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In various settings:

Lubin, Katz, Abbes-Mokrane, Andreatta-Gasbarri, Kisin-Lai,
Nevens, Rabinoff, Fargues, B. Conrad, Lau, Buzzard-Taylor (?),
and perhaps others...
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The Problem. Associate in a natural way to a
g-dimensional abelian variety A/R, [R : Z,] < oo, with real
multiplication, an invariant isotropic subgroup H such
that pH = {0}, and #{H = p5.

Motivation. Properties of the U-operator on overconvergent
modular forms; used to prove classicality results for modular
forms, study of p-adic families of modular forms, special values
of L-functions, and modularity of Galois representations.

If A has ordinary reduction: classical v/
(There is a unique way to lift the kernel of Frobenius

Fr: A— ﬁ(p), where A= A (mod pR).)

Therefore, the problem is:

e Extend this to non-ordinary abelian varieties;
e Do it in families.
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o ot associated (Raynaud) generic fibers, we have a diagram,
Y

Pictures
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local models (A7 H) o~ S.Z)rig

L
nls‘;

Abry %rig',

and the section s exists over the ordinary locus.

The Problem. Extend s “as much as possible”.
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The main theorem

Theorem (G. - Kassaei)

Let {h}secp be (Zariski local) lifts of the partial Hasse
invariants. Let U C Xz be

U = {P: v(hs(P)) + pv(h,-105(P)) < p, ¥ € B}.

There exists a section st : U — Dsig, extending the section s
on the ordinary locus.



Canonical
Subgroups

Eyal Goren What comes into the proof?

Introduction

Stratification of
X
Stratification of

Y

A @ Stratifications of X, Y (the special fibers).

Functoriality of
local models

@® Study of 7: Y — X on completed local rings.

©® ‘“Dissection” of 9,4, the generic fiber of Y, using g
different valuations.

(g =[L: QJ, where L is the totally real field acting.)

Remark. The structure suggests strategy should be applicable
to many Shimura varieties of PEL type.
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@ Stratifications of the special fibers
Stratification of X
Stratification of Y

Pictures

Functoriality of local models
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Notation

L - totally real field, [L: Q] = g.
p unramified in L.

B = Hom(L,Qp") = [, By O 0.

(o = Frobenius, lift of x — xP.)

For SCB, let S°=B\ S and
(S)={c1op:B€S}, r(S)={ocop:BeS}
k = minimal field 2 Oy /p, Vp|p.

O ®z W(fi) > Baep W(fi)“g
induces a decomposition of any O; ® W(k)-module.
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Moduli Spaces

X/W(k) parameterizes A= (A, 1, a,Aa)/S, where S is a
W (k)-scheme and:

| A— S abelian scheme, of rel. dim'n g, 1: O — Ends(A)},

a = rigid roo( )-level structure.
A (a,aT) = (Pa, PJ) a polarization: A® a = AT,
Pa = Homp, (A, A)¥™ with the positive cone of polarizations.

Y /W (k) parameterizes (A, H) such that:

‘H is killed by p, degree p&, O;-invariant, isotropic

Equivalently,
(f: A— B),

such that deg(f) = p8,Ker(f) C A[p], f*Pg = pPa.

Atkin-Lehner: w(f: A — B) = (ft: B — A),
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For A/k,k O k perfect. Let

%tratiﬁCation of OéA = Ker(FrA) ﬂ Ker(verA)

Srodfcation of Decomposition of the Dieudonné modules:

Pictures

Functoriality of

local models

D(AP]) = Bses k2 D D(an) = ©pen Dlan)s
N——
oor1dm’l

The type of A'is
r(4) = {8 € B: D(an)s # {0}}.

Define strata of X,

Wy s~ {A:7(A) =7} (locally closed),
Z, o~ {A:7(A) D1} (closed).
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Theorems (G. - Oort)

OW, =2 =[], Wy So{W,:7CB}isa
stratification of the moduli space X by 2¢ strata.

® W.; is non-singular, quasi-affine of dimension g — f 7.

© Jhg, a Hilbert modular form of weight p - o loB -3,
such that (hg) = Z3.
(In classical terms: weight (0,...,0,p,—1,0...,0).)

(4] 6Y,P = k[[tg : p € B]] and if hg(P) = 0 then we may
identify hg with tg.

® The kernel of the g-expansion map on the graded ring of

Hilbert modular forms modulo p is the ideal
<h5 —-1:8¢ B>.
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Given A%ﬁﬁ, we have

£

zira:l;ca;o: :: @,@ Lle(f)B
7 . _ .
i @Dslie(A)s " Dplie(B)g.
foe ﬁ° J” ° @ alie(ft)s
Define

@(f) ={B € B: Lie(f),-105 = 0},

[ ] (rQ =

o n=n(f) ={BeB: Lie(f')s =0},

o [ ={p)Nn (the “critical indices").
Properties:

O (pAn)27(A)29Nn.
® 12 Up)°.
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A pair (¢, n) (for p,n C B) is admissible if

n 2 4(e)°

Exist 38 such pairs.

Define strata in Y:

Wey s~ {(F: A= B) 1 o(f) = p,n(f) = n}

Zpy e~ {(f: A= B) : ¢(f) 2 ¢,n(f) 2

nt

(loc. closed),
(closed).
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(1] ch,r] = ng,n = E([plml)z((pm) WSD/J]/ and so {WSOW} is a
stratification of Y with 38 strata.

® W, , and Z,, are non-singular, equi-dimensional of
dimension 2g — ( ¢ + 1 n).

