(M) = �{[B]: ∃ f : A → B, 1
2 ‖ f ‖A,B � M} then, as M → ∞,

C(M) � 2gπ2g

(2g)! · (−1)gζL(−1) · M2g .

Recall that our definition of N(p) allows the use of f with ‖ f ‖A,B � N(p), or 1
2 ‖ f ‖A,B � 1

2 N(p).
Using that C( 1

2 N(p)) � h̄, we therefore obtain the following conclusion.

Corollary 5.10. Let h̄ be the number of isomorphism classes of L-superspecial abelian varieties in characteris-
tic p, p unramified in L. Then, as p → ∞,

N(p) �
√

2 · ((2g)!) 1
2g

π

(
h̄

(−1)gζL(−1)

) 1
2g

.

5.3.3. Class numbers and mass formulas
Using [Nic], h̄ is the class number of an Eichler order R of discriminant pOL in the quaternion

algebra B p,L for right R-ideals. This number is of course
∑

a∈Cl(R) 1 and is complicated to evaluate in
closed form. An easier magnitude is the mass of R ,

m(R) =
∑

a∈Cl(R)

1

[R�(a)× : O×
L ] ,

where R�(a) is the left order of a. (We remark, though this is not used in the sequel, that R�(a) can
be identified with the ring of endomorphisms of an L-superspecial variety that commute with OL .)
One knows that

m(R) = 21−gζL(−1) ×
∏

{p�OL : f (p/p)≡1(2)}
(1 − NormL/Q p)

∏
{p�OL : f (p/p)≡0 (2)}

(1 + NormL/Q p).

(Cf. [Vig, Chapitre V, Corollaire 2.3].) Clearly, m(R) � h̄.

5.3.4.
Our considerations now imply that

N(p) �
√

2((2g)!)1/(2g)

π

(
h̄

(−1)gζL(−1)

)1/(2g)

�
√

2((2g)!)1/(2g)

π

(
m(R)

(−1)gζL(−1)

)1/(2g)

� 21/(2g)((2g)!)1/(2g)

π

∏
p|p

∣∣Norm(p) + (−1) f (p/p)
∣∣1/(2g)
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� 21/(2g)
(
(2g)!)1/(2g)

π−1
√

p − 1

� (2g)! 1
2g

π

√
p.

This concludes the proof of the lower bound.

5.4. Further remarks

If g � 3 then we can be more precise in identifying the Eisenstein series and more precise in our
lower bound.

5.4.1. g = 1
In this case the Eisenstein series is not convergent. The whole discussion above simplifies though.

Indeed, the number of subgroups of order N , (N, p) = 1, of an elliptic curve is σ1(N) and the num-
ber of supersingular elliptic curves is about p/12 and certainly not smaller than (p − 1)/12. The
bound N(p) is at least the smallest even integer N such that

N/2∑
n=1

σ1(n) � p − 1

12

(because N(p) is twice the degree). Now, for large N we have
∑N/2

n=1 σ1(n) ∼ π2

48 N2. One finds that

N(p) � 2

π

√
p ≈ 0.63662

√
p.

This matches quite well our upper bound from Theorem 3.3 in the case g = 1:

N(p) � 4
√

2

π

√
p ≈ 1.8006

√
p.

As above, let p be a prime, h̄ the class number of B p,∞ . In Table 1, N is the minimal integer for
which there exists an isogeny of degree less or equal to N between any two supersingular elliptic

Table 1

p h̄ [√p] N N/
√

p

101 9 10 6 0.600
211 18 15 9 0.600
307 26 18 11 0.611
401 34 20 12 0.600
503 43 22 15 0.682
601 50 25 14 0.560
701 59 26 17 0.654
809 68 28 18 0.643
907 76 30 19 0.633

1009 84 32 20 0.625
2003 168 45 30 0.667
3001 250 55 34 0.618
4001 334 63 44 0.698
5003 418 71 46 0.648
6007 501 78 51 0.654
7001 584 84 56 0.667
8009 668 89 60 0.674
9001 750 95 59 0.621

10007 835 100 70 0.700
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curves over Fp . Thus N = 1
2 N(p), but it is more natural to use N in the context of elliptic curves.

Because of running time and memory restrictions we did only sample calculations. For p = 10007, the
total computation time was 22688.710 seconds, total memory usage was 1213.97 MB. The program
ran on an Intel Pentium 4, 2.53 GHz, 1 GB memory using MAGMA.

5.4.2. g = 2,3
We do not enter explicit calculations here. The idea is that since the spaces of modular forms

on SL2(Z) of weight 4 and 6 are one-dimensional, we have B L(q) = 21−g · ζL (−1)
ζQ(1−2g)

E2g(q). This was

used in turn by Siegel to find formulas for ζL(−1). See [Coh].
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