© There are 28 maximal strata, given by Z, sy, ¢ C B.
There are 2" horizontal components, where r = #{p|p}.

Two of which are Y = Zp g <~~~ (A, Ker(Fra))
Yv =2Zyp <~ (A Ker(Vera)).
0 w(Zon) = Zr(m).(e)-
0 7(Zpn) = Zorw-
@ If CC Z,, is an irreducible component then

Cﬁ?FQVV#Q).
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@ Let Q € Y be a closed k-point, then (H. Stamm, using

methods of Th. Zink)

W {xs:Bel}{ys:Bel}{zs: Bel}]]
v,Q ({xsys —p:B€l}) '

Moreover, the variables can be chosen so that: If

O

1

p2¢ 2¢—r(l), n2n 2n-1,
and (¢, 1) is admissible, write
=p—J, n=n-K
then Z, ,, is described in @7’5 by the ideal
({xg:Bel=K}{ys:Bel—LlJ)})

Moreover, if Q € Zy 4y then (¢',7') are as above.



Canonical
Subgroups

Eyal Goren

Introduction

Stratifications
Stratification of
X
Stratification of
Y
Pictures
Functoriality of
local models
Valuations on

Canonical
subgroup

e granairy

O~




Canonical
Subgroups

Eyal Goren

Introduction
Stratifications
Stratification of
X
Stratification of
Y

Pictures
Functoriality of

local models

Valuations on

Xrig, Drig

Canonical
subgroup

//////////// :
/// //

s
Wl

Vg,(uafiué




Canonical

Subgroups
Eyal Goren Key Lemma
Let BepnnCr, 7'((5) :ﬁ’
* . A A
%rat\f\cation of i . Y,ﬁ — 775
%mhh(nhon of
Pictures Then
Functoriality of
local models
UX/g—}—Vyg,loﬁ ocof € ©, o-_loﬁ e,
-1
ux ocopeEy, O o ,
W*(tﬁ) = B Bey Bé&n
We-1o5 cofdp o topen,
(0 gofg e, oo,

where u, v are units.
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Study the situation on components of Spf( Aya); they
locar mada " correspond to strata Z, ,» passing through Q.

Gain data on 7*(tg); roughly, 7*(t5) = uxg’ + vy, ;.

Globalize so as to be able to study these expressions on
components of Z ,, but at other points than Q.

Reduce to computation at a “special superspecial point”
(using that any component C of any strata Z,,, intersects

YE ﬁ?\/).
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@t Xrig, Drig are the rigid spaces associated to XX, YY. Given

Subgroups J— — i —~
Eyalgcor:n P e X.ig, get P :ip(P) € X. The variables tg € Oy 5 are
functions on sp~1(P) = residue “disc” about P. Let
Sytrat\ﬁcat'\on of P ﬁ
%mmw(,auonof I/(P) - (VH(P))7 V[B(P) — V(t/@’( )) ﬂ 6 7-( )7
Pictures
ooy ©f 0 else.
Valuations on
Xrig

P (1(x) = min(val(x),1).) For Q € iz, @ = sp(Q) €V, let

1 pen(@)-1(Q)
Q=@ (@ =4 @)  seiQ)

0 B € 1(Q).

v(P),v(Q) belong to the valuation cube © = [0, 1]%.
A(Q) +1(wQ) = 1 (easy)).
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Parameterize the “open faces” of © by a = (ag),as € {0,1, *}.
For such a define
. e@={BeB:az#0}, na)={FEB:am1p#1}.
There is a 1 : 1 order-reversing correspondence
{open faces of ©} ¢~~~ {strata W, ,} .

B 713 <2 XY
=8 95 9 Al

Far— Woa)n(a)
e v(Q)eF, —= Qe We(a)n(a)-
o ¥(Q) € Star(F,) <= Q € Z,(a).(a)-

The open faces of © produce a “dissection” of ):

Fa — {Q:v(Q) € Z#,}.
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The canonical subgroup theorem

U :={P € Xiig : vg(P) + pvy-1,3(P) < p,VB € B}

V = {Q € @rig : Vﬁ(Q) +pya'*lo,8(Q) < pavﬁ € B}
As(@)

Theorem

7©(V) = U and there is a section
st:U =V,

extending the canonical section on the ordinary locus.



Canonical
Subgroups

Eyal Goren

Stratification of
X

Stratification of
Y

Pictures

unctoriality of
local models

Canonical
subgroup

|deas in the proof

e Define for p|p,
Vy ={Q:X3(Q) < p, V5 € B}
Wy ={Q : \3(Q) > p, VB € B,}

We first show that:
e U is admissible.
e 77 1(U) = V][ W, admissible disjoint union, where

w= U [
0£SC{plp) [pES  beS

Uses the notion of tubular neighborhoods and our strata on Y.

o |1y is finite-flat.

e The connected components of V are in bijection with
those of U.

e We calculate that 7|y has degree 1 by restricting to
spH(Wag) Csp (V).
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e We can determine what happens under

Stratification of
X

SVWWHWH of P — ST(P) — W o ST(P) — TO WO ST(P)7
Pictures
H‘,”[ toriality of ) ; )
focsl models and so can iterate the construction to construct higher
level canonical subgroups (C A[p"]).
Cenonical e Can prove functorial behavior relative to morphisms
group

between Hilbert modular varieties. In particular,

(i) decent to Qp of the canonical subgroup, and
(i) prove U is maximal (in a suitable sense) for the
construction of the canonical subgroup.
